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PREFACE

These notes have been prepared in connection with the Conference Board of the
Mathematical Sciences (CBMS) course at the University of Washington, June 25-29, 2001,
where the author is principal lecturer. It is intended that the completed version of the
notes will be published within a year of the conference.

The aim of the course is to present an overview of the different kinds of statistical
methodology being used in contemporary environmental applications of statistics. Since
much environmental work involves spatial sampling, there is a heavy emphasis on spatial
statistics. I also cover some modern developments in time series analysis which have proved
valuable for studying environmental trend, e.g. long-range dependence. Also since many
environmental problems are associated with extreme values, I give an overview of some of
the specific techniques useful for dealing with these problems. The applications covered
have a bias towards “physical” topics such climate change and atmospheric pollution. An
overview of the first of these topics is given in Chapter 1, and used as motivation for many
of the methodological developments described in detail in later chapters.

Prerequisites for the course are a sound background knowledge of statistics at the
graduate level, including linear models, maximum likelihood, Bayesian statistics, etc. Some
previous knowledge of time series analysis would be helpful but not essential. 1T do not
assume any previous knowledge of spatial statistics or extreme value theory. Some sections
of the notes assume more advanced mathematical knowledge but the reader who is willing
to take these on trust can omit these sections without losing information that is vital to
subsequent sections. I have identifed such sections by a double asterisk (**).

I would like to thank Peter Guttorp for organizing the CBMS course and for inviting
me to be the principal lecturer. It is impossible to name all the other individuals with
whom I have collaborated in environmental statistics in some way over the years, but
I would like to mention in particular Peter Bloomfield, Stuart Coles, Larry Cox, Jerry
Dayvis, Anthony Davison, Montserrat Fuentes, Amy Grady, Dave Holland, Doug Nychka,
Peter Robinson, Jerry Sacks, Jonathan Tawn and Tom Wigley. Previous versions of the
notes have been used in connection with courses at the University of North Carolina, Duke
University, Cambridge University and the University of Mendoza, the latter being at the
invitation of Angela Diblasi. Chapter 8 has expanded from some lecture notes on extreme
values in meteorology which were first presented at a course organized by the American
Meteorological Society in Reno, Nevada, in 1997. The group at the National Climatic Data
Center (Tom Karl, Dave Easterling, and others) has been very helpful in providing access
to, and information about, climatic data sets. My personal research has been sponsored
by the National Science Foundation and the Environmental Protection Agency; the CBMS
series is also sponsored by the NSF. I have also benefitted from extensive interactions with
the National Institute of Statistical Sciences and the Geophysical Statistics Project at the
National Center for Atmospheric Research. To all of these individuals and organizations,
I offer my thanks.
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CHAPTER 1

Introduction: Statistical Problems
Associated With Climate Change

The purpose of this introductory chapter is to introduce some of the statistical ques-
tions that arise in environmental science through the medium of one rather complex exam-
ple — the statistical evaluation of hypotheses about climate change. This field of research
involves many areas of statistical methodology, such as spatial statistics, estimating trends
in correlated time series, and extreme value analysis, which are developed in more detail
in later chapters. It also serves to provide some real data sets which we shall use later as
practical examples of the application of some advanced statistical techniques.

After some brief background discussion in section 1.1, we discuss a concrete prob-
lem, involving trends in hemispheric temperature averages, in section 1.2. Sections 1.3-1.5
illustrate some of the issues involved in analyzing a large data base, in this case the His-
torical Climatological Network (HCN) which includes daily temperature and precipitation
information for 186 stations across the continental USA. We discuss, for example, the need
to assess spatial dependence, and in section 1.5 provide some examples of variogram esti-
mation, a topic discussed in much more detail in chapter 2. Section 1.6 aims to put this
discussion in context by providing a very brief overview of some of the other environmental
statistics problems of considerable interest at the present time. Finally, section 1.7 serves
to provide some more technical detail about one of the methodological issues, namely the
estimation of trends in series with autoregressive errors.

1.1 Introduction

The problem of climate change is one of the most complex and controversial scientific
problems being studied today. In broad terms, the temperature at the earth’s surface has
been rising steadily since the middle of the nineteenth century, and rising rapidly since
the mid-1970s. These statements are supported by extensive observational evidence and
are not seriously disputed. However, the causes of this warming trend are by no means
universally agreed. By far the best known and most widely publicized explanation is that
the rise in temperature is caused primarily by the “greenhouse effect” created by rising
levels of certain gases in the atmosphere, in particular carbon dioxide (COs), which is
attributed largely to anthropogenic causes such as the burning of fossil fuels. This is
supported by the fact that CO4 levels have themselves been steadily rising since the mid-
1950s, and by numerical models of the atmosphere and oceans — the so-called general
circulation models or GCMs — which have demonstrated a direct association between
CO2 and temperature. However, not everyone accepts that the greenhouse gas effect is
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the primary cause of global warming. For example, it is pointed out that the earth went
through a “mini ice-age” during the seventeenth and eighteenth centuries, and that some of
the warming since that period is an entirely natural effect associated with the ending of that
period. On a more specific level, comparisons of GCM output with observed temperatures
have shown that greenhouse gases alone cannot explain all fluctuations in temperature;
other effects such as the cooling effect due to aerosols (small particles, typically sulfates,
such as those emitted during volcanic eruptions) and variations in solar flux must be taken
into account. Nevertheless, when all these effects are considered, the component due to
greenhouse gases remains strong. A comprehensive review of all these issues up to the
end of 1995 was given by Houghton et al. (1996); some more recent references addressing
the agreement between GCM output and observational data include Santer et al. (1996),
Hegerl et al. (1996), Allen and Tett (1999) and Tett et al. (1999).

Statistics enters this discussion in numerous ways. The problem of how to assess
the fit between observed data and GCM output is a very complex one. The observed
data are spatially distributed across the earth’s surface, and in some studies, vertically
through the atmosphere as well. Even in the absence of forcing factors such as changes in
greenhouse gases, both real data and GCM output show complex temporal dependences
which are difficult to characterize physically. Thus even the simplest comparisons require
that one take into account both temporal and spatial correlations, and ultimately require
spatial-temporal models.

There are many other aspects of climate change that require statistics. GCMs are
believed, at least by their supporters, to provide good predictions of mean temperatures
and precipitation over large spatial and temporal regions, but they do not perform so well
over smaller scales. Downscaling is a general term used by climatologists to describe the
process of predicting small-scale effects as a function of those operating at large scales. This
is again a highly statistical task and many of the techniques which have been developed in
recent years require careful analysis of spatial and/or temporal correlations in observational
data. Then there are other phenomena which have been observed in the data which
require careful statistical evaluation. For example, Karl et al. (1996) have developed an
number of indices of climate change based on such things as length or severity of droughts,
numbers of days with very high levels of precipitation, days with either the maximum or
the minimum temprature much above or below normal, and so on. One of their most
interesting discoveries was that although the mean level of precipitation has not changed
greatly, the proportion of days with a very high one-day precipitation level in the USA has
increased sharply during the twentieth century. Another claim (Easterling et al. 1997) is
that the increase in mean global temperatures is due primarily to a decrease in the mean
diurnal temperature range, i.e. that daily minumum temperatures are getting warmer
while daily maximum temperatures are remaining about the same. Statistical assessment
of claims of this nature also requires attention to spatial and temporal correlations, but may
introduce other features as well. For example, the claims about the increase in frequency
of high-rainfall events are a natural domain for the application of extreme value analysis,
which is specifically concerned with questions of this nature.
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1.2 An Example

Fig. 1.1 ! shows mean annual temperature anomalies 2 for 1900-1996, computed
for the northern hemisphere (NH) and southern hemisphere (SH), together with fitted
linear trend and the “best” model fit reflecting anthropogenic influences as well as solar
fluctations. The latter is calculated using a method developed by Wigley and Raper (1990,
1991). It shows that the warming trend has not been monotonic; in particular, in the NH,
temperatures were decreasing for a period between the 1940s and 1960s and only started
rising again at the end of the 1960s; however, since then they have been rising faster than
ever before. A similar effect is observed in the SH though it is concentrated into a shorter
time-span and it is perhaps less clear that it represents a genuine change to the overall
pattern.

(a) NH (b) SH
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Fig. 1.1. Plot of temperature anomalies in Northern Hemisphere and Southern Hemi-
sphere for 1900-1996, together with fitted straight lines and best fits to trends based on
climate models.

The fitted trends that are plotted are based on a linear regression with autoregressive
errors. Suppose y; denotes the observed temperature anomaly in year t. Suppose this is

1 Based on ongoing work with climate scientists Tom Wigley (National Center for At-
mospheric Research) and Ben Santer (Lawrence Livermore National Laboratories). T am
grateful to Tom Wigley for the data.

2 Temperature differences compared with the average over a fixed time interval, approx-
imately 1961-1990.



related to a regressor x; through the equation

Y = Bo + Brxs + e, (1.1)

where the residuals {rn;} form an autoregressive process of order m, AR(m) for short:

m
M= bim—j+ €t (1.2)

j=1

and the {¢;} are assumed independent N (0, 0?) random variables. Of course if m = 0 this
is just a standard linear regression with independent errors, but the autoregressive term is
introduced to reflect the reality that temperatures are correlated. There are a number of
alternative approaches which might be used to assess the significance of trends in climatic
time series, some references being Bloomfield (1992), Bloomfield and Nychka (1992) and
Smith (1993). Models of the form of (1.1)—(1.2), or extensions in which the {n;} process is
assumed to be of ARMA form, have also been widely used in the climatological literature,
including the references Karl et al. (1996) and Easterling et al. (1997).

The model defined by (1.1) and (1.2) was fitted by maximum likelihood, for several
values of m, and the different models compared using the AIC 3. For z;, two models were
tried, both the simple linear trend z; = ¢t and the trend predicted by the climate model,
the latter being different for the NH and SH. The results are in the following table:

AR Order NH NH SH SH

m Linear Trend Model Trend Linear Trend Model Trend
0 -259.0 —280.5 -313.7 -320.6

1 -290.4 -297.7 -343.9 —346.2

2 —288.6 —295.7 -343.4 -346.3

3 —286.7 —293.7 -346.2 -348.1

4 -295.9 -301.1 -344.2 -346.1

5 -294.2 -299.3 -342.8 -345.3

6 -292.2 —297.3 -340.9 —343.6

Table 1.1. AIC values for linear and climate model trends fitted to northern hemisphere
and southern hemisphere temperature anomalies for 1900-1996, for several values of the
autoregressive order m.

The sharp drop in AIC between m = 0 and m = 1, for all four columns of the table,
shows clearly that a model based on independent errors is not adequate. The best model

3 Akaike Information Criterion. Defined as —2log L + 2 log p where L is the maximized
likelihood and p the number of parameters. Widely used as a model selection criterion,
especially when comparing large numbers of models.
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as selected by AIC has m = 4 for the NH and m = 3 for the SH, for both the linear and
climate model trends. In both cases the trend is highly significant compared with a null
hypothesis of no trend — for example, with the linear trend, the slope is .66 °C per century
for the NH, with a standard error of .17, and .67 for the SH, standard error .09. However
the climate model trend is clearly superior, especially for the NH. Another comparison is
in terms of R2, i.e. the ratio of residual sums of squares for the fitted statistical model
compared with a null model of no trend. In the case of a linear trend this is .52 for the
NH, .70 for the SH. Using the climate model trend these figures rise to .62 for the NH
and .72 for the SH. That the increase in R? is less dramatic for the SH than the NH
presumably reflects the fact that both the observed trend and the model-based prediction
are closer to linear in the case of the SH than the NH — it does not imply that the climate
model fits less well in the SH. On the other hand, it is also apparent from the figure that
the model-based trend does not capture all the observed fluctuations in the data — for
example, both the NH and SH data show a sharp rise in the 1940s, followed, in the case
of the SH data, by a sharp fall in the 1950s, and this is not fully reflected by the model
predictions.

A brief description of the procedure used for fitting the model (1.1)—(1.2) is contained
in section 1.7.

1.3 Temperature and Rainfall Trends Across the USA

Analyses such as those in section 1.2, based on global or hemispherical data sets,
are valuable as broad-brush assessments of global climate change, but they provide very
little information about specific meteorological effects. For that, one must study effects
on much more localized spatial scales. In the USA, researchers at NCDC # have compiled
daily records of maximum and minimum temperatures and precipitations for a network of
stations known as the Historical Climatological Network (HCN). The analysis that follows
is based on 186 stations from the HCN, depicted in Fig. 1.2. For the purpose of some
of the plots, the stations have been arranged in a very rough grid, as follows. The ten
northernmost stations were arranged in west-to-east order; this forms the top row of the
grid. The next ten northernmost stations were arranged in west-to-east order and form
the second row of the grid. This continues down to the bottom row, which consists of just
six stations. The solid lines of Fig. 1.2 join up the stations in each row. Finally, the whole
country is divided into four large regions (dotted lines), which will be used for regional
analysis.

4 National Climatic Data Center, based in Asheville, NC; www.ncdc.noaa.gov.
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Fig. 1.2. Map of 186 HCN stations in the continental USA, joined up to indicate grid
rows. The dotted vertical and horizontal lines divide the country into four regions for
subsequent regional analysis.

For the purpose of this discussion, four time series representing specific meteorological
effects were created for each station. The first consists of winter means of daily minimum
temperature. Here the winter is defined to mean the months of December, January and
February, with December counted as part of the following year’s winter. The focus on
daily minima in winter was suggested by papers such as Easterling et al. (1997), who have
suggested that most of the observed global warming is due to an increase in the lowest
temperatures. For direct contrast with that, a set of time series consisting of winter means
of daily mazimum temperature was also created. In both of these series, it was arbitrarily
decided to count a particular winter’s data as being “available” if at least 60 individual
daily values were available at that station for the winter in question. Otherwise the winter
mean value was recorded as a missing value. The third time series consisted of the annual
maximum daily rainfall value for each station and year. This was counted as “available”
if at least 240 days’ data from the year in question were available. The focus on annual
maxima was suggested by the finding of Karl et al. (1996) that the frequency of extreme
rainfalls has increased over the century. However, for comparison with that, a fourth time
series consisting of annual mean precipitation at each station was also computed. One
feature of the annual maxima is that they clearly do not follow a normal distribution
(Fig. 1.7 below) and this poses some interesting problems concerning the handling of time
series with highly skewed distributions. The original data in fact contained a very small
number of obviously wrong values (daily rainfall of up to 90 inches); unfortunately, there
was no clear-cut criterion for deciding exactly which values were in error. Arbitrarily, it
was decided to truncate all values in excess of 10 inches so that they are treated as being
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exactly 10 inches. Even with such truncation, however, the distribution remains highly
skewed.

In Figs. 1.3-1.6, the 186 time series for mean winter daily minima, mean winter daily
maxima, maximum annual daily precipitation and mean annual precipitation are plotted,
using the grid system described in connection with Fig. 1.2. A few general patterns are
observable from these plots. For example, many of the temperature minima series show a
steady or decreasing trend over most of the century followed by a clear rise since around
1970, consistent with the pattern anticipated from the NH series in Fig. 1.1. However,
the pattern is hard to see clearly because there is a great deal more noise in the individual
plots in Fig. 1.3 than there is in Fig. 1.1, as is inevitable given that Fig. 1.3 is based
on single station values whereas Fig. 1.1 represents hemispheric averages. On the other
hand, it is harder to see any general trend either increasing or decreasing among the mean
winter daily maxima, Fig. 1.4. As far as the rainfall series is concerned, Fig. 1.5, it is
again hard to see any evidence of overall trend but this may reflect the effect of outlying
observations masking whatever trend may exist.

As an example of the appearance of individual series, Fig. 1.7 shows the four plots
on a larger scale for one particular station — Portland, Maine, the extreme right-hand
plot of the fifth row in Figs. 1.3—1.6. Also shown on this plot are Q-Q plots based on the
normal distribution (Chambers et al 1983). In computing these plots, attention had to
be paid to certain suspect values in the rainfall series — in particular, the recorded daily
rainfall total for January 9, 1945 was 50 inches! This seems likely to be spurious and is
therefore treated as a censored value for the computation of the Q-Q plot. However the
second largest value in the series (9.62 inches on October 21 1996) is treated as genuine. °

The Q-Q plots for the minimum and maximum temperatures and for the mean pre-
cipitation values follow a straight line quite closely, indicating a good fit to the normal
distribution, the only slight doubt being at the lower tail of the distribution for tempera-
ture minima. Of course, since these values are averages, one would expect a good fit by
the Central Limit Theorem — the plots should not be taken as implying that individual
daily values are normally distributed. On the other hand, it is clear from Fig. 1.6(f) that
the rainfall maxima data have nothing like a normal distribution.

> The most recent version of the data (1999) has corrected the January 9 1945 value
to 0.08 inches, but the value for October 21 1996 is still listed as 9.62 inches, so this is
presumably correct. The discussion at this point has not been edited, because it shows the
need to be vigilant for possible errors even in high-quality data sources.
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1.4 Trends in Individual Series

Although our ultimate interest will be in how we can best combine information spa-
tially from series collected in different locations, for the moment we see how far it is possible
to go by looking at individual time series. This will provide useful information about the
nature of the time series, and will give some guidelines about “what we are looking for”
when we come to consider spatial aspects.

For each of the four time series available at each location, and for AR order m =
0,1,...,4, the model defined by (1.1) and (1.2) was fitted, with z; = ¢ to represent a linear
trend over the period of the analysis. For the temperature minima and maxima series, since
the strongest evidence of a warming trend is available in the data since the mid-sixties,
the analysis was confined to the time period 1965-1996. In the case of rainfall series, the
evidence available previously has not suggested that the increasing trend be confined to a
particular period, so the analysis was carried out for the whole period 1900-1996. In both
cases, any series with less than 20 “available” values was omitted from the analysis (see
Section 1.3 for the definition of available).

For these series, AIC-based comparisons of different AR models with different orders
m tend to select m = 0 as the preferred order of the model. For example, with temperature
minima, 114 out of the 182 series had minimum AIC for m = 0. The corresponding figures
for the temperature maxima, rainfall maxima and rainfall means were 103, 125 and 153
respectively. It is interesting to contrast this result with those for the hemispheric averages
in section 1.2, where we found very strong evidence of serial dependence and AIC values
indicated m = 4 and m = 3 respectively for the NH and SH series. The contrast between
the two sets of results may be the results of much higher noise levels in the individual
series, masking whatever correlation is present. This may in itself be an argument for
calculating regional averages based on spatial groupings of the individual stations, but for
now we stick with the individual series and we assume that all the series have independent
errors.

For each series, the statistical significance of the trend was assessed by computing
the estimate and standard error of the slope 31, and then computing the ratio of the two
— the ¢ ratio. Grouping the ¢ ratios into certain bands, and classifying according to the
number of stations in each band, produced the results given in Table 1.2.

In each case there is a preponderance of values with ¢ > 0, and in particular the
number of stations for which ¢ > 2 is much larger than would be expected if there were
no trend (approximately 2.5% x 182=4.55). However it is clear that this effect is stronger
in the case of temperature minima than temperature maxima, consistent with what other
studies have shown. Comparing maximum and mean rainfall levels, there are more stations
with significant positive (¢ > 2) trends for mean rainfall than for maximum rainfall, but
this is partly balanced by the number of stations with significant negative trends, and in
any case the results for rainfall maxima are less reliable in view of the heavy skewness
which we have observed in the data.

19



Series Range of t values

> 2 1to 2 Otol -1to 0 -2 to -1 < =2
Minima 37 52 61 22 8 2
Maxima 17 34 68 46 14 3
Max Rain 14 42 55 51 16 4
Mean Rain 35 49 42 35 10 11

Table 1.2. Grouped t values for the slope of a linear trend in individual time series. For
example, with the temperature minima series, 37 out of the 182 stations had a ¢ value
for the slope bigger than 2, 52 has a t value between 1 and 2, and so on. Regressions
are based on time period 1965-1996 for the temperature maxima and minima series, and
on 1914-1996 for the rainfall series, fitted by ordinary linear regression with independent
€rrors.

A natural question to ask is what is the spatial distribution of trends over the country.
These are depicted in Figs. 1.8-1.11, where in each case the top map shows the distribution
classified by the ¢ value of the slope (A for t > 2, B for 1 < ¢t < 2, etc.) and the bottom
map shows the distribution classified by the slope itself (A for top sextile, B for next
sextile, etc.). It is possible to pick out some broad patterns from these. For example, with
both the temperature maxima and temperature minima the increasing trends seem to be
concentrated in the northern midwestern states whereas in the south east, for example,
there are many more stations with a cooling trend. For the rainfall maps it is harder to
pick out any consistent pattern. With both temperature and rainfall, there is clearly a lot
of variability even between neighboring stations, and this points towards the desirability
of some kind of spatial smoothing to produce more satisfactory estimates of local patterns
in the trend.
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Fig. 1.8. Spatial distribution of trend estimates for means of daily temperature minima.
Top plot: Classified by ¢ value, A signifying ¢ > 2, B signifying 1 < ¢ < 2 and so on down
to F for t < —2. Bottom plot: Classified by the parameter estimate itself, A for top sextile,
B for next sextile, etc.
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Fig. 1.9. Spatial distribution of trend estimates for means of daily temperature maxima.
Same notations as Fig. 1.8.
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Fig. 1.10. Spatial distribution of trend estimates for maximum daily precipitation. Same
notations as Fig. 1.8.
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Fig. 1.11 Spatial distribution of trend estimates for mean daily precipitation. Same
notations as Fig. 1.8.
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1.5 The Need for Spatial Analysis

The discussion in Section 1.4 has shown a number of the difficulties in analyzing the
individual series on their own. The high degree of variability in individual series makes the
trend estimates unreliable, and although it is possible to pick out some very broad features
from maps such as those in Figs. 1.8-1.11, there is still too much random variation from
one station to the next to be able to pick out coherent spatial features.

There are (at least) three potential benefits from trying to characterize and exploit
the spatial dependence between nearby stations:

1. Formation of regional averages. In practice, most published climatological studies
do not rely on single series of measurements but form averages over regions. For example,
in one recent analysis Karl and Knight (1998) divided the continental USA into nine
climatic regions for a comparison of precipitation trends. Fig. 1.1 represents a cruder
classification into four broad regions. The question remains, however, of how to form the
averages. Simply averaging over all available stations within a region may not be anything
like the best way of estimating the overall average of the region. Kriging methods, which
exploit spatial correlations to form optimal linear combinations of the available data, can
in principle produce estimates with minimum mean squared error.

2. Improving estimates. If we exploit spatial correlations, we may be able to form
better estimates of trend, with smaller standard errors.

3. Spatial smoothing, i.e. trying to improve maps such as those in Figs. 1.8-1.11 by
avaeraging over spatially correlated stations. As with spatial averaging, we can expect to
do this much more efficiently if we have some knowledge of spatial correlations in the data.

One common method of characterizing spatial dependence is the wvariogram, to be
defined more precisely in Chapter 2. The value of the variogram at distance d is the
variance of the difference between two stations a distance d apart, it being part of the
assumption that this depends on d alone (the homogeneity assumption). There are two
standard methods of calculating it, one the obvious average of squared differences between
the two stations (the Method of Moments estimator), and the other a robust alternative.
In practice, distances are usually grouped into bins before the calculation is carried out.
All of this is explained in detail in Chapter 2.

In Figs. 1.12-1.15, the variograms for each of our four meteorological series are plotted,
both Method of Moments and Robust estimators, for each of the four regions shown in Fig.
1.1. These plots are based on the standardized residuals (to have mean 0 and variance 1)
from the regressions in Section 1.4.
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Fig. 1.12 Variogram for winter mean daily minimum temperatures, classified by region,
Method of Moments and Robust estimators.
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The subdivision into four regions is motivated by the desire to improve the homogene-
ity of spatial estimates compared with an analysis based on treating the whole country
as a single entity. The differences between variogram estimates within different regions
shows that some subdivision of this form is necessary, though we cannot tell at this stage
whether simply dividing the country into four regions is adequate for this. For example,
it appears from Fig. 1.12 that the variogram estimates for the SW region are larger than
those in other regions. Since all the residuals are standardized to have common variance 1,
this implies that the spatial correlations decay more rapidly in the SW than in the other
regions. On the other hand, we do not see a similar pattern in Figs. 1.13-1.15. We can
also see that the shape of the variogram varies considerably for the four meteorological
series. The faster the variogram approaches its “sill”, where it levels off, the shorter the
range of spatial correlations. From Fig. 1.14 we can see that the rainfall maxima have very
short-range spatial correlations, while from Fig. 1.15, the rainfall means have longer spa-
tial correlations with a “range” of the order 400-800 nautical miles. Both the temperature
series show a variogram increasing steadily across the whole range of the plot, implying
very long-range spatial correlations.

1.6 An Overview of Environmental Statistics

The problems we have discussed in this chapter are typical of many problems arising
in other fields besides those connected with climate. For example, the US Environmental
Protection Agency (EPA) has extensive networks of monitoring stations to collect data on
atmospheric pollutants such as ozone (Og), sulfur dioxide (SO2) and particulate matter
of aerodynamic diameter less than or equal to 10 microns (PMyp). Among the statistical
problems associated with such data sets and the source of detailed examples in Nychka et
al. (1998) are

(a) Characterizing trend in Oz or SOz series as a function of time and meteorol-
ogy. These variables are highly dependent on meteorology; therefore, the variability of the
meteorological series may mask effects due to changes in the emissions of atmospheric pol-
lutants. By constructing a suitable regression model, we can hope to separate the effects of
meteorology and changing emissions and thus characterize the effect of trends in emissions.
Many regression strategies have been applied, from parametric linear and nonlinear regres-
sion models to nonparametric or semiparametric techniques such as generalized additive
modeling (Hastie and Tibshirani 1990) or the method of Sacks et al. (1989), the latter
of which itself borrows many ideas from the theory of spatial statistics. In many cases,
the analysis shows that meteorologically adjusted O3 or SO5 levels have been decreasing
during the 1980s and 1990s. Although the scientific context is quite different from the ones
that govern long-term climatic trends, this shows that “trend estimation” is a very general
topic which draws on many areas of statistical methodology.

(b) Spatial variability of ozone. The EPA needs to monitor ozone over rural as well as
urban regions, but the density of ozone monitors is typically much lower in rural regions
than in cities. Adequate monitoring of rural ozone patterns requires the combination
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of data into spatially coherent regions — this includes the identification of appropriate
regions. Spatial analysis based on rotated principal components has been used to identify
regions and then to calculate regional trends.

(¢) Threshold crossings. Prior to 1997, the US ozone standard was based on the
number of crossings of daily maximum ozone of a threshold level set at 120 ppb. The new
standard introduced during 1997 reduced the threshold to 80 ppb, but based on eight-hour
ozone averages rather than daily maxima. Either way, we need to study the frequency of
crossings of a high level, a problem closely related to the extreme values problem mentioned
earlier in connection with rainfall. Methods from extreme value theory have been adapted
to analyze the frequency of high-threshold crossings as a function of time and meteorology.
One conclusion from such analyses is that the evidence for a decreasing trend in ozone,
after adjusting for meteorology, is often stronger when looking at extreme levels than when
looking at the series as a whole.

(d) Design of networks. Often the EPA is required to set up a new network, or to
reduce the size of an existing network. A major criterion used in making such decisions
is to be able to interpolate between points of the network in the most efficient way. This
requires characterizing the spatial correlations in order to calculate optimal interpolators
and their mean squared prediction errors, and then determining the network so that the
overall mean squared prediction error, in some suitably defined sense, is minimized.

(e) Health effects. A major controversy surrounding particulate matter (PMig) is
the effect of small quantities of PM;5 on human health — some authors have claimed very
strong effects on mortality and morbidity, particularly among the elderly population. These
claims have strongly influenced the much tighter particulate matter standards introduced
by the EPA during 1997. Other authors have pointed out the dependence of the conclusions
on seemingly arbitrary aspects of model selection, or have suggested that the strongest
effects only occur at high PMq levels already regulated by the EPA, or have disputed
whether the effect is really due to PM1g as opposed to other atmospheric pollutants. The
analyses in Nychka et al. (1998) did not employ any spatial analyses since they were based
on single-city data sets, but there is a close connection with disease mapping problems
requiring spatial modeling both of pollutants and disease incidents, see e.g Zidek (1997).

(f) Combining information. A very general problem of environmental statistics is that
of combining different sources of information — for example, from two spatial networks set
up for different purposes but intended to measure the same (or similar) quantities. One
of the most critical and interesting problems is how to combine data from probability and
non-probability samples. The former refers to sampling designs constructed according to
proper principles of randomized designs, whereas the latter may often involve data collected
in a haphazard or deliberately biased way, e.g. taking samples from a lake with a intention
of identifying “hotspots” of high pollution intensity. How can the information from the
two types of sample be best combined without introducing a bias from the non-probability
sample? This again involves questions of spatial modeling, sometimes supplemented by
hierarchical models to represent the variability between different networks.
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From this discussion we can see that the general themes which have been identified
in our discussion of the climatic data sets are recurrent themes throughout environmental
statistics. In praticular, the need for both temporal and spatial modeling of monitoring
networks is a central part of the discipline, and there are numerous recurrent themes
including the identification of trends, characterizing the distribution of extremes, and
sample design problems. All of these problems will be described in more detail in later
chapters of the present notes.

1.7** Derivation of the Estimates in Sections 1.2 and 1.4

The purpose of this section is to outline briefly the method used for fitting the regres-
sion model with autoregressive errors.

The basic method is numerical maximum likelihood. Equations (1.1) and (1.2) relate
the observed time series {y;} to a series of independent errors {¢;}, assumed to be normally
distributed with mean 0 and variance o2. The likelihood L based on {e;, 1 <t < T} is
given (modulo irrelevant constants) via

T
T 1 €t 2
“logL = —logo? + = (—) 1.
og 5 logo +2t§:1 - (1.3)

For given parameter values By, 31, ¢1,..., ¢m, one can calculate the values of ¢; and hence
evaluate (1.3) as a function of these parameters as well as 02. The maximum likelihood
estimates are those which minimize (1.3); these may be obtained via any general-purpose
routine for unconstrained minimization. The calculations resported here used the DFPMIN
routine available in Press et al. (1986), using simple differencing approximations to the

first-order derivatives of —log L.

There is one complication: if the series is only available for the time spant =1, ..., T,
then it will not be possible to calculate the values of 79, n—1, N1—m used for the first few
evaluations of (1.2). This problem has been avoided by conditioning on past values of
the series. In other words, we assume that the values of {y;} and {z;} are available for
t > 1—m, but the values for 1 —m <t < 0 are used solely for generating the {n;}, and do
not enter the sum (1.3). In the present example, this is not a problem, because the series
actually go back well before the nominal starting date of 1900. In traditional time series
analysis, there are two ways to deal with this aspect of the problem, (a) the conditional
approach, in which all n;, ¢ < 0, are assumed equal to 0; (b) the unconditional approach, in
which the values of 71, ..., 0y, are assumed to follow the stationary distribution, and the rest
generated conditionally on those. Approach (a) is easier to apply but (b) is theoretically
more accurate.

Once the maximum likelihood estimates are determined, the results are interpreted
in the usual ways. In particular, the Hessian matrix (matrix of second-order derivatives)
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of —log L, evaluated at the maximum likelihood estimates, is inverted; the square roots of
the diagonal entries of the inverse matrix provide approximate standard errors of the pa-
rameter estimates. The Hessian matrix itself is usually not evaluated exactly but obtained
approximately as a by-product of the numerical minimization routine.

The AIC criterion, mentioned in the text and used as a model selection criterion, is
given by -2 log L+2p, where p = m + 3 is the number of parameters being estimated. For
the general theory of maximum likelihood we refer to any standard textbook treatment,
for example Chapter 9 of Cox and Hinkley (1974).
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CHAPTER 2

Models for Spatial Correlations

Much of the present theory of spatial statistics has developed from work originally
done in the mining industry, regarding spatial sampling of rock formations, and the prob-
lem of estimating the total quantity of an ore or mineral in a field, given concentrations
of the ore or mineral at a finite set of sampling points. This work, which began in South
Africa and reached maturity at the Ecoles des Mines at Fontainebleau near Paris, gave rise
to the term Geostatistics, by which this whole area of statistics is still sometimes known.
The modern environmental applications of Geostatistics go well beyond the original mining
applications, but much of the terminology developed by the early researchers is still widely
used. One of the earliest papers in this field, by the South African mining engineer Krige
(1951), developed the basic equations for optimal linear interpolation in a spatially corre-
lated field; his name was immortalized by Matheron (1962, 1963a, 1963b, 1971) in a series
of books and papers which used the term krigeage (in French), or its English equivalent
kriging. A different approach to spatial statistics began with empirical observations that
variability in large agricultural field trials was inconsistent with an assumption of inde-
pendence (Fairfield Smith 1938) and the development of statistical methods to deal with
that problem (Papadakis 1937, Bartlett 1938). This led to subsequent developments by
Whittle (1954) and Bartlett (1976, 1978); however, the modern development of statistical
methods appropriate in this setting began with Besag (1974), and led in a rather different
direction from the work in geostatistics. These models are developed in chapter 4. The
current chapter, therefore, concentrates largely on the geostatistical approach and its gen-
eralizations as they are used in modern environmental statistics. In particular, the chapter
focusses on the variogram and on its applications to kriging. However we also discuss
estimation techniques from a modern point of view, focussing on maximum likelihood and
Bayesian solutions. Among books which have taken a variety of approaches from the very
theoretical to the very applied, we mention Journel and Huijbregts (1978), Cliff and Ord
(1973, 1981), Ripley (1981, 1988), Upton and Fingleton (1985, 1989), Cressie (1993) and
Stein (1999). Cressie’s book is particularly comprehensive and is a very valuable reference
source.

Section 2.1 outlines a number of topics from the theory of spatial stochastic processes,
focussing on concepts of stationarity and isotropy and also discussing various parametric
models for spatial correlations. Sections 2.2 and 2.3 give the statistical theory surrounding
estimation of the variogram and the fitting of parametric covariance models to spatial data,
together with some examples. Section 2.4 discusses kriging and its extensions. Section 2.5
develops the Bayesian approach in more detail, following, in particular, ideas of Le and
Zidek. Finally Section 2.6 presents some more detailed examples.
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2.1 Spatial Processes

The basic object we consider is a stochastic process {Z(s), s € D} where D is a
subset of R¢ (d-dimensional Euclidean space), usually though not necessarily d = 2. For
example, Z(s) may represent the mean winter daily maximum temperature at a specific
location s. Let

u(s) =E{Z(s)}, seD,

denote the mean value at location s. We also assume that the variance of Z(s) exists for
all s € D.

The process Z is said to be Gaussian if, for any £ > 1 and locations sq, ..., S, the
vector (Z(s1), Z(s2), ..., Z(sr)) has a multivariate normal distribution.

The process Z is said to be strictly stationarity if the joint distribution of (Z(s1), Z(s2),
.y Z(8k)) is the same as that of (Z(s1+h), Z(sa+h), ..., Z(sx+h)) for any k spatial points
$1, 52, ..., s and any h € RY, provided only that all of s1, so, ..., Sk, 51+ h,s2+ R, ..., S+ h
lie within the domain D.

The process Z is said to be second-order stationarity (also called weakly stationary) if

p(s) = p (i.e. the mean is the same for all s) and
cov{Z(s1),Z(s2)} = C(s1 — s2), foralls; €D, syg€D,

where C(s) is the covariance function of an observations at location s with one at location
0.

It can immediately be seen that with all variances assumed finite, a strictly stationary
process is also second-order stationary. The converse is in general false, but a Gaussian
process which is second-order stationary is also strictly stationary.

The next concept which we need to introduce is:

The Variogram. Assume pu(s) is a constant, which we may without loss of generality
take to be 0, and then define

var{Z(s1) — Z(s2)} = 2v(s1 — $2)- (2.1)

The statement (2.1) makes sense only if the left hand side depends on s; and sy only
through their difference s;—s2. A process which satisfies this property is called intrinsically
stationary. The function 2v(-) is called the variogram and ~y(-) the semivariogram.

Intrinsic stationarity is a weaker property than second-order stationarity. Suppose,
first, that the process is second-order stationary. Then it is easy to verify that

var{Z(s1) — Z(s2)} = var{Z(s1)} + var{Z(s2)} — 2cov{Z(s1), Z(s2)}
= 20(0) - 20(81 - 82)

35



and so
v(h) = C(0) — C(h). (2.2)

Conversely, suppose we wanted to find the function C(-) given the function «(-). This could
be found from (2.2) once we knew C(0). In an ergodic stationary process, we will have
C(h) — 0 as h — o0, so C(0) may be found as the limit of v(h) as h — oo. In general,
however, there is no guarantee that such limit exists. For example, if Z(s) is standard
Brownian motion in one dimension we have var{Z(s1) — Z(s2)} = |s1 — s2|, which tends
to 0o as |s; — sa| — oo. This is an example of a process which is intrinsically stationary
but not second-order stationary. Similar examples exist in higher dimensions, such as the
process known as the Brownian sheet.

To summarize: if limp/_o y(h') exists then the process is second-order stationary
with C(h) = limp 00 ¥(h') — y(h), but if this limit does not exist then the process is not
second-order stationary.

For much of the theory of spatial processes, the principal assumption required is
intinsic stationarity. From this point of view, the stronger forms of stationarity are not
needed. On the other hand, either strict or second-order stationarity are more natural
assumptions — for example, as with time series analysis, it is often very useful to think of
an observed process as consisting of a deterministic trend superimposed on an underlying
stationary field. For this reason, it is a good idea to be cautious when a preliminary analysis
of the data indicates that the process is intrinsically stationary but not stationary. It may
well be that the process is best approached by first looking for a trend with stationary
residuals.

A separate concept is isotropy. Suppose the process is intrinsically stationary with
semivariogram «y(h), h € R4, If v(h) = vo(||h||) for some function 7o, i.e. if the semivari-
ogram depends on its vector argument h only through its length ||h||, then the process is
1sotropic.

A process which is both intrinsically stationary and isotropic is also called homoge-
neous.

Isotropic processes are convenient to deal with because there are a number of widely
used parametric forms for vo(-). Here are several examples:

1. Linear:
0 ift=0,
’YO(t)_ {Co+01t lft>0

Here ¢y and c; are positive constants. The function tends to oo as t — oo and so does not
correspond to a stationary process.

2. Spherical:
0 ift =0,
70<t>={00+01{%%—%<%>3} ito<t<n
Co +c if ¢ 2 R.
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This is valid if d = 1, 2 or 3, but for higher dimensions it fails the non-positive-definiteness
condition (see below). It is a convenient form because it increases from a positive value cgy
when ¢ is small, levelling off at the constant co+c¢; at t = R. This is of the “nugget/range/
sill” form which is often considered a realistic and interpretable form for a semivariogram
(further discussed below).

3. Ezxponential:
() = 0 ift =0,
YW= e+ ci(1—e M8y ift>0.

Simpler in functional form than the spherical case (and valid for all d) but without the
finite range of the spherical form. The parameter R has a similar interpretation to the
spherical model, however, of fixing the scale of variability.

4. Gaussian:
0 if t =0,

Yo(t) = {co +eo(1—e /R if ¢ > 0.

5. Ezxponential-power form:

{0 ift =0,
YW= o+ er(l— e W/RIPY if ¢ > 0.

Here 0 < p < 2. This form generalizes both the exponential and Gaussian forms, and
forms the basis for the families of spatial covariance functions introduced by Sacks et al.
(1989), though in generalizing the results from one dimension to higher dimensions, these
authors used a product form of covariance function in preference to constructions based
on isotropic processes.

6. Rational quadratic:

n={0 if t =0,
Yo(t) = co+cit?/(1+12/R) ift>0.

7. Wave:
0 if t =0,

70(t) = {co—l-cl {1-%sin(g)} ift>o0.

The only non-monotonic example in this sequence.

8. Power law:
0 ift=20
t) = . ’
Yo(t) {co+clt)‘ if t > 0.
Non-positive-definiteness requires 0 < A < 2. This generalizes the linear case, and is only
our second example of a semivariogram that does not correspond to a stationary process.
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Fig. 2.1. Examples of isotropic variogram functions. (a) Linear. (b) Spherical. (c)
Exponential-power, p = 0.5. (d) Exponential. (e) Exponential-power, p = 1.5. (f) Gaus-
sian. (g) Rational quadratic. (h) Wave. (i) Power law, A = 0.5. (j) Power law, A = 1.5.
(k)—(o) Different forms of Matérn function with 6y respectively 0.1, 0.5, 1, 2, 10. The
different shapes of the Matérn functions near t = 0 can be clearly seen.
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9. The Matérn class: This was originally given by Matérn (1960), but largely neglected
in favor of simpler analytic forms. However, more recently Handcock and Stein (1993) and
Handcock and Wallis (1994) demonstrated its flexibility in handling a variety of spatial
data sets, including ones related to global warming. The class is best defined in terms of
its (isotropic) covariance: we have C(h) = Cy(||h||) where Cy(0) =1 and

1 (2\/@)92 . (2\/@1:).

Co(t) = 292_1F(92) 0, 0,

Here 6, > 0 is the spatial scale parameter and #s > 0 is a shape parameter. The function

I'(-) is the usual gamma function while ICg, is the modified Bessel function of the third kind

of order 0 (Abramowitz and Stegun 1964, Chapter 9). Fortran and Splus implementations
1

of this function are available. As special cases, 2 = 5 corresponds to the exponential form

of semivariogram, and the limit §5 — oo results in the Gaussian form.

Fig. 2.1 shows some illustrative examples of isotropic semivariograms, which gives a
good idea of the range of different shapes available.

1.0 A

Sill

0.6 A

0.4 A

Range
0.0 - 1 g

0.0 0.5 1.0 15

Fig. 2.2. Idealized form of variogram function, illustrating the nugget, sill and range.

Several of these semivariograms have the general shape of Fig. 2.2. We always have
v%(0) = 0, but 7o increases from a non-negative value near ¢ = 0 (the nugget) to a
limiting value (the sill) which is either attained at a finite value ¢ = R (the range), or
else approached asymptotically as ¢ — oco. In the latter there is still a scale parameter
which we may denote by R, and which may be defined precisely as the value of ¢t at which
~o(t) comes within a specified distance of its limiting value. The cases where the nugget
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is strictly positive may appear paradoxical because they imply there is a discontinuity in
the covariance function, but in fact this is a well-known feature of spatial data. There are
various possible explanations, the simplest being that there is some residual white noise
over and above any smooth spatial variation.

Anisotropic cases

There are a number of ways of dealing with anisotropic processes as more or less direct
generalizations of isotropic processes. The simplest of these is geometric anisotropy. This
refers to a semivariogram of the form

v(h) = v0(/|AR]]) (2.3)

where 7, is an isotropic semivariogram and A a d x d matrix, representing a linear trans-
formation of R¢. Of course, if A is the identity this reduces to the isotropic case. The idea
is that the process is not isotropic in the original space, but is in some linearly transformed
space, which may for example correspond to stretching one of the coordinates. In the most
logical case that A is a positive definite matrix, the contours of equal covariance are ellipses
instead of circles.

A generalization of anisotropy arises from the simple observation that if 7, ..., Z, are
independent intrinsically stationary processes, then

=71+ ..+ 2,
is also intrinsically stationary, with semivariogram given by

(k) =71 (h) + ... +7p(h),

Y1, ---; Yp denoting the semivariograms of 71, ..., Z, respectively. Thus

Y(h) =D v0(Ash), (2.4)

where 7 is an isotropic semivariogram and Ay, ..., A, are matrices, is a valid semivariogram
generalizing geometric anisotropy. This is called zonal anisotropy.

A more complicated idea is to assume that, for some nonlinear function g(s), the
process Z(g(s)), rather than Z(s) itself, is a stationary isotropic process. This idea can,
indeed, handle nonstationary as well as nonisotropic cases and is at the core of a recent
proposal by Sampson and Guttorp (1992). However, as this topic develops in quite different
ways from the usual geostatistical analysis, we defer discussion of it until a later chapter.
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Positive definiteness

One cannot define a spatial covariance or semivariogram function in a totally arbi-
trary way. The key property which is has to satisfy is positive definiteness. In the most
general form in which cov{Z(s1), Z(s2)} = C(s1, s2), which does not suppose any form of
stationarity condition, positive definiteness means that the relation

ZZaiajC(si,sj) >0 (25)

7

holds for any finite set of points si,..., s, and arbitrary real coefficients aq,...,a,. It is
clear that (2.5) is necessary: the left hand side is the variance of ), a;Z(s;). That (2.5)
is also sufficient is a consequence of Bochner’s theorem.

In the case of a stationary process in d dimensions, Bochner’s theorem implies the
spectral representation

C(h) = / / cos(wTh)G(dw) (2.6)

where the integral is over R? and G is a positive bounded spectral measure.

/.../\C(h)|dh< 50

then G is automatically differentiable, G(dw) = g(w)dw say, and (2.6) simplifies to

If

C(h) =/.../cos(wTh)g(w)dw. (2.7)

The necessary and sufficient condition for positive definiteness is then that g(w) > 0 for
all w.

If the process is isotropic (C(h) = Co(||h||) for some function Cy of a univariate
argument) then the spectral representation simplifies to

Co(t) = /( - Yy(wt)®(dw), (2.8)

in terms of a function ® which is nondecreasing on [0, c0) with [ ®(dw) < oo, where

Ya(t) = <%> (d_2)/2r (g) J(a—2)/2(t)

and J,(-) denotes the Bessel function of the first kind of order v.

These results are described in more detail in a number of standard monographs on
spatial statistics, including Ripley (1981) and Cressie (1993).
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This illustrates the most general strategy for constructing an isotropic stationary
covariance function: use (2.8) with arbitrary nondecreasing ®. Conversely, any conjectured
covariance which cannot be written in this form cannot be positive definite and hence is
not the covariance of a valid stationary process.

There is a corresponding theory for the variogram. Suppose () is the semivariogram
of a second-order stationary process; then, by a combination of (2.2) and (2.5), if a1, ..., ap,
are constants with »_ a; = 0, we have

Z Z a;a;y(s; —s5) < 0. (2.9)

This is a conditional non-positive-definiteness condition. It can easily be seen that (2.9)
is a necessary condition for (-) to be a valid semivariogram in the general (intrinsically
stationary) case: the converse result is described in detail by Cressie (1993).

2.2 Estimation

Having now developed the main concepts of spatial covariances and variograms, we be-
gin to consider their estimation. The general scenario is that we have a process {Z(s), s €
D} observed at a finite number of points sy, ..., $n.

2.2.1 Estimating the variogram

The simplest estimator is the method of moments (MoM) estimator. In the case that
the sampling points s1, ..., sy lie on a regular lattice, this is defined by

~ — 1 S:) — S 2

Here N (h) denotes all pairs (s;, s;) for which s; —s; = h and | N(h)| denotes the cardinality
of N(h). In view of the lattice structure, N(h) will either be empty or some reasonably
sized subset of the set of all pairs of sampling points, the latter case applying if h is a
vector spanning two points of the lattice. Of course, it only makes sense to estimate 7 (h)
for such h vectors.

In the (far more common in practice) case where the points do not lie on a lattice,
the same formula (2.10) is applied, but we change the definition of N(h) to

N(h) = {(si;85) + si —s; € T(h)},
T'(h) being some small neighborhood or tolerance region around h.

The size of the tolerance region defining 7T'(h) raises issues similar to smoothing or
optimal bandwidth choice in a variety of statistical applications. Journel and Huijbregts
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(1978) recommended choosing T'(h) large enough to contain at least 30 pairs of points, and
this can still be recommended as a rule of thumb.

One objection to the MoM method is that, like many methods based on sample
averages, it is not robust against outlying values of Z. A more subtle objection arises
from the skewness of the distribution: if we assume the process to be Gaussian, then for
a specific s and h, the distribution of {Z(s+ h) — Z(s)}? is of the form 2v(h)x?, and the
x3 distribution is highly skewed. However, if X ~ x?, then X'/ has a nearly symmetric
distribution (Fig. 2.3) so that we would expect sample averages of |Z(s1) — Z(s2)|'/? to
be much better behaved than those of {Z(s1) — Z(s2)}2. This idea lies at the heart of the
proposal made by Cressie and Hawkins (1980). They suggested

4
1 1
2y(h) = > 1Z(si) = Z(sp)? (2.11)
0.457 + 0.494/|N (h N(h
FOALINR) | IV, 2=
as an approximately unbiased estimator of 2-y(h).
(a) (b)
4 a
1.0
3 | 0.8
= 2 0.6
g o | 2
(O] [}
o 0 04
1 0.2
o | 0.0
00 05 10 15 20 00 05 10 15 20
X X

Fig. 2.3. (a) Density of X, (b) density of X*/4 when X ~ x2.

The first factor in (2.11) is a bias correction term, derived as follows. For X ~ x?2,
it can be shown that E(X/4) = 21/4T'(3/4)r~ /2 = 0.82216, var(X1/4) = 2V/2{x~1/2 _
I'%(3/4)7~'} = 0.12192. Hence the random variable

1

(si,8;)EN(h)

|Z(si) — Z(s)['?

A (212)
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where n = |[N(h)|, has mean v =0.82216 and variance approximately 0.12192/n. A delta-
function argument shows that for twice continuously differentiable f,

B/ (W)} — f(0) = E{(Wa — )] (0) + SB{(Wo — )} 1" () + .

0.12192 ,
~ P22 )
Evaluating this for f(z) = x?, we deduce
0.12192
E{W*} = v* + 6% +
0.494
= 0.457 + . + ...

From this and (2.12) it follows that (2.11) is an approximately unbiased estimator of
2v(h).

A numerical study reported by Cressie (1993, pages 80-82) showed that, under a
Gaussian model with added Gaussian noise containing 5% contamination, 4 always has
smaller bias than 4 and may also have smaller variance, the latter depending on the signal
to noise variance ratio g (interpreting “signal” as the spatial variogram of the Gaussian
model and “noise” as the added contaminated component). For large g, ¥ has smaller
variance than 7, as might be expected from the fact that 7 is also the maximum likelihood
estimator if we neglect contamination, but for small g this comparison is reversed. Based
on these comparisons, Cressie recommended that both estimates be computed and com-
pared. A possible counter-argument is that if Z(s) has a marginal distribution that is far
from normal (though not necessarily with any outlier contamination), the whole argument
leading to (2.11) as an approximately unbiased estimator would appear to be invalid.

Another possible “robust” estimator is given by

_ Median[{Z(s;) — Z(s;)}" : (si,5;) € N(h)]

.
V(h) 0.457

(2.13)

One motivation for (2.13) may be seen by rewriting it in the form

[Median{|Z(s;) — Z(s;)|'/% : (si,s;) € N(h)}]*
0.457

27(h) =

which corresponds to taking a median instead of a mean in (2.11). Because of the ap-
proximate symmetry of the (x?)'/* random variable, its mean and median are nearly the
same, and the constant 0.457 is derived in the same way as in (2.11), as a first-order
bias-correction factor. Another motivation of (2.13) is that it is, modulo a multiplicative
factor, the squared interquartile range of {Z(s;) — Z(s;), (si,s;) € N(h)}, which might
also be thought of as a natural robust measure of the scale of Z(s+ h) — Z(s) over s € D
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for fixed h. However, according to Cressie (1993, page 77), it appears that 4 is a more
efficient estimator than 4.

Ezxamples. In chapter 1, we have already seen variograms computed for four mete-
orological variables and four regions of the USA, by both the MoM and robust methods
In each of Figs. 1.11-1.14, the MoM estimate 7 is on the left hand side and the robust
estimate 74 is on the right hand side. The two estimates seem to be rather similar except
in the case of annual maximum precipitations (Fig. 1.13), for which the MoM estimate
is generally larger than the robust estimate. This is to be expected, because in this case
we saw that the distribution is indeed affected by outliers, so one would expect the two
estimates to behave in different ways.

Another way to compute these plots is as a “variogram cloud”. This method of
computing the variogram is available when there are multiple replications of the spatial
field. This assumption is satisfied for the data in chapter 1 as we had many years of data
which, at least for the present analysis, we are treating as independent from year to year.

In the variogram cloud, one point is plotted for each pair of stations s; and s;. The
distance between stations s; and s;, d;; say, is plotted along the z axis, and an estimate of
Var{Z(s;) — Z(s;)} is plotted along the y axis. For the latter, we may use either the MoM
or the robust method. Recall that the Z values we are using for this comparison are not
the raw data but are standardized residuals from a linear regression in time, so the sample
means and standard deviations at each station have already been adjusted to be 0 and 1
respectively.

Figs. 2.4 and 2.5 show the variogram clouds for the data of chapter 1, computed for
the winter mean daily minimum temperatures (analogous to Fig. 1.11) and the annual
maximum daily precipitations (Fig. 1.13). As can be seen, the scatter in the plots is very
great, calling into question whether these are homogeneous spatial processes. Our present
focus, however, is on the comparison of the MoM and robust estimates, and one way to
look at this is directly, by plotting one against the other. Fig. 2.6 shows a plot of robust
vs. MoM estimates, for each of the four subdivisions of the USA, corresponding to the
variogram clouds in Fig. 2.4. Fig. 2.7 shows the same things computed for the variogram
clouds in Fig. 2.5. The 45° line through the origin is shown to provide a comparison
between the two estimates.
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Fig. 2.4. Variogram cloud plots for the data based on mean winter minimum daily
temperature.
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Fig. 2.5. Variogram cloud plots for the data based on annual maximum da
tion.
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Fig. 2.6. Plot of robust vs. MoM estimators for the variogram cloud in Fig. 2.4.
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Fig. 2.7. Plot of robust vs. MoM estimators for the variogram cloud in Fig. 2.5.
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From Fig. 2.6 it can be seen that the estimates are in good agreement. The scatterplot
is tightly clustered around the 45° line and and the correlation between the MoM and
robust estimates is good.

Fig. 2.7 tells a completely different story. In this case, the bulk of the estimates lie
below the 45° line, indicating that the robust estimate is smaller than the MoM estimate.
We also observe that there is much greater variability in the scatterplot — in this case,
the two estimates seem almost uncorrelated.

Our conclusion is that for a series for which the marginal values are close to normally
distributed, as appears to be the case for the data in Fig. 2.4, it makes little difference
which estimator is computed. However, for a highly skewed marginal distribution, as
in Fig. 2.5, it does make a big difference. It remains open to discussion which is the
“correct” estimator for an example like this one, given that ultimately our real interest is
in the behavior of the most extreme rainfalls. However, given the tendency of the MoM
estimator to be greatly affected by even a small number of outlying values, it is probably
more reasonable to use the robust estimator as an indicator of what is going on in the bulk
of the distribution, while acknowledging the need for alternative measure to characterize
spatial dependence in the extreme values of the process.

2.2.2 Inspecting the variogram cloud for homogeneity

An alternative issue, briefly touched on above, concerns the homogeneity of the pro-
cess, i.e. the assumption that the spatial process is both stationary and isotropic. It is
possible to superimpose the two types of variogram plot in a single figure, as is done in
Fig. 2.8 for the NW stations in the winter daily minimum temperature plots — in other
words, Fig. 2.8 superimposes the top-left-hand plots of Figs. 1.11 and 2.4. The dots
represent the points of the variogram cloud, while the circles represent averaged values of
the variogram cloud over subintervals on the distance scale, which is exactly how Fig. 1.11
was computed. The boundaries of the distance subintervals are also indicated, represented
as vertical lines on the plot.

Each point of the variogram cloud (i.e. each dot in Fig. 2.7) is the variance between
two stations computed from 32 years’ data, while the corresponding binned values (the
circles in the figure) are averages of all the variogram cloud points within each distance
subinterval. One can ask whether the data would support a hypothesis that all the vari-
ances within a single bin are equal. It might be possible to test this using, for example,
Bartlett’s test for the equality of variances in several independent samples. The assump-
tions of Bartlett’s test are not strictly satisfied — for example, the different pairs of stations
leading to different dots of the variogram cloud are not actually independent. Nevertheless
one might expect that within a single narrow bin, Bartlett’s test would give reasonably
reliable answers. In this case, it quickly becomes apparent that even crude tests of homo-
geneity within each distance bin lead to decisive rejection of the null hypothesis, at all but
the very largest distances. The process we are sampling from is not spatially homogeneous.
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The same conclusion applies to the other three subdivisions of the continental USA and
to the other meteorological variables.

NW stations: MoM

2.0 -~
15 1 '8
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Fig. 2.8. Two forms of variogram plot superimposed.

Given the conclusion that these processes are not spatially homogeneous, we must be
cautious in our interpretation of Figs. 1.11-1.14 and 2.4-2.5. The estimated variogram is
not necessarily a valid measure of the variance between any two individual stations, but in-
stead, represents an averaged value over the region. Given this alternative interpretation,
however, comparisons between the variograms still seem to be justified — for example,
temperature averages are correlated across very wide spatial scales, but the range of spa-
tial dependence for precipitation maxima is much smaller. Meanwhile, we defer detailed
consideration of inhomogeneous spatial processes to chapter 3.

More details of the calculations

Consider the variogram cloud points corresponding to distances between 590 and 610
nautical miles. We can assume that the 7th pair corresponds to locations s;1, s;2 and
that we have observations Y;; = Z(s;1,t:) — Z(s:2,t:;) for time points ¢;; at which both
observations Z(s;1,t;5), Z(si2, tij) exist. Because of missing values in the original data set,
not all Z (s, t) points are well-defined. Table 2.1 shows values n;, o2 where n; is the number
of observations Y;; and 62 = S;/(n; — 1), S; = Zj (Vi — Y;.)2, where Y;. is the mean of the
values of Y;; as j varies.
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29 1.14082 2 30  .88010 3 29 91791 4 29 49816
31 76427 6 31 .63453 7 31  1.46821 8 32 1.22803
9 31 37191 10 31 .65614 11 31 1.32307 12 29 .56116
13 25 .66362 14 32 1.26053 15 31  .42792 16 24 .67272
17 32 .38503 18 30  .48921 19 32 .84835 20 31 .76461
21 31 45127 22 30 48219 23 32 67729 24 32 1.30333
25 32  .80796 26 32 .60602 27 29 .75231 28 29  .59545
29 32 77198 30 28 1.34613 31 29 1.15666

IS YN

Table 2.1. 31 variogram cloud estimates for pairs of stations corresponding to distances
between 590 and 600 N.M. The ith variogram cloud estimate &7 is based on n; pairs of
observations.

Standard tests for equality of variances are the likelihood ratio test and Bartlett’s
modification (see, e.g. Kendall and Stuart (1979), section 24.9). For the likelihood ratio
test, we work not with &2 but with 62 = S;/n;; we then define an overall variance 52 =
> S;/N where N =Y n;, and

T 5_2
ok
i=1 ?

where r is the number of groups (here, 31). According to asymptotic theory, under the null
hypothesis that the true variances o2 are all equal, the distribution of T is approximately

5 %
Xr—1-

Bartlett’s modification uses o7 in place of 62, 02 = 5. S;/(N —r) (recomputing T
with these values), and then defines

TI:{1+3(7-1—1)2T:<W1—1 _Nl—r)}_lT'

The distributional approximation is again x2_,, but the distribution of 7" is believed to
be closer to this than that of T'.

In the present example, we find 62 = .778, T = 71.8, 52 = .805, T = 65.1. The value
of 62 is the one used for the superimposed plot with the circles in Fig. 2.7. Based on
T ~ x%,, we reject the null hypothesis of homogeneity with a p-value of .00003. Based on
T' ~ x3,, we reject the null hypothesis of homogeneity with a p-value of .00021. Either
way, the result points to overwhelming rejection of the null hypothesis.
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Similar results are obtained for the vast majority of the vertical bins in Fig. 2.8.

Fig. 2.9. Subdivision of stations (inside dashed rectangle) used for calculations of Table
2.2.

As a second example of these calculations, consider the subset of stations enclosed by
the dashed lines in Fig. 2.9. These are 17 stations with latitude between 40 and 45 °N
and longitudes between 90 and 100 °W. This is a region for which one might anticipate
the process would be reasonably homogeneous. The calculations of T”, and the associated
p-values, are shown for a variety of distances in Table 2.2. The results suggest that the
homogeneity assumption is not good at short distances (less than 140 N.M.), but at longer
distances is reasonable.



Distance T r—1 p-value

(N.M.)

39 27.6 9 .00002
70 30.2 10 .0004
105 15.4 8 .03
140 17.0 14 .20
175 10.8 11 37
210 13.9 14 .38
245 13.3 15 .01
280 26.2 18 .07
315 23.1 14 .04
350 0.6 6 .35

Table 2.2. Table of T values for homogeneity test; 17 stations in latitudes 40-45 °N and
longitudes 90-100 °W.

2.2.3 Fitting parametric models to the sample variogram

In this section we again assume we are sampling from a homogeneous spatial process,
in which the variogram has been estimated for a sequence of distances h by one of the
methods of section 2.2.1.

Although the properties of the semivariogram estimators 7(h), y(h) and ¥(h) have
been extensively investigated for a single value of h, as a function over all A they all lack
a very important property: they fail the conditional non-positive-definiteness condition
mentioned at the end of section 2.1. Thus it is possible that spatial predictions derived
from such estimators will appear to have negative variances. The most common way of
avoiding this difficulty is to replace the empirical y(h) by some parametric form which
is known to be conditionally non-positive-definite, such as one of the families listed in
section 2.1. It may well be considered desirable on general statistical modeling grounds
to seek a parametric family which adequately models the observed data, but this provides
an additional and specific motivation to do that. Note that in general there is no need to
restrict ourselves to isotropic models, though it is usually convenient to consider isotropic
models first.

Three methods will be considered:
e Least squares estimation,
e maximum likelihood (ML) and restricted maximum likelihood (REML),
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e Bayesian estimators.

In the present subsection we concentrate on the first of these, the ML, REML and
Bayesian methods being deferred to subsections 2.2.4-2.2.6.

Suppose we have estimated the semivariogram ~y(h) at a finite set of values of h,
and wish to fit a model specified by the parametric function y(h;#) in terms of a finite
parameter vector 6. This could, for instance, be any of the isotropic forms considered in
Section 2.1 where 6 contains the nugget, sill and range and any incidental parameters. For
definiteness we shall assume the MoM estimator 7 has been used and let 4 denote the
vector of estimates, () the vector of model values at the same vector of h values.

There are three well-used versions of non-linear least-squares estimators:

e Ordinary least squares or OLS, in which we choose # to minimize

A =70} {7 -0}

e (eneralized least squares or GLS, in which we choose 6 to minimize

{F-20} VO {7 -0}

Here V(6) denotes the covariance matrix of 4 which, since the problem is non-linear,
depends on the unknown 6.

o Weighted least squares or WLS, in which we choose 6 to minimize

{F-vO)} W O)" {7 - 7(0)}.

In this case W (#) is a diagonal matrix whose diagonal entries are the variances of the
entries of 4. Thus WLS allows for the variances of 4 but not the covariances, while GLS
allows for both.

In general, we expect the three estimators OLS, WLS, GLS to be in increasing order
of efficiency but in decreasing order of convenience to use. Note, in particular, that OLS
is immediately implementable by a nonlinear least squares procedure, whereas WLS and
GLS require specification of the matrices W (#) and V (6).

For a Gaussian process, however, we have the expressions
var[{Z(s + h) — Z(s)}”] = 2{2y(h)}*, (2.14)

corr[{Z(s1 4+ h1) — Z(s1)}2,{Z (52 + ha) — Z(s2)}?]
_ {1 —s2 ) + (51— 53— ha) —y(s1— 59+ ha — ha) — (51— 52)}*  (2.15)
47y(h1)7v(h2)
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which may be used to evaluate the matrices W(6) and V(). The derivations of (2.14)
and (2.15) will be given below. Thus GLS is possible in principle, but complicated to
implement. For example, there is no guarantee that the resulting minimization problem
has a unique solution.

As a compromise, Cressie (1985) proposed the approximate WLS criterion: if 7 is
evaluated on a finite set {h;}, choose # to minimize

~ 2
(hy) }
N(h; —— — 1 . 2.16
;' ( J)‘{ﬂr(hj;ﬁ) (2.16)
Note that (2.16) may be derived as the WLS solution under the approximation

L &)
[N ()]

which follows from (2.14) if we assume that the individual Z(s;) — Z(s;) terms, which
form the numerator of (2.10), are independent. This assumption of course is not exactly
satisfied but may nevertheless be a reasonable approximation if the pairs (s;, s;) lying in
N (h) are widely spread over the sampling space. The criterion (2.16) is no more difficult
to implement than OLS, and may be expected to be substantially more efficient, while
avoiding the complications of GLS.

var{7(h)}

The discussion so far presupposes the MoM estimator 7, but the criterion based on
(2.16) also makes sense with the robust estimator 7.

** Derivation of (2.14) and (2.15)

Under the assumption that everything is normally distributed, we have

Z6+n-26)P
2v(h) X

which has mean 1 and variance 2. (2.14) follows at once from this.

To derive (2.15), we first derive

cov{(Z(s1+ h1) — Z(51))?, (Z(s2 + ha) — Z(s2))*}

(2.17)
= 2{v(s1 + h1 — 52 — hy) — Y(51 — 852 — ha) — y(s1 + h1 — s2) + v(51 — 59)}°.

To see this, write Y1 = Z(s1 + h1) — Z(s1), Yo = Z(sa + ha) — Z(s3). Note that Y;
and Y each have mean 0, that their variances are 2y(hy) = 2v; say and 2y(ha) = 272,
and that their covariance is

C(S1+h1 — 89 — hg) —0(51 — 89 — hg) —0(81 + hy —82)+C(81 —32)
= —y(s1+ h1 — 52 — ha) +v(s1 — 52 — ha) +y(s1 + h1 — 52) — ¥(51 — 52)
= ¢ say
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using (2.2).

Let us also write Y7 = /2y, W1, Y5 = a1 W1+ a; Wy where W7 and W5 are independent
standard normal random variables. We derive the constants a; and ay by matching up to
the variance of Y5 and the covariance of Y; and Ys: this leads to

c 5 c?
a, = , ag = -
L Vo ’ 7 o

We want to calculate the covariance of Y2 and Y;2. However,

B{Y?} =2y, E{YJ}=27, (2.18)

and
E{Y?Y3} = E {2y1W{ (ai W7 + 2a1a. W1 Wa + a3 W3) }

= 6710} + 27103

2 2.19
1

=2¢7 + 4y

where in moving from the first to the second lines of this equation we used that E{W{} = 3.
The result (2.17) then follows by combining (2.18) and (2.19).

Finally, combining (2.17) and (2.14) allows one to calculate the correlation of Y;? and
Y$; this is (2.15).

** Standard errors; Asymptotics

There appears to have been no discussion in the literature of how to compute stan-
dard errors of the parameters estimated by the WLS criterion, or any of the other least
squares approaches. Nevertheless it is an important question to consider, for example, in
determining whether two variograms fitted to different regions or different time periods
are significantly different from one another.

We therefore present a tentative approach here. This, inevitably, gets us into some
discussion of asymptotics, which we shall approach in a somewhat heuristic fashion. How-
ever, it should be emphasised that the kind of asymptotics considered are increasing domain
asymptotics, which apply when the region of study is increased with the underlying den-
sity of sampling points being constant. The alternative, infill asymptotics, which applies
as more and more stations are added to a bounded region, leads to rather different results.
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In presenting asymptotic results, we use the notation —, to denote convergence in
probability, —4 to denote convergence in distribution, and O,(-) to denote order in proba-
bility: if {X,,} is a sequence of random variables and {a,} a sequence of positive constants,
then X,, = Op(a,) means

n

im limsup Pr {
G,

|
M—oco nosoco

> M} =

We also use N(u,Y) to denote the multivariate normal distribution with mean p and
covariance matrix X.

** An aside: the “information sandwich” formula

First we present a general discussion of an asymptotic technique that has come to be
known as the “information sandwich” approach.

Suppose we have a statistical model indexed by a finite-dimensional parameter 0,
and suppose an estimate 6,, is constructed by minimizing a criterion function Sy, (6). The
parameter n here is just an index which we are going to let tend to oo; in most cases,
however, n will represent the sample size, and S, (0) will denote some “measure of fit”
such as a sum of squares, a likelihood or a quasi-likelihood. We assume the true parameter
value is Ay and that én is a consistent estimator. We shall also assume that S, () is at least
twice continuously differentiable in 6, and that its underlying distribution is sufficiently
smooth that the function H () (defined below) is also continuous in a neighborhood of 6.
Let Vf(0) for any f denote the vector of first-order partial derivatives of f with respect
to the components of 0, and V2 f the matrix of second-order partial derivatives.

By a Taylor expansion, we have
0=VS,(0,) = VSn(8o) + V28, (6%) (0, — bo)
where 0 lies on the straight line joining 0,, to 6. Hence

On = 0y — {V2S,(0%)} 1V S, (60). (2.20)

We assume

(A1) 1V25,(0) —, H(0) as n — oo uniformly on some neighborhood of 6, where
H(-) is a matrix-valued function, continuous near 6y, with H(6y) invertible,

(A2) \/LEVS,L(HO) —a N(0,V(0y)) for some covariance matrix V (6y).

Assumptions (A1) and (A2) are satisfied for regular maximum likelihood problems in
which S,,(0) is the negative log likelihood for the parameter 6, since this then consists of

o8



a sum over n i.i.d. terms, but they are also valid much more generally for a wide variety
of estimation criteria.

Since H (f) is continuous in  and invertible at 6y, it follows that H ()~ is continuous
near 6y, and hence that

{%Wsn(e;;)}_l —p H(0) . (2.21)

Equations (2.20) and (2.21) may then be combined (using the Slutsky lemma) to conclude
that
\/ﬁ(On — 00) —d N(O, H(go)_IV(eo)H(eo)_l). (222)

In maximum likelihood theory, the V and H both define the Fisher information matrix
so (2.22) is just a restatement of the well-known asymptotic normality of the maximum
lieklihood estimator under regular conditions. In general, however, V and H are not

the same, and the phrase information sandwich has been coined to describe the matrix
H-VH,

** Asymptotic theory for the WLS estimator: Preliminaries

Suppose the semivariogram (k) is evaluated on a finite set of h values, say hi, ..., hy;
we assume this set is fixed throughout the discussion. Suppose the region increases to
infinity but in such a way that the overall density of points remains approximately con-
stant (and bounded away from 0 and oo). Then each of the subsets N(h;) (of pairs of

points whose distance apart is within a specified tolerance of h;) will grow approximately
proportionally to n. Denoting the n’th such set by Ny, (h;), we may assume that

‘Nn(hj)| = nd)n,ja nli)r{)lo ¢n,j = (bju

where each ¢; is positive and finite, j =1, ..., J. Thus we may define

Z ¢n,g{ h],e)) 1}2 (2.23)

with 4y, (h;) the estimated semivariogram in the n’th sample. Recalling that

() = — 3 {Z(s;+ hy) — Z(s;)}2,

n

under Gaussianity assumptions we have by (2.17)

9
cov{¥n (hj) An (i)} = 72 Pn bk 2 >

sj: (85,8;+h;)ENn(h;) sk: (Sk,8k+hi)ENn(hE)
{v(85 = sk + hg) + (55 — sk — hi) = v(s5 — sk + by — hi) — (55 — sx)}>.
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As n — oo, under some regularity assumptions which we will not attempt to make precise,
the magnitude of this expression is of O(1/n). This is because the number of s; terms in
the summand will be of O(n) reflecting the rate of growth of N, (h;), but for each fixed
s, the total contribution over all s; will be bounded, if we assume the covariances decay
sufficiently fast. All the covariance models we have considered have covariances decaying
at least exponentially fast as the distance between the two points tends to oo, so this
assumption will be satisfied.

Consequently, for asymptotic arguments, we may assume that there exists a J x J
matrix W () with entries (w;x(#)), depending on the unknown 6, such that

w;i(0)

cov{Fn(h;), An(hK)} ~ as n — oo

and consequently, if we write ¥,, for the vector with components J,,(h1), ..., ¥ (h ), and 4(0)
for the corresponding vector of theoretical values, that under the model with parameter
vector 6,

V¥, —v(0)} — N (0, W(0)). (2.24)

** Application of the information sandwich formula to the distribution of the WLS
estimator

Defining S,,(0) by (2.23), we have

=2n Z P { 3 (hh”;) + ;T(*}(:’;) } - Vv(hj; 0), (2.25)
won B 5 oasens
+2”Z¢"”{ i(: 5 ?(f(:;)} V(B3 0). (2.26)

Consider (2.26). In the first term, by consistency of %,,, the expression inside paren-
theses tends to 1/v2(h;;0), while the ¢, ; and V~ terms are each of O(1); consequently
the whole expression is of Op(n). In the second term, however, the size of the expression
inside parentheses depends on the distance from %, to ; since this is of Op(1/4/n), the
whole second term is of O,(y/n), and hence negligible compared with the first term. This
leads us to conclude

Lo
;V Sn(6) —p 22 WV’)/(h],Q)V'y(hJ,Q)
= H(0) say. (2.27)
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Similarly, (2.25) may be rearranged to give

-3 it (101530) = 3u(01))91(05)

2n2 ;’5"’” 0(01536) = 30 ()91 (050)

The second row is negligible compared with the first and so is neglected. The first row
consists of a (vector) linear combination of the random variables {y(h;;6) —7,(h;)} and
o0, assuming (2.24), its limit at § = 6y may be expressed in the form

%vsnwo) —a N (0, R(00)"W (60)R(60))

where, if 6 is a ()-dimensional vector with components {f,, ¢ =1,...,Q}, R(f) isa J x Q
matrix whose (j,q) component is given by

o 2¢J 0y
Tjq = ~2(h;:0) 00, ——(hj;0). (2.28)
Consequently, if we define
V(60) = R(60)" W (60) R(60), (2:29)

we have verified conditions (A1) and (A2) of the information sandwich formula, so the
final result is given by combining the formulae (2.22), (2.24), (2.27), (2.28) and (2.29).

It should be noted that each of the matrices W (), H(#) and R(0) is explicitly defined
once 6 is specified, so the resulting expression for the limiting covariance matrix of 6, is
computable. In practice, of course, in making these calculations we substitute the estimate
0,, for the unknown value 6.

2.2.4 Maximum likelihood estimation

If we assume that we are sampling from a Gaussian process, then it is straightfor-
ward in principle to write down the exact likelihood function and hence to maximize it
numerically with respect to the unknown parameters. Kitanidis (1983) and Mardia and
Marshall (1984) were the first to advocate estimating spatial processes in this way. The
evaluation of the likelihood function requires computing the inverse and determinant of
the model covariance matrix — if there are n sampling points, then this is an n X n matrix,
and the process can be slow if n is large. Nevertheless, the present author has successfully
implemented this procedure for n up to 500, so computational difficulties do not seem to
be adequate reason to avoid this method. Less clear are the sampling properties of max-
imum likelihood estimates as compared with simpler alternatives such as Cressie’s WLS
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procedure. In this section we shall first outline the computational procedure, and then
discuss some of the pros and cons of maximum likelihood estimation.

We can incorporate deterministic linear regression terms with no essential change in
the methodology, so the model we shall consider is

Z ~N(XB,Y), (2.30)

with Z an n-dimensional vector of observations, X an n x ¢ matrix of known regressors
(¢ < n; X of full rank), B a g-vector of unknown regression parameters and ¥ the covariance
matrix of the observations. In many applications we may assume

Y =aV () (2.31)

where « is an unknown scale parameter and V' (0) is a vector of standardized covariances
determined by the unknown parameter vector 6. For example, the exponential variogram
structure is equivalent to a covariance function

cor{Z(sn). 252} = { 2 10 oz

. 2.32
c1exp(—|s1 — sa|/R) if 81 # s9 (2.32)

so we may define & = ¢1, ¢ = co/(co + c1) (the nugget:sill ratio), § = (¢, R) and let V' (0)
denote the matrix whose diagonal entries are all 1/(1 — ¢) and off-diagonal entries are of
the form v;; = exp(—d,;/R) where d;; is the distance between the :’th and j’th sampling
points. Of course, we assume V' (f) is nonsingular.

With Z defined by (2.30), its density is
1
) PIS M exp { ~5(2 - BTS2 - X) |
Consequently, the negative log likelihood is given by

£(B,0,6) = | log(2m) + 7 loga+ %bg V()] + %(z _ XB)TV(0)"(Z - XB). (2.33)

As a side calculation, note that if for given V' we define B = (XTv-1x)"1xTy-1z
(the GLS estimator of 8 based on covariance matrix V'), we have

(Zz-XB)TVIX =0,
and so

(Z-XB)V Y Z-XB)=(Z—-XB+XB-XB)TVWZ-XB+XB—Xp)

=(Z-XP)TV Y Z-XB)+(B-PTXTVIX(B-pB)
(2.34)
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which confirms that this choice of 8 indeed minimizes the generalized sum of squares
criterion (2.34) and leads to a sum of squares of generalized residuals which we shall
denote by R R

G*=(Z-Xp)*'v~1(zZ - Xp). (2.35)

Returning to (2.33), we see that if we define 8(6) = (XTV()~2X)"XTV(9)~'Z and
the corresponding G? by G2(0) from (2.35), we have

~ 1 1
HMﬂmwzgMWﬂ+%%a+y%W@ngﬂm- (2.36)

It is possible to minimize (2.36) numerically with respect to a and 6, or alternatively to
minimize it analytically with respect to « by defining

G2(0)

n

a() =

In this case we have to minimize, with respect to 8, the function

z ﬁ G()+§mmvwn+%

The quantity (2.36) or (2.37) is often called a profile negative log likelihood to reflect the
fact that it is computed from the negative log likelihood (2.33) by minimizing analytically
over some of the parameters. The method given here is essentially that first proposed by
Kitanidis (1983) and by Mardia and Marshall (1984). To calculate (2.37), the key element
is the Cholesky decomposition which enables us to write V = LLT where L is a lower
triangular matrix. Hence if we write (2.30) and (2.31) in the form

Z=XB+n, n~N(0aV),
and define Z* = L7117, X* = L7'X, n* = L', we have
Z*=X*B+n", 0" ~N(0,al),

so that the calculation of B reduces to an ordinary least squares problem for (Z*, X*).
Also, the calculation of |V| is easy because this is just the square of |L|, and |L| is just
the product of diagonal entries. The author’s implementation of this is based on the algo-
rithm of Healy (1968) to calculate the Cholesky decomposition, followed by the SVDFIT
algorithm of Press et al. (1986, Section 14.3) to solve the ordinary least squares problem,
all within the DFPMIN algorithm of Press et al. (1986, Section 10.7) to solve the function
minimization problem with respect to #. DFPMIN is a variable metric algorithm requiring
the specification of first-order derivatives of the objective function as well as the function
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itself, but these can be approximated numerically. In this form, the algorithm is somewhat
simpler than the original proposals made by Kitanidis (1983) and Mardia and Marshall
(1984).

To summarize the main steps of the algorithm:

1. For the current value of #, compute V = V(6) and hence the Cholesky decomposi-
tion V = LLT.

2. Calculate L™1. This is easy, given that L is lower triangular.

3. Calculate |L|, which is simply the product of the diagonal entries of L. Hence
VI =L

4. Compute Z* = L7 'Z and X* = L71X.

5. Solve the ordinary least squares problem Z* = X*3 + n* — the residual sum of
squares is G2(0).

6. Define g(«, ) by (2.36), or g(#) by 2.27, so that g is the function which we have
to minimize.

7. Repeat each of steps 1-6 for each 6 (or each («,6) pair) for which g has to be

~

evaluated. The minimum will eventually be achieved at a point 6 (or (@,6)) and this
defines the maximum likelihood estimator.

8. Define H to be the Hessian matrix, i.e. the matrix of second-order derivatives of g
with respect to the unknown parameters, evaluated at the maximum likelihood estimators.
This is also known as the observed information matrix, and in the case of a quasi-Newton
algorithm such as DFPMIN, may be obtained approximately from the algorithm itself.
(The algorithm does not attempt to evaluate H directly, but maintains an approximation
of it which is improved as the algorithm continues.) In this case, in accordance with
standard maximum likelihood theory, the inverse matrix H~! is an approximation to the
sampling covariance matrix of the parameter estimates. In particular, the square roots of
the diagonal entries of H~! are approximate standard errors of the parameter estimates.
Finally, the minimized value of g may be used for likelithood ratio tests in comparing one
model with another — we shall see numerous examples of this subsequently.

Remarks

1. Effective operation of the algorithm requires reasonable starting values. One solu-
tion is to calculate the approximate WLS estimators first, using these as starting values for
the MLE procedure. In the author’s experience, that level of care is not usually required,
but it is important to use starting values that at least represent reasonable guesses of the
MLEs. One general piece of advice is to build up gradually from simpler models towards
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more complicated ones, using the estimates from simpler models to help gauge starting
values for the more complicated models.

2. It is also advisable to remember that efficient operation of quasi-Newton algorithms
such as DFPMIN requires that the parameters be at least reasonably well-scaled, e.g. the
algorithm will not usually work correctly if one parameter is varying on a scale 10% times
another. This could require attention, in particular, to choosing a suitable unit for distance.

3. The reader may be wondering why we considered two forms of g, one based on (2.36)
and the other based on (2.37), instead of just using (2.37) which has fewer parameters.
The reason is that for some examples later on (section 2.6) the covariance matrix does not
have the form of (2.31), so in this case the simplification afforded by analytic solution for
« is not available.

4. The interpretation of H in step 8 is not precisely in accordance with standard
asymptotic theory of maximum likelihood estimates, because it is calculated from a profile
log likelihood rather than the original log likelihood function. However, it can be shown
that the H matrix in this case has the same interpretation as when it is defined directly
from the log likelihood. See Patefield (1977).

Advantages and disadvantages of mazximum likelihood estimation

Although maximum likelihood estimation appears to be computationally feasible,
opinion is still divided concerning its desirability when compared with simpler methods
such as the approximate WLS method due to Cressie (section 2.2.3). Asymptotic prop-
erties of maximum likelihood estimators were considered by Mardia and Marshall (1984),
who showed that the usual asymptotic properties of consistency and asymptotic normality
are satisfied under a form of increasing domain asymptotics (see section 2.2.3 for a par-
allel discussion of Cressie’s WLS method under this form of asymptotics). However, the
conditions given by Mardia and Marshall are not particularly easy to check, especially in
the case of an irregular lattice of sampling points, and more seriously, there is no indica-
tion of how large the samples need to be for asymptotic results to be reliable indicators
of sampling properties. Another issue concerns possible multimodality of the likelihood
surface. An example given by Warnes and Ripley (1987), and repeated by Ripley (1988),
suggests that this can be a problem even with the simplest spatial models. In fact it would
appear that the original example given by Warnes and Ripley was in error — Mardia and
Watkins (1989) presented an alternative analysis of the same data set, which is discussed
in section 2.3 below. Nevertheless, the possibility of multimodality is real, arising from
discontinuities in the first derivative of the log likelihood, as shown theoretically by Mardia
and Watkins in the case of the spherical variogram model and a variant of the exponential
model. They advocated plotting the profile likelihood surface (2.37), as well as or instead
of finding the MLE by optimization. In the present author’s experience, multimodality is
not usually a difficulty in low-dimensional estimation problems, but even with parameter
dimensions of the order of 4 or 5, it can happen that parallel runs of the maximum likeli-
hood estimation routine, starting from different initial values, lead to different parameter
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estimates. It can also happen that with poor initial values, the algorithm will not converge
at all. Given the various difficulties that can arise, it is advisable to be check the results
of the algorithm by rerunning from different starting values, and to be cautious about the
results if these difficulties arise.

The theoretical benefit of maximum likelihood is that we can expect the estimates
to be more efficient than the alternative methods in large samples. However, it is not
clear how big a benefit this is. A simulation study by Zimmerman and Zimmerman (1991)
compared the MLE, approximate WLS and a number of alternative estimators, concluding
that the MLE is only slightly superior to the approximate WLS procedure from this point
of view. It has also been pointed out that the MLE procedure depends on the assumption
of a Gaussian process and therefore may perform poorly when the true distribution is non-
Gaussian, but of course this does not mean that the WLS procedures would necessarily
perform better in this case! The simulations of Zimmerman and Zimmerman (1991) do
not address this issue since they are restricted to Gaussian processes.

The present author takes the view that the computational complexity of maximum
likelihood (or its variant REML — see next subsection) is outweighed by its convenience
as a very widely applicable method of estimation, by which a variety of models can be
estimated, and compared using either likelihood ratio tests or automatic model selection
criteria such as the Akaike Information Criterion (AIC). There is also the advantage that
maximum likelihood methods link up naturally with Bayesian procedures, as will be further
explored in subsection 2.2.6. The various disadvantages that have been pointed out, such
as non-robustness when there are outliers in the data, or the possible multimodality of the
likelihood surface, are caveats to keep in mind when using the method, but they are not
reasons to abandon maximum likelihood estimation.

Multiple replications

The treatment so far has been based on the assumption that inference must be based
on a single realization of the random field Z. Of course, we can expect to get better
estimates if there are multiple replications of Z. In the climatological examples of chapter
1, we have treated the data from year to year as independent, which is equivalent to
assuming that there are multiple independent replications.

The maximum likelihood procedure in this case is of course only slightly different from
that in the single-replication case, but to make the computational procedure explicit, we
explain here what the differences are. Suppose there are m replications denoted 71, ..., Z,,.
Then (2.33) is replaced by

_mn mn m LNz - Xp)TV(0) (% -
U(B, 0, 0) = =~ log(2m) + —~log o+ — log [V (0)] + — Y (2 - XB)TV(0)N(Z: — XB).
Defining Z = % > Z;, we may write

> (Zi- XB)"V(0)(Zi - XB)
=m(Z - XB)TV(0) " (Z - XB)+ > _(Zi— Z)V(0)""(Zi — 2).
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This suggests the following modification of the algorithm for m = 1, to compute the profile
log likelihood function (2.36) or (2.37) in this case:

1. For given 6, solve the GLS problem for Z, letting G2Z(0) be the resulting generalized
residual sum of squares.

2. Calculate

G(0) = G3(0) + - S (%~ WV (O) (%~ 7).

3. Substitute into (2.36) or (2.37), multiplying by m to obtain the correctly normalized
profile log likelihood.

As an example, we consider a data set based on 32 years (1965-1996) of mean winter
daily minimum temperatures, confined to the region of latitude 40-45 © N and longitude 90—
100 °W (recall Fig. 2.9). The individual data points consist, as in several earlier examples,
of standardized residuals from a linear regression in time, and we shall treat them as 32
independent observation vectors. It will be recalled from Table 2.2 that there was some
doubt about whether the process was homogeneous even within this smaller region, but
for the purpose of the present discussion, we shall assume the process is homogeneous.
The X3 component of (2.30) was in most cases omitted from the model, but some models
corresponding to a linear spatial trend in the latitude and longitude coordinates were
also tried; in this case (8 is a vector of dimension 2. Maximum likelihood estimates were
computed for several models, with the following results:

Model Spatial Number of NLLH AIC
Trend Parameters

Exponential None 3 -548.3 —1090.6
Exponential Linear ) -548.3 —1086.6
2-par Matérn None 3 -047.1 —1088.2
3-par Matérn None 4 -548.4 —1088.8
3-par Matérn Linear 6 -548.4 -1084.8
Gaussian None 3 -535.3 -1064.6
Wave None 3 -532.8 —1059.6
Spherical None 3 —548.2 —1090.4

Table 2.3 Evaluation of negative log likelihood (NLLH) and Akaike Information Criterion
(AIC) for several models fitted to 32 years of data at 17 stations.

Each of the exponential, Gaussian, wave and spherical models included a nugget
parameter, but the Matérn model was fitted both without a nugget (2-parameter version)
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and with (3-parameter). From the NLLH and AIC values tabulated, it can be seen that
the Gaussian and wave models are substantially inferior, but the other six models are
indistinguishable by the quality of fit. The two models with linear spatial trend would
be rejected on the grounds that they do not improve on the models with no trend, while
the three-parameter Matérn is similarly rejected on comparision with the two-parameter
model. Comparison of the exponential and two-parameter Matérn models leads to the
following comparisons:

Model Parameter Estimate Standard error
Exponential R 18.14 4.94
Exponential [0) .038 .010

Matérn 04 65.7 40.7

Matérn 04 .28 .03

Table 2.4 Parameter estimates and standard errors for the exponential and two-parameter
Matérn models. The parameter ¢ is the nugget:sill ratio (recall discussion following (2.32)).

The unit of distance here, in which both R and 6, are expressed, is 100 nautical miles,
using the approximate conversion factors 1° latitude = 60 N.M., 1° longitude = 0.8x 60 =
48 N.M. (0.8 is approximately cos 40 °). Recall our earlier remarks about scaling; the unit
of distance is taken to be 100 N.M. rather than 1 N.M. because the optimization problem
is numerically more stable in this case.

2.2.5 Restricted mazimum likelihood

The idea of restricted mazimum likelihood or REML estimation was originally proposed
by Patterson and Thompson (1971) in connection with variance components in linear
models. However, a number of authors have pointed out that the situation considered by
Patterson and Thompson is essentially the same as arises with Gaussian models for spatial
data: in both cases there is a linear model with correlated errors, whose covariance matrix
depends on some additional parameters. Thus it is natural to try to separate the two parts
of the estimation problem, the “linear model” part and the “covariance structure” part.
Cressie (1993) is one author who has enthusiastically advocated this approach to spatial
analysis.

The motivation behind REML estimation is perhaps best expressed in a very simple
case. Suppose Y7, ...,Y,, are independent univariate random variables, each N (u, 0?) with
unknown g and o2. As is well known, the maximum likelihood estimators of p and o?
are i =Y = 13V, and 5 = 13> .(Y; — V)% However, this definition of 52 is a
biased estimator, whereas the more usual unbiased estimator of o2 is —1= > .(¥; — Y)2.
This it appears that the maximum likelihood estimator is not the best one to use in
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this case. Suppose, however, instead of basing the maximum likelihood estimator on the
full joint density of Yi,...,Y,, we base it on the joint density of the vector of contrasts,
(Y1-Y,Y;—Y,..,Y,_1 — Y), whose distribution does not depend on p. The “maximum
likelihood estimator” of o2, under this formulation, turns out to be the unbiased estimator
123, (Y;=Y)2. Thus, by constructing an estimate of 2 based on an (n—1)-dimensional
vector of contrasts, we appear to have done better than the usual maximum likelihood
estimator based on the full n-dimensional data vector.

This idea can be extended to the general model defined by (2.30) and (2.31). If we
let W = AT Z be a vector of n — ¢ linearly independent contrasts, i.e. the n — ¢ columns
of A are linearly independent and A7 X = 0, then we find that

W ~ N(0, ATSA),
and the joint negative log likelihood function based on W is of the form

n—q n—q

2

1 1
Ly (o, 0) = log(27)+ log a3 log |ATV(0)A|+%WT(ATV(9)A)_1W. (2.38)

As pointed out by Patterson and Thompson (1971), it is possible to choose A to satisfy
AAT =T - X(XTX)7'XT ATA = I. In this case a further calculation, first given by
Harville (1974), shows that (2.38) may be simplified to

n—q
2

1 1
| — G2
+ 5 og |V(0)] + QaG ),

— 1 1
bw(a,0) = n 5 a log(2m) + loga — 5 log | XTX|+ 3 log | XTV(0) ' X|

(2.39)

where G2(0) is the same as in (2.37). This is minimized with respect to a by setting
& = G*(9)/(n — q) in which case (2.39) reduces to

by (0) = w (&, 0)

=0 ; ? log(27) +

n—q G*(9 1 L -
tog 1) _ 5 10g [ X7 X[+ S log |XTV(0) 7' X| (2 40)

1 n—q
—1 0 .
+ 5 log [V(0)| + ™

Comparing (2.40) with (2.37), it can be seen that there are two substantive changes: the
coefficient of log G?(f) has been changed from n/2 to (n — q)/2, and there is an additional
term of 3 log | X7V (0)~1X]|.

** Derivation of (2.39)

We follow Harville (1974). Recall that A is an n x (n — ¢) matrix and let G denote
the n x ¢ matrix V"1 X(XTV~1X)™1 so that 8 = GTZ. Let B = [A|G]; in other words,
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the n x n matrix formed by placing the matrices A and G alongside one another. Then

|B| = |BTB|*/?
ara arg\|"”
- (GTA GTG)

= [ATA|'?|GTG — GTA(ATA)~T AT G2

the last line depending on a well-known result for the determinant of a block matrix (see
for instance, Mardia, Kent and Bibby (1979), formula A.2.3j, page 457). However after
noting that ATA =1, AAT =T - XT(XTX)~1X, it may quickly be verified that

GTG - GTAATA) 1 ATG = (XTXx).
Thus |B| = | XTX|~1/2.

Recall that the density of Z under (2.30)—(2.31) is

fz(2) = (2m) a2V |2 exp{ (2 - X)TVH(Z - Xﬂ)} : (2.41)

(67

Define ZT = BTZ = (ZTA,ZTG)T = (WT,BT)T. The Jacobian of the transformation
from Z to Zt is |B|~' = | XT X|'/2. Moreover, using (2.34)—(2.35) we have that

(Z-XB)TVHZ-XB)=G*0)+ (B-BTXTVIX(B - p).

Now G?2(#) is a function of elements orthogonal to E and hence is itself a function of W.
Thus a change of variables in (2.41) leads to

Fo 3w, B) = [XTX[M2(2m) =" 202 V|12,

-~ —~ 2.42
-exp{—%G”(@)—%(B—B)TXTV‘lX(,B—ﬂ)}- .

Now integrate (2.42) with respect to B, leading to
1
fw(w) = |XTX|1/2(271')_("_‘1)/204_("_‘1)/2|V|_1/2|XTV_1X|_1/2 exp {_£G2(9)}

from which (2.39) follows at once.
2.2.6 Bayesian procedures

Bayesian procedures to spatial statistics have been considered by a number of authors,
in particular Le and Zidek (1992) and Handcock and Stein (1993). The latter authors
considered the model defined by (2.30) and (2.31) with the improper prior density

(8, , ) x @ (2.43)
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for some prior 7(#). The posterior density takes the form
6 1
(6,0.012) & T ) a2y 0) [ exp { (2 - XV 2 - X)

Again defining B(0) = (XTV(0)~'X)"XTV(0)~1Z and ignoring constants, equation
(2.34) leads to

m(0) —n/2 —1/2 G? 9)
(B, ,0|Z) x—« V(0)| expl ————= ¢ -
: { 20 } (2.44)

1 ~ _ ~
- exp {—%(ﬁ -BTXTV () X (B~ ﬁ)} .
Integrating out with respect to 3, we obtain

G*(0)
2c

m(,0|7) x ?a—"”w(e)rm exp {— } a9\ XTV (9)1x|~/? (2.45)

and a further integration with respect to a leads to
m(0]Z) o w(0)[V(0)|7/2G2(0)~ "~ 9/2| X TV ()T X[ 1/2, (2.46)
which is the same as equation (3.2) of Handcock and Stein (1993).

Comparing (2.44) with (2.40), it can be seen that if we ignore 7(6) in (2.44), the mode
of the posterior density of 6 is precisely the REML estimator. This was first pointed out by
Harville (1974) and indeed follows at once from (2.42), on writing out the joint density of
Z in this form and then integrating out with respect to 8 — the result is exactly the same
as if we integrate (2.42) with respect to 8. However, a fully Bayesian approach involves
not maximizing (2.44), but integrating with respect to the components of #, and in this
respect the two methods are quite different. The integration with respect to 6§ must be
performed numerically.

2.2.7 MINQFE estimation

Another method of estimation is the method of minimum norm quadratic estimation,
or MINQE for short, which was originally developed by C.R. Rao, see for example Rao
(1979). In comparison with the other methods we have considered, MINQE is restricted
in scope, being confined to a particular class of spatial estimation problems, but within
those classes of problems, it seems competitive with the other methods. The following
description is based on the accounts of Kitanidis (1983) and Stein (1987).

Suppose we write the universal kriging model in the form
Z = Xp+mn,
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where the semivariogram of 7 is y(+; 6), and suppose v(-;0) is of the form

0) = Orve(h), (2.47)
k=1

in other words, « is a linear combination of k¥ known semivariograms v, ..., Yk, with un-
known weights 61, ..., 0x. Just as with REML estimation, suppose we define W = AT Z to
be a vector of orthogonal contrasts to X, where we assume that the columns of X include
a constant term, so that the covariance of W is of the form —ATT(9)A = ¥(0) say, where
I'(#) is the matrix with entries vy(s; — s5;6), s1, ..., s, being the sampling points. We also
let Uy, ..., Pk denote the corresponding ¥ matrices when v = ~, for each of £ = 1,..., K.
The problem is therefore to estimate the coefficients {0} when observed data have the
covariance matrix

0) = 0rVg. (2.48)
k=1

Suppose, for a given vector pT = (p1, ..., px), we choose to estimate pT @ by the quadratic
form YTHY . For this to be unbiased, we require E{YTHY }=E{tr(HYYT)}

= Y Ortr(HYy) and hence tr(HVUy) = pg. The idea behind MINQE is to choose the
minimum variance unbiased estimator of this form. Typically, the variance of YT HY is of
the form tr(HV HV) for some matrix V. For example, in the case of a Gaussian process
it is easily verified directly that Var{YTHY} = 2 tr(HYU(0) H¥(0)).

In practice, the usual scheme is to fix V = ¥(a) for some prior guess a of . A

Lagrange multiplier solution to the resulting contrained optimization problem leads us to
define A; = ¥(a) 10, ¥(a)~ L. The estimator  will be an unbiased estimator of 6 if

YTAY = tr(A;0(0 Z@trAkI! (2.49)

for all 5. If we let B denote the matrix with entries b;; = tr(A;¥;), and let C' with entries
c;j denote the inverse of B (assumed to exsit), then the solution of (2.49) is

0; = ci;YTA;Y. (2.50)

For the case where W(f) cannot be written as a linear function of 0, Stein suggested
replacing the definition of A; with

A =U(a)™? {61\11(01)} T(a)™!

but in this case the method seems to be even less well motivated compared with general
procedures such as maximum likelihood or REML.
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The advantage of this method, compared with maximum likelihood or REML or even
the approximate WLS procedure, is that for fixed « it is a linear estimation procedure and
therefore does not require any iterated procedures. Moreover, in many cases it appears
that the estimate is not too sensitive to the specification of a. On the other hand, the
optimality properties of the procedure hold only when oo = 6, and this suggests iterating the
procedure, using the current estimate 6 to define « for the next iteration. Kitanidis (1983)
showed that if this procedure is iterated to convergence then the MINQE estimator satisfies
the same equations as those satisfied by the maximum likelihood estimator. Zimmerman
and Zimmerman (1991) proposed a compromise in which a crude estimator of # was taken
for the first estimate and then iterated once only. With these refinements, the method is
competitive in performance with the ML and REML procedures, but more computationally
demanding than the approximate WLS procedure.

2.3 Examples

Table 2.5 gives a data set analyzed by Cressie (1989,1993). The data consist of water
levels in the Wolfcamp aquifer in south-west Texas. Eighty-five measurements were taken
by drilling into the ground and locating the height; the z and y coordinates represent
miles from an arbitrary origin and the z coordinate is the water level in feet above sea
level. The original interest in this example was the proposal to build a nuclear waste
repository in Deaf Smith County, which is near the center of the mapped region. It is
believed that any leakage of nuclear waste will flow with the water in the aquifer so there
is interest in reconstructing the shape of the whole water surface. In fact the analysis
showed fairly directly that there is a steady slope from the south-west to the north-east
and that leakage from the proposed site would flow directly into the city of Amarillo. This
is described in some detail in Chapter 4 of Cressie (1993). We concentrate here on the
spatial model-fitting aspect of the problem.

Cressie himself gave two analyses. The first assumed that the process was intrinsi-
cally stationary, but because of the obvious anisotropy, used a geometrically anisotropic
model. From this, he used a kriging algorithm (section 2.4) to reconstruct the surface.
This appeared satisfactory but gave a very irregular reconstructed surface. A second tech-
nique was to use median polish kriging (also to be discussed in section 2.4) as a crude
method of removing an underlying trend. The residuals from this trend did appear to fol-
low a stationary isotropic model and were satisfactorily fitted by the spherical variogram
model. Ordinary kriging was then applied to these residuals and added to the trend sur-
face obtained by median polish kriging to obtain a second reconstructed surface. This was
similar in general characteristics to the first method but did produce a noticeably smoother
surface.

In Fig. 2.10 we show the variograms (V' (t) = 27(t)) for the raw data computed by both
the method of moments (MoM) and the robust method. To account for the anisotropy,
separate variograms were computed for pairs of points whose relative orientation lay in
the SW-NE quadrant and those in the SE-NW quadrant. The figure is similar to Fig. 4.3
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of Cressie (1993) except that Cressie only used the MoM method. The unit of distance
(t) here is five miles. Also shown are fitted variograms by the approximate WLS method
based on (2.16) using the power law model. In contrast to Cressie’s analysis, which forced
a common value of the power A, this analysis fitted the power law model separately to all
four plots. In fact the two MoM fits produced A = 2.0 and A = 1.9 which is consistent
with a common \; Cressie claimed A = 1.99 but did not remark on how close this is to
the upper boundary for this to be an intrinsically stationary model (the upper boundary
is A = 2). In contrast, the two fits using the robust method of variogram calculation
produced substantially different variograms (note that the figures are not all plotted on
the same scale) and estimates A = 2.8 for the SW-NE direction and 2.6 for the SE-NW
direction, both well beyond the permitted range. Of course, we could force a valid fit
by constraining A < 2 in the WLS algorithm, but this would not address the question of
whether an intrinsically stationary model is reasonable. I believe that the discrepancies
between the MoM and robust variograms, and the results of the power law fit, provide
ample evidence that it is not.

Fig. 2.11 indicates an analysis somewhat different from Cressie’s, based on a model
of the structure of (2.30) in which the X matrix represented regressors given by the z and
y coordinates, i.e. we are assuming a linear trend surface with correlated errors. The form
of correlation function was chosen so as to be consistent with an exponential variogram
model. For an initial analysis, this was estimated by an ordinary least squares regression
analysis and the residuals from that regression analyzed as a spatial model. In this case
there was no evidence of anisotropy and Fig. 2.11 shows the MoM and robust variogram
estimators together with the WLS fit (separately for each variogram) and the ML and
REML fits. For the ML and REML fits, the original model (2.30) was taken, i.e. we did
not rely on residuals from an OLS fit of 5. The ML and REML fits are both reasonably
close to the WLS fit — in fact, based on a visual inspection the ML fit appears closer both
to the WLS fit and to the individual variogram points.

Fig. 2.12 continues this analysis by showing both the Matérn and wave models fitted
by ML and REML. The Matérn fit is based on 0y = 0.29 (ML fit) or 0.27 (REML fit) — in
this model there appears to be no need for a nugget parameter, which was in fact estimated
as 0. The wave model was suggested by the apparent oscillatory shape of the variogram
points at large ¢. In fact, the fitted variogram does not seem to follow this shape too well
but still gives the best model as judged by maximum likelihood over all models. However,
there is no significant difference among the leading models, as shown in Table 2.6.
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x Y Z T Y Z
42.7827 127.6228 1.464 103.2663 20.3424 1.591
—27.3969  90.7873 2.553 —14.3107  31.2654 2.540
—1.1629 84.8960 2.158 —18.1345  30.1812 2.352
—18.6182  76.4520 2.455 —18.1215  29.5324 2.528
96.4655 64.5806 1.756 —9.8880 38.1448 2.575
108.5624 82.9232 1.702 —12.1634  39.1108 2.468
88.3636 56.4535 1.805 11.6575 18.7335 2.646
90.0421 39.2582 1.797 61.6912 32.9491 1.739
93.1727 33.0585 1.714 69.5790 33.8084 1.674
97.6110 56.2789 1.466 66.7221 33.9326 1.868
90.6295 35.0817 1.729 —36.65645  150.9146 1.865
92.5526 41.7524 1.638 —19.5510  137.7840 1.777
99.4900 59.1578 1.736 —21.2979  131.8254 1.579
—24.0674  184.7664 1.476 —22.3617  137.1368 1.771
—26.0629  114.0748 2.200 21.1472 139.2620 1.408
56.2784 26.8483 1.999 7.6846 126.8375 1.527
73.0388 18.8814 1.680 —8.3323 107.7769 2.003
80.2668 12.6159 1.806 56.7072 171.2644 1.386
80.2301 14.6180 1.682 99.0005 164.5486 1.089
68.8384 107.7742 1.306 68.9689 177.2482 1.384
76.3992 95.9938 1.722 70.9023 161.3814 1.030
64.4615 110.3964 1.437 73.0024 162.9896 1.092
43.3966 53.6150 1.828 59.6624 170.1054 1.161
39.0777 61.9981 2.118 61.8725 174.3018 1.415
112.8045 45.5477 1.725 63.7081 173.9145 1.231
54.2590 147.8199 1.606 5.6271 79.0873 2.300
6.1320 48.3277 2.648 18.2474 77.3919 2.238
—3.8047 40.4045 2.560 85.6882 139.8170 1.038
—2.2305 29.9111 2.544 105.0765 132.0318 1.332
—2.3618 33.8200 2.386 —101.6428 10.6511 3.510
—2.1889 33.6821 2.400 —145.2365 28.0233 3.490
63.2243 79.4992 1.757 —73.9931  87.9727 2.594
—10.7786  175.1135 1.402 —94.4818  86.6261 2.650
—18.9889  171.9169 1.364 —88.8498  76.7099 2.533
—38.5788  158.5274 1.735 —120.2590 80.7648 3.571
83.1450 159.1156 1.376 —86.0245  54.3633 2.811
—21.8025  15.0255 2.729 —72.7910  43.0922 2.728
—23.5646  9.4144 2.766 —100.1737 42.8988 3.136
—20.1130  22.0927 2.736 —78.8354  40.8214 2.553

Table 2.5 Wolfcamp aquifer data.




x Y Z T Y Z

—16.6265  17.2562 2.432 —83.6906  46.5048 2.798
29.9075 175.1288 1.024 —95.6166  35.8218 2.691
100.9157 22.9781 1.611 —87.5548  29.3927 2.946

101.2954 22.9639 1.548

Table 2.5 (continued)

Model Order ML REML
Exponential 1 148.0 137.1
Gaussian 1 147.5 136.6
Matérn 1 148.3 137.6
Wave 1 149.4 137.7
Spherical 1 148.4 137.5
Matérn 2 152.3

Matérn 3 156.1

Table 2.6 ML and REML fits to various models. The tabulated value is log maximum
ML or REML.

The last two rows in Table 2.6 show (for ML estimation in the Matérn model only)
the results of extending the analysis to include a quadratic or cubic trend; in both cases
there is some improvement in the fit but not significant as judged by the usual x? test.
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Fig. 2.11 Fitted variograms from detrended Texas data: Exponential variograms fitted
by WLS, ML and REML methods, with MoM and robust variograms.
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Fig. 2.12. Matérn and wave models fitted to detrended Texas data.
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Our second example is based on the data in Table 2.7, which were originally given
by Davis (1973) and have been re-analyzed by, amongst others, Ripley (1981, 1988) and
Handcock and Stein (1993). The data are 51 measurements of the height of the earth’s
surface within a 310-foot square. The x and y coordinates have been expressed in units of
50 feet. For the following analysis, the variable z will be replaced throughout by z/100 for
reasons of numerical stability.

x Y Z T Y Z
3 6.1 870 9.2 3.2 805
1.4 6.2 793 6.3 3.4 840
2.4 6.1 755 3 2.4 890
3.6 6.2 690 2.0 2.7 820
5.7 6.2 800 3.8 2.3 873
1.6 5.2 800 6.3 2.2 875
2.9 5.1 730 .6 1.7 873
3.4 5.3 728 1.5 1.8 865
3.4 5.7 710 2.1 1.8 841
4.8 5.6 780 2.1 1.1 862
5.3 5.0 804 3.1 1.1 908
6.2 5.2 855 4.5 1.8 895
2 4.3 830 5.5 1.7 850
9 4.2 813 2.7 1.0 882
2.3 4.8 762 6.2 1.0 910
2.5 4.5 765 4 0 940
3.0 4.5 740 1.4 .6 915
3.5 4.5 765 1.4 1 890
4.1 4.6 760 2.1 7 880
4.9 4.2 790 2.3 3 870
6.3 4.3 820 3.1 .0 880
9 3.2 855 4.1 .8 960
1.7 3.8 812 5.4 4 890
2.4 3.8 773 6.0 1 860
3.7 3.5 812 5.7 3.0 830
4.5 3.2 827 3.6 6.0 705

Table 2.7 Davis’ data

Ripley (1981) showed contour plots of fitted surfaces from linear up to quintic, which
demonstrate that there is no simple dominant trend as there appears to be in the previous
example. Fig. 2.13 shows MoM and robust variograms with fitted power law curves,
computed separately for the SW-NE and SE-NW quadrants as in Fig. 2.10. In this case
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there does not seem to be an argument about the validity of an intinsically stationary
assumption (all four fitted values of A are well below 2) but the strong anisotropy is
disturbing. The same plots fitted to the residuals from a linear trend are better (Fig.
2.14) but still not satisfactory — it appears that there is much more persistence in the
SE-NW direction than the SW-NE. In this case an exponential model has been fitted.

Warnes and Ripley (1987) made the claim, repeated by Ripley (1988), that this was
an example of a multimodal likelihood. They fitted an isotropic exponential variogram
with no nugget to the raw data (i.e. no trend) and produced an apparently irregular
profile likelihood for the range paranmeter R. However the same model was fitted to
the same data by Mardia and Watkins (1989) who found no trace of multimodality. The
present author’s calculation, shown in Fig. 2.15(a), supports the conclusion of Mardia
and Watkins. For this, the profile likelihood was evaluated for values of R in multiples of
0.001 from 5.5 to 6.5. It increased monotonically to a maximum at R = 6.12, and then
decreased monotonically, exactly as claimed by Mardia and Watkins. However, they did
show that multimodality can be a problem when the log likelihood is not everywhere twice
differentiable, as happens for the spherical model for example. In any case, as is clear from
Fig. 2.13, fitting an exponential variogram with no trend is not a sensible analysis for this
data set.

Handcock and Stein (1993) analyzed the same data set by a Bayesian analysis based
on the Matérn covariance function. They used a linear trend in z and y together with one
additional covariate, the horizontal distance from the survey point to the closest stream.
For the present analysis, a linear trend in x and y has been used, though we know from
Fig. 2.14 that this is not fully satisfactory either. Fig. 2.15(b) shows a profile likelihood
plot in 65 which shows that the maximum is attained at about ; = 1.19. In contrast, the
posterior density shown in Fig. 3.2 of Handcock and Stein (1993) has a mode attained
slightly below 62 = 1 and falls off much more sharply on either side of the mode. (For
example, from their plot is appears that the posterior density at #; = 1.5 is only about
10% of its maximum value, whereas in Fig. 2.15(b), the value of L at 03 = 2 is still half
its maximum value.) This shows that the two methods are not in practice equivalent.

Further fits based on the Matérn covariance function with higher-order trend produced
log L=T77.84 in the quadratic case (65 = 1.37) and log L=85.84 in the cubic case (65 = 1.61),
compared with log L=72.74 in the linear trend model. In each case the improvement is
highly significant as judged by a x? test with respectively 3 and 4 degrees of freedom,
which reinforces the unsatisfactory nature of a simple trend model for this example.
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Fig. 2.13. Fitted variograms to Davis data: Raw data with power law models.
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Fig. 2.15. Profile log likelihoods for Davis data. (a) Exponential model fitted to raw
data, no trend. (b) Matérn model fitted to data with linear trend.
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2.4 Kriging: Prediction and Interpolation

We now turn to the central topic of this subject: the use of spatial covariance models
for prediction and interpolation. The name frequently used for this process is kriging,
though as commonly used, that term refers only to the construction of a spatial predictor
in terms of known model parameters, whereas our approach will (ultimately) take the
model parameters into account as well, and in that sense, is more general than traditional
kriging.

The problem may be stated in the following form: given observations of a vector field
z(s1),2(82), ---, 2(sn), predict the value z(sg), for some s & {s1,...,5,}. A generalization
is to predict the joint value at several points, or an integral such as Z(A) = [, z(s)ds for
some set A — if z(-) measures the density of an ore, then Z(A) measures the total quantity
of ore over a region A. However, as we shall see, these problems are generally dealt with
as a direct generalization of the methodology for a single point, so we concentrate on that
in our initial discussion.

We shall take three approaches to this: an approach based on Lagrange multipliers,
an approach based on conditional inference, and a Bayesian approach. The Lagrange
multipler approach is the most direct derivation of the kriging estimator and is the one
most commonly given in textbooks, but it does not give so much insight into what is going
on. The conditional inference approach extends the ideas involved in REML estimation
(section 2.2.5) and shows how the kriging predictor may be derived as a conditional mean
in an appropriate space of predictors. Finally the Bayesian approach is given, which leads
to the same answers as the standard kriging predictor when the model parameters 6 are
known (in the notation of sections 2.2.4-2.2.6), but it also extends to the case where these
parameters are unknown. The reader new to the subject is recommended to pick one of
the three approaches and work through the formulae in detail: once the method is fully
understood from one approach, it is relatively straightforward to check that the other
approaches lead to the same answers.

2.4.1. Lagrange multiplier approach

Let us write the vector Z = (2(s1), ..., 2(s,))? and 29 = z(s¢). We need to know the
joint covariance matrix of Z and zg; let us suppose

w{(2))-(3 2)

where ¥ is the covariance matrix of Z, o2 is the variance of zo and 7 is the vector of
cross-covariances between Z and zy. For some of our calculations, following (2.31), we
shall write

Y =aV(0), T=oaw(d), of = avy(d) (2.52)

in terms of the scale parameter o and functions V, w and vy of a finite-dimensional pa-
rameter 6.
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The basic model will be assumed to be as in (2.30), with Z = X3+ 7 for some matrix
of covariates X, and we also assume zo = x3 3+ o for some given vector g, the vector of
covariates at zy (or sg, if we are thinking in terms of the original stations). Both n and 79
represent random errors with mean 0. This is the universal kriging problem; the special
case

E{Z} =pl, E{20} =p, (2.53)

in which 1 denotes the n-vector of ones and p is some overall constant, is the ordinary
kriging problem in which there is an unknown common mean but no other regression
coefficient. We consider predictors of form

Z20=M'Z, (2.54)
subject to the constraint
MX =al. (2.55)

The reason for the constraint (2.55) will appear momentarily.
Let us consider the prediction error in (2.54). We may write

20 — 2o =w§B+no —)\T(Xﬁ‘H?)

(2.56)
=m0 — AT

where we have used the constraint (2.55) — in other words, the reason for this constraint
is to make the procedure work without assuming 8 is known. The reader might at this
point be wondering why we make such a big fuss about 8 being unknown when we are
implicitly assuming that 6 (or the covariances ¥ and 7) are known — this is a valid point
to raise, but we return to it later.

If we assume (2.55) and hence (2.56), the mean squared prediction error becomes

E{(z0 — 20)?} = 02 —22T7r + ATE, (2.57)

We are therefore led to the following constrained optimization problem: minimize (2.57)
subject to (2.55).

Solution to the constrained optimization problem
Consider the Lagrangian
L=02-22Tr £ Tex-200TX —20)s, (2.58)
where 2v is a vector of Lagrange multipliers.

According to the theory of Lagrange multipliers, subject to suitable differentiability
conditions (which are trivially valid for this problem, because the problem is quadratic
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in \), the optimal A\ will be attained at some stationary point of L. Differentiating with
respect to the components of A in (2.58), this is achieved when

0=—-—74+3XX— Xy,
or in other words A = ¥ ~!(7 + Xv). To find v, substitute back in (2.55) to get
v=(XTES ' X) Nz - XTE 7).
The final result is
A=Y+ S X (XTSI X) 2o — XTE 7M7), (2.59)
or the predictor R
20=MZ=(zo- XTI+ 7727127 (2.60)
The resulting prediction error variance (2.57) becomes
o2 = 22T 4+ XTI
=05 —2r" S r — 27T ST X (XIS TIX) T (wo — XTET )
+ 72 4 27T X (XTI X) (o — XTRT17)
+ (2o = XTI T(XTE 1 X)) Yo — XTE717)
=02 — IS 4 (zo — XTSI T(XTETIX) Y zg — XTET17). (2.61)

Since it will come in useful later, we also give the extension of this calculation to handle
the prediction covariance between two stations. Suppose, instead of a single unobserved
2z, we have to predict two variables z, = 28 + 1,4, 25 = xf,@ + np corresponding to two
unobserved stations s, and s;. Suppose the joint covariance matrix is given by

yA X Ta T
Cov Za =77 04 ow |, (2.62)
T
Zp Ty  Oab Obb

and the optimal predictors are z, = AL Z, 2, = AT Z where
)\a = E_lTa + Z_lX(XTE_lX)_l(xa - XTE_lTa)a (2 63)
M=t + DX (XTE1X) " Yay — XTE1n). '

The mean squared prediction error is then
E{(za=23 2)(2 — Xy 2)}

= 0w — A1 — A 7, + AT2N,

=0 — T (S + ST X(XTSTX) T (@a - XTE T )}
— IS+ STIX(XTE T X)) (@ — XTE ) }
+ S, + YT (XTI X)) (2 — XTE17,)
+ T ST X (XTSI X) T (@, — XTE )
+ (g — XTE 1) (XTE7IX) Y2y — XTR1n)

=0a —TE X M+ (2, — XTSI (XTE7IX) Yo, — XTX ). (2.64)
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Essentially the same calculations are given in a number of other books on spatial statistics,
e.g. pp. 48-49 of Ripley (1981) or pp. 154-155 of Cressie (1993). Note that the formulae
are sometimes expressed in terms of the variogram rather than the covariance matrices
but, at least for stationary processes, it is straightforward to pass from one to the other.
Stationarity itself plays no role in the prediction formulae we have derived, though it
is usual, for the reasons explained in earlier sections, to work with either stationary or
intrinsically stationary processes.

2.4.2. Conditional inference approach

This is “conditional” in the sense that it exploits the decomposition implicit in the
derivation of REML estimation: by decomposing the vector Z into a component which is
essentially 8 — 8 and a component which is orthogonal to that, and conditioning on the
latter, we can derive the kriging predictor from this point of view.

As a first step, we assume [ is known. We use the following classical result of mul-
tivariate analysis (see, e.g., Mardia, Kent and Bibby (1979), p. 63): if we consider a
partitioned multivariate normal vector

X1 ~ N |51 Y1 Yo
X5 po )7\ a1 oo ’
then the conditional distribution of X; given X5 is normal with mean

1+ S1255, (X — p2) (2.65)

and variance
T11 — T12855 To1. (2.66)

Applying this result with ¥, = ag, Y19 = T, Y99 = X in our previous notation, we
deduce that the conditional distribution of zy given Z is normal with mean

eI+ rT2"Y(Z - Xp) (2.67)

and variance
o2 — Ty 17, (2.68)

When £ is unknown, the obvious solution is to substitute /3 for 8 in (2.67). This leads
to the proposed predictor
Zo=20 B+ W Z - XB)=ATZ (2.69)

say, where (as the reader may easily check) X is given by (2.59). Thus, this argument leads
very quickly to the correct formula for zy, though it does not so far prove that it has any
properties which might make it desirable as a predictor. Note that the equation (2.55),
which formed a key part of our earlier derivation, follows directly from (2.69). Because
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of this, the prediction error zg — AT Z has mean '8 — AT X8 = 0, and variance given by
(2.61), as before.

The key step of this proof is to note that zp — AT Z is independent of Z — X B Since
Z — X3 is in one to one correspondence with the vector W = AT Z which is used to define
the REML estimator (section 2.2.5), this establishes that the conditional distribution of
zo given W is normal with mean AT Z and variance given by (2.61).

To establish the independence just referred to, write Z — X B = RZ where
R=1-X(XTex'x)"'xTx 1,
and note that the covariance of RZ and zo — AT Z is
E{R(Z — Xp)(20 — 58— (Z — XB)"A)} = R(r — T)

and because everything is jointly normal, it will suffice to prove that the latter quantity is
0. However
T—YA=-XXT2'X) Y (zo - XTE"17),

and hence
R(r—3\) =-{I - X(XT2 ' X)"'XTes M X(XT8 ' X) Yzo — XTE77)
= X(XTe1X) Y zo - XT27 7)) + X(XTE71X) Yz — XTE"17)
=0,
which establishes the desired result.

To complete the proof that this solves the kriging problem, we need to show that if
Zo = AT Z is some other predictor, satisfying (2.55) with X in place of A, then E(Z — 2)? >
E(20 — 2)2, with equality if and only if A = .

Since the transformation from Z to (B ,WTT is one-one, we may write Zy = 20—|—cr{ﬂA+
c¢I'W for arbitrary vectors ¢; and co. However, in that case E(2g—zg) =E(30—z0)+cf B+0 =
2 y ) 0—<0 0—%0 1
cT' B, which is identically 0 if and only if ¢; = 0. By uncorrelatedness of 2y — zp and W,

E{Z — 20)} = B{%0 — 20)*} + E{(c; W)?},

where the second term is > 0. Because the matrix A is of rank n — ¢, the second term is
0 only if ¢ = 0. Therefore, the two properties of unbiasedness and minimising the mean
squared prediction error can be satisfied only if ¢; = ¢co = 0. This completes the proof.

2.4.3. Bayesian approach

The fact that the preceding argument is equivalent to a Bayesian approach has been
noted in other contexts, e.g. it lies at the heart of Meinhold and Singpurwalla’s (1983)
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derivation of the Kalman filtering equations from purely Bayesian considerations. The
Bayesian approach generalizes automatically to the case in which the variogram parameters
are unknown, whereas the classical approach essentially makes the assumption that these
are known and only deals with the question of uncertainty of model parameters in a very
peripheral way. This is one major reason for viewing the problem in Bayesian terms, and
the close parallels between this and the more traditional approaches of sections 2.4.1 and
2.4.2 adds to its justification.

The model throughout this discussion is the same as in section 2.4.1, writing the
covariances in the form of (2.52) and taking (2.43) as the prior. The choice of m(f) is
largely arbitrary, but the equivalence of Bayesian and least-squares approach works only
for the “classical” noninformative prior on (3, ).

Simplest case: B, a, 0 all known

This follows as in section 2.4.2:

{20|1Z,B,0,0} ~ N[(zo = XTE )T+ 7T%71Z, 02 — 7727 17]. (2.70)

Note that 3, 7 and 02 may all be written in terms of « and 6, using (2.52).

We shall now improve upon (2.70) by, successively, removing the conditioning on g,
a and 6. We write m(z|y) for the generic density of one variable  conditioned on another
variable y where the variables x and y will be different from one usage to the next.

To remove the conditioning on 3, we write

w(a0/Z.0,6) = [ 7(z0]2. 5,00, 0)n(8|. 2, 0)d (2.71)

where the first factor inside the integral is given by (2.70) and the second derived from
(2.44). Note that it follows from (2.44) that the posterior distribution of g3, given Z, «

and 6, is multivariate normal with mean ,B\ = ,E (0) (i.e. the GLS estimator of S given the
covariance matrix V(6)), and covariance matrix a(XTV(0)~1X)~1. Combining this with
(2.70), we find that the conditional distribution of zy given o and 6 is multivariate normal

with mean R
20(0) = (xg — XTI+ Tn"17

N (2.72)
= (o — X"V (0)'w(0)"B+w(0)"V () Z
and covariance matrix
(o — XTSI (XTS T X) o - XTE ) + oo -7 X7
= af(zo — XTV(O) 'w@))T(XTV(0)'X) Y zo — XTV(0)  w(h)) (2.73)

+uo(0) = 7TV (0) "7}
=alp(0) say.
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The next step is to remove the conditioning on «. Similarly to (2.71), we have
(20|12, 0) = / (20|12, @, 0)7(0| Z, 0) dar. (2.74)

The posterior distribution of a, given Z and 6, may be obtained from (2.45): the result is
that G?(0)/a has a x_, distribution. Define

Then with slight abuse of notation, we have

~ n—q
(| Z,0) ~ a(f) —5—-
n—gq
Conditionally on Z and 6, we then have
20—20(9) _ 20—20(9) . (6
Vadve®@)  Jave(@) V@)
1
~ NGO (2.75)
Xn—q/ (= q)

~tn_g

since the numerator and denominator in (2.75) are conditionally independent given Z and

6.

The final result agrees with equation (3.1) of Handcock and Stein (1993), except
that they have a factor n/(n — ¢) multiplying @(#), which results from a slightly different
definition of the latter quantity.

Finally, following Handcock and Stein, we integrate over 6 to obtain
(z0|7) = / (20|12, 0)r (6] 2)d0 (2.76)

where the first factor in the integrand is determined by (2.48) and the second by (2.46).
This part has to be carried out numerically, but should be straightforward since for most
models of interest the dimension of 6 is 2 or at most 3. Handcock and Stein give several
examples.

An aside: Besag’s candidate’s formula

An interesting alternative version of (2.76) is the formula

m(20|2,0)7(0|Z)

m(2012) = (020, Z)

(2.77)
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given by Besag (1989), allegedly based on a student’s answer to an examination question.
Note that in (2.77), 6 is fixed (and arbitrary) — there is no integration in this formula, at
least not explicitly.

The derivation of (2.77) is an immediate consequence of the fact that
(20| Z)7w (0|20, Z) and 7(20|z,0)7(0|2)

are each equal to the joint density of zy and 6, conditional on Z. The formula is likely to
be especially useful when 7(6|Z) and m (6|29, Z) can each be calculated analytically, e.g.
as the result of a conjugate prior calculation. This is rarely the case in spatial statistics,
and in practice (2.77) does require numerical integration with respect to 6, to determine
the normalizing constants. It is therefore not clear whether Besag’s candidate’s formula
brings any practical benefits for kriging, but the formula seems worth knowing about.

2.4.4. Prediction at multiple sites

The formulae (2.63) and (2.64) are very easily extended to multiple sites. For example,
if 54, Sp, ..., 84 are several sites for prediction with associated covariate vectors z,, z, ..., Z4
and covariances 7y, ..., Tq, Oaa, ---, 0qq defined by analogy with (2.62), then the optimal pre-
dictor of

CaZa + Co2p + ... + Cq2y,

where zg, ..., 2, are the unobserved values of the process at sq,...,s, and c,,...,c, are
arbitrary scalars, is
T
(Ca)\a + cpAp + ... Cq)\q) A

with Ag, ... given by an obvious extension of (2.63). The prediction variance is obtained as
the sum of terms of the form

CaChCOV(2zg — AZZ, 2y — AgZ)
with (a, b) ranging over all possible pairs of indices and the covariances given by (2.64).

The extension to predicting quantities of form

mm:[k@@,

where A is some subset of the observation space, should now be clear. The point predictor
is

zm:Aam& (2.78)

where Z(s) is the predictor at the site s, and the prediction error variance is
B((Z(4) - 2"} = [ [ Blla(s) - 250 }Helo0) — 2o Vsadsa, (270)
AJA
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where the individual covariance terms are derived from (2.64).

These calculations have been presented for the most commonly analyzed scenario in
which g is unknown and « and 6 are known. The case where all three parameters are
unknown is, at the present time, probably best handled by Bayesian techniques, where
the required generalizations from the case where 3 alone is unknown to where all the
parameters are unknown follows as in section 2.4.3.

2.4.5. Frequentist corrections for unknown covariance structure

Let us now revert to the frequentist viewpoint and consider various strategies that
may be adopted for the case when 6 is unknown.

As already pointed out, when 6 is known, the predictor zy(f) defined by (2.72) is the
best linear unbiased predictor of zy, with mean squared prediction error m(f) given by
(2.73). For the purpose of the present discussion, in the case that « is also unknown we
absorb it into 6.

When 6 is unknown and estimated by 0 , using any of the estimation methods we have
discussed, the obvious strategy is to use Zp (9) as a predictor of zy and to cite m(f) as its
MSPE. This suffers from the objection that m(9) makes no allowance for the discrepancy
between 0 and 0 and may therefore be expected to underestimate the true MSPE. There
are essentially three strategies one can adopt in response to this objection,

(i) Ignore it, i.e. use Z(f) as the predictor of zy and m(f) as the MSPE even when 6
is unknown,

(i) Estimate the discrepancy between m(8) and the true MSPE, and use that to derive
a corrected MSPE,

(iii) Adopt the Bayesian procedure (2.76) or (2.77) in the hope that it will have good
properties from a frequentist as well as Bayesian point of view.

Strategies of the form (ii) have been considered by a number of authors, in particular
Prasad and Rao (1990) and Harville and Jeske (1992) in the case of variance components
models, and by Zimmerman and Cressie (1992) in the (more general) cases arising from
spatial covariance matrices. The main approximations can be viewed as variants of the
delta method, but there are many such variants and no clear-cut guidelines as to which
performs best. The following discussion is intended to do no more than present the main
outlines of the arguments; for details we must refer to the original papers.

Suppose e; = zp(f) — zp is the prediction error using the optimal predictor when 6

is known, and let e; = 29(0) — z0(6) denote the additional prediction error arising from 6
being unknown. We shall assume all distributions are multivariate normal. A very general
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argument for these kinds of models shows that e; is independent of the current observation
vector Z, and hence of e; (which is a function of Z). It follows at once that

~

E{(20(0) — 20)*} = B{(e1 + €2)} > E{ef} = m(9),

so that m(#) is indeed an underestimate of the true MSPE when 6 is unknown. Moreover,
if we approximate

e~ (6 —0)TVz(0)

(with V denoting gradient) and apply the same argument a second time, we deduce

Var{es} ~ E[VZ,(0)T (6 — 6)(6 — 6)TVzy(8)]
= E[tr{VZ(0)" (0 - 0)(0 — 0)TV25(0)}]
= E[tr{(6 — 0)(@ — 0)"VZ(0)VZo(0)T}]
= tr[Cov{8} - Cov{V7y(6)}]

where in the middle of this argument we used the matrix identity tr(AB) = tr(BA).
Therefore, it appears that we ought to estimate the mean squared prediction error by

Var{Zy(0)} ~ m(8) + tr[Cov{B} - Cov{Vzy(6)}] (2.80)

~

and this will improve on the crude approximation m(#).

Harville and Jeske (1992), extending the earlier argument given by Prasad and Rao
(1990), argued that even (2.80) is not the final answer, because although (2.80) adjusts for
the difference between m(f) and the true MSPE, there is an additional bias corresponding
to the fact that m(6) typically underestimates m(6). This additional bias turns out to be
asymptotically equivalent to the bias in (2.80) itself, so an improved approximation is to
double the correction term:

Var{Zo(0)} ~ m(0) + 2 tr[Cov{f} - Cov{VZy(0)}]. (2.81)

Zimmerman and Cressie (1992) cited this result and a series of conditions required for
its asymptotic validity, but they were cautious about recommending its use in practice.
A general conclusion which they reached was that when spatial correlation is weak the

improved approximations to the MSPE can indeed improve substantially on m(6), but

when spatial correlation is strong it is often preferable to use m(f) as the estimator of
MSPE.

The third strategy mentioned at the beginning of this subsection is to continue to use
the Bayesian solution in the belief that Bayesian predictive distributions also have good
frequentist properties. At the present time, there is a growing literature on the use of
second-order asymptotic theory to improve upon naive predictive distributions, but none
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of this literature so far has derived specific solutions to problems involving unknown co-
variance matrices. General references include Komaki (1996) and Smith (1997), who have
explicitly considered Bayesian predictive procedures as a means of obtaining predictive dis-
tributions with good frequentist properties, and Barndorff-Nielsen and Cox (1996), whose
approach is not at all Bayesian. An early example of the kind of result showing that
a Bayesian predictive procedure may improve on a simple estimative procedure was the
paper of Aitchison (1975). Based on the results of Komaki and Smith, one can say that
there is good reason to believe that some form of Bayesian solution will provide a good
solution to the problem, but the results may well be sensitive to the specification of the
prior distribution and also to the loss function. Detailed examination of these issues in the
context of spatial prediction would appear to be an important area for future research.

2.4.6. Model misspecification in kriging

Some of the other issues involved in applying kriging, and some other approaches to
issues that we have discussed, will be reviewed briefly here, without detailed discussion.

We have given detailed attention to the estimation of covariance structure and how
either Bayesian or frequentist prediction intervals should be modified to take account of
this structure being estimated. A somewhat simpler approach is to act as if the covariance
structure was known, but to develop a sensitivity analysis to the misspecification of co-
variance structure. This approach was taken by Warnes (1986). Using Taylor expansions
of covariance matrices and their inverses, he developed first-order approximations to the
error in universal kriging when a parameter of the covariance model is misspecified. As
examples he worked out the consequences of this for the exponential and Gaussian models,
using the data of Table 2.7 (without any trend in the model) as illustration. His results
imply that the Gaussian model is much more sensitive to misspecification than the expo-
nential model though it was not clear from his discussion to what extent this was a feature
of that particular data set.

An earlier paper to take a “perturbation approach” to this problem was Diamond and
Armstrong (1984). They examined the properties of kriging procedures under assumptions
of the form 1 —§ < g(h)/v(h) < 1+ for all t, where «(h) is the true semivariogram
at distance h and g(h) is the semivariogram assumed by the analyst. Using numerical
analysis methods, they showed that if I' is the n x n matrix with entries y(s; — s;), where
S1, ..., Sp are the sampling points, then the relative error in the kriging coefficients may be
bounded by an expression which depends only on ¢ and the condition number of I'. They
gave corresponding expressions for the change in the prediction variance resulting from
misspecification of v, and also considered the effects of misspecifying the sampling points
{s;}, and misspecifying the regression component in universal kriging.

A quite different approach to the whole question of kriging with misspecified covari-
ances has been taken in several papers of M. Stein, see e.g. Stein (1987, 1988), Stein
and Handcock (1989). Stein has considered the whole problem from the point of view
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of “infill asymptotics”, i.e. assume the domain of observation is fixed but the number of
observations increases so as to fill up the domain in a dense way.

As an example of this approach, consider the paper Stein (1987). Stein considered a
one-dimensional model with the variogram

1
v(t;0) = 01t + 05t — 51t2). (2.82)

Stein considered this model using the MINQE method of estimation which was described
in subsection 2.2.7.

Considering the case in which n observations are equally spaced over the interval
[0,1], Stein showed that the estimates 6; and 5 are not consistent as n — oo, but the
combination 51 + 52 is consistent as an estimator of 1 + 5. He interpreted this by noting
that 6; + 62 is the gradient of y(¢) at ¢ = 0, i.e. the local behavior of v(t) near t = 0
is successfully estimated by this procedure, but the global behavior with ¢ # 0 is not.
However, he also argued that for kriging purposes, i.e. for estimating Z(s) at some s other
than one of the sampling points 0,1/(n — 1),...,1, the local behavior of the variogram
near t = 0 is what matters, and we do get asymptotically efficient predictors based on the
estimated 6; and 6.

Stein (1988) showed that this was part of a general phenomenon in which the re-
quired property was compatibility of the assumed and true variograms. That is to say, if
the two variograms are compatible then kriging based on the assumed variogram will be
asymptotically efficient under infill asymptotics.

In more detail, suppose we observe a spatial process on a bounded region R C R¢
and let C(s,t), s,t € R denote the covariance function. Stein defined two covariance
functions Cy(+,-) and Ci(-,-) to be compatible if the Gaussian processes with zero means
and covariance functions Cy and C'7 are mutually absolutely continuous on R. Note that
it is not required that the actual observed process be Gaussian, but the definition of
compatibility is framed in terms of a Gaussian process with the same covariance structure.
Suppose s is a fixed point in R and {s;, i = 1,2, ..., } a sequence of sampling points in R.
It is assumed that s is not a member of {s;} but that it is a limit point of {s;}. Let e;(INV)
(1 = 0,1) denote the prediction error at s of the optimal kriging predictor derived under
the covariance function C;, and let Vj(-) denote the variance of a random quantity under
the true covariance function Cy. Note that, since the optimal kriging predictors are linear
functions of the data points, Vy(e;(IN)) will be the same for a non-Gaussian process as it
is for a Gaussian process with the same covariance Cj.

Under all these conditions Stein’s (1988) main result (Theorem 1) is the following: if
lim Vy(eo(N)) =0,
N—oo0
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then v N
i Voleo(V))
N—oo Vg(el(N))
In words, assuming compatibility, the kriging predictor derived under the incorrect covari-

ance function C; will be asymptotically efficient relative to that derived under the correct
function CY.

= 1.

Precise conditions required to ensure compatibility are not easy to specify, but loosely
it requires that Cy(s,t) and Ci(s,t) behave similarly as ¢t — s. For example, suppose we
have a stationary process in one dimension, and the covariance function Cy is 2m times
continuously differentiable on a region [0,7] for some T' > 0, and C’é2m+1)(0—|—) #0. A
necessary though not always sufficient condition for another stationary covariance Ci(-) to
be compatible with Cy(-) is that C7 is also 2m times continuously differentiable on [0, T
and C’éZmH)(O—}-) = C£2m+1)(0+). For example, Cy(t) = Age~ [t/ and Cy(t) = AjeIt/M
are compatible: in this case m = 0 and C((0+) = C1(04+) = —1. This example was given
by Stein and Handcock (1989), who remarked that similar conditions also apply in higher
dimensions.

Using the notion of compatibility, Stein and Handcock (1989) argued against the
spherical variogram function on the grounds that it is incompatible with the exponential
variogram function — even though the parameters may be chosen so that the first-order
derivatives of the two variograms agree at the origin, this is insufficient for compatibility.
They also argued that compatibility explains the results of Warnes (1986). Two exponen-
tial variograms with different ranges may be made compatible with appropriate choices
of the scale parameters. However, this is not true for the Gaussian variogram. Thus a
Gaussian variogram with misspecified range parameter cannot give efficient kriging merely
by adjusting the scale parameter. However, it is also clear (because the orders of differ-
entiability at the origin are different) that the Gaussian and exponential variograms are
never compatible with each other.

These results of Stein and his co-authors should be contrasted with the more tradi-
tional results based on increasing domain asymptotics, in which the size of the sampling
region is assumed to increase as the sample size tends to co. This was the form of asymp-
totics used, for example, in our discussion of the approximate WLS procedure in section
subsection 2.2.3, and for Mardia and Marshall’s (1984) proof of the asymptotic properties
of MLE, which we mentioned in subsection 2.2.4. Which kind of asymptotics are really
appropriate is still a matter for debate. The increasing domain asymptotics certainly give
results which are more compatible with traditional asymptotic theory; on the other hand,
Stein and others have argued that infill asymptotics are a more realistic representation of
actual sampling procedures. Probably there is no ultimate resolution of this argument,
but the user of either kind of asymptotics needs to be aware of the kinds of assumptions
that are being made to justify the procedures.

Zimmerman and Zimmerman (1991) compared several estimators and corresponding
kriging predictors in a Monte Carlo study. They assumed one of two basic variogram
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models — linear and exponential — and considered seven estimators, including Cressie’s
WLS estimators based on both the method of moments and robust estimates of variogram,
the OLS estimate based on the method of moments variogram, and ML and REML. They
concluded, broadly, that the OLS or either version of WLS estimator perform, in practice,
just as well as the more computationally demanding ML. and REML. However, all their
Monte Carlo results are based on Gaussian processes and there are certainly questions to
be asked about the extent of applicability of their results.

2.4.7. Median polish kriging

This is a quite different approach to the whole subject. Instead of attempting “opti-
mal” reconstruction of an unobserved stochastic process, this method is based on robustly
reconstructing an irregular surface. The account given here is adapted from Cressie (1993),
pages 183-194.

The basic idea is to write the process in the form

Z(s) = p(s) +n(s),

with g and unknown mean function which is assumed to be of form

w(z,y) =a+r(x)+ c(y) (2.83)

writing s = (z,y) in terms of its coordinates. The key point of (2.83) is additivity, which
may not always be appropriate since this property is not invariant under rotations.

Consider first the case where data lie on a grid (not necessarily a regular grid, i.e.
the distances between the horizontal and vertical lines of the grid need not be constant).
Suppose we have data {Yie, 1 <k <p, 1 < /£ < ¢} with mean function pg, = a + 1, + ¢4
with the constants {ry} and {c,;} arbitrary except for a normalizing condition (either the
mean or the median of each set of constants must be 0). The main idea is that of median
polish analysis of variance, originally proposed by John Tukey as a means of robust analysis
of a two-way table.

To get an idea of this, let us first quickly review standard (least squares) ANOVA.
The estimates are a =Y., 7, = Y. — Y., & = Yy — Y.., where as usual the dot represents
averages over the missing components. This may be easily observed to have the following
property: if we define residuals

Rig =Y —a—T7,—Cp
=Y Y. - Y, +Y.,

then the mean residuals over rows and columns are zero:

1 1
- E Ryy = 0 for each £, - E Ry = 0 for each k. (2.84)
b q

k ¢

98



Median polish kriging attempts to replace (2.84) by the property that the row and
column medians (rather than means) of the residuals are zero. More precisely, we seek
estimators a, 7y, ¢y such that

medy(Yge — @ — 7, — &¢) = 0 for each k, (2.85)
medk(Ykg —a— Fk — 53) = 0 for each /. )

The algorithm that achieves this is the following. We create a (p+ 1) x (¢+ 1) matrix
Y ®) where the first p rows and ¢ columns contain the current estimates of the residuals
at the ¢’th iteration, the first p entries of the last column contain the current estimates of
the ri’s, the first ¢ entries of the last row contain the current estimates of the ¢;’s, and
the (p +1,¢+ 1) entry contains a. The initial values are Yk(?) =Y if k<pand/ <gq,
otherwise 0.

For i odd, for each k € {1,2,...,p+ 1}, we define

Yk(ei) = Yk(z_l) — med{Yk(z,_l), 1</ <gq},

Vi =Y+ med{v§Y, 1< 0 < g}

For i even, for each £ € {1,2,...,q+ 1}, we define

Vi) =Y — med{Yiy Y, 1<K <p},

Yot =Ypirs + med{yi, V1<K <p}.

Thus on an odd iteration, we adjust all the rows (including the last one) so that the
median residuals are all zero, then on an even iteration, we similarly adjust all the columns.
This process continues until convergence, or until the change from one iteration to the next
is no greater than some specified very small number e. The latter criterion is the usual
one adopted in practice and usually reaches its conclusion after only a few iterations. For
example, the Splus function twoway, with trim=0.5 to select medians (the default), works

in precisely this way. At the end, a is the final value of };(?17 ¢+15 Tk is the final value of

Yk(zg 410 and ¢ is the final value of Y;i)l ;- The whole routine works in exactly the same
way in circumstances under which there may be more than one observations corresponding

to each (k,£) combination, or if there are missing observations.

Properties of the algorithm

Does it converge in a finite number of steps? Not necessarily, but it does if two
modifications are made. First, we must assume that all the data are recorded to finite

precision — of course this will always be satisfied in practice. The second condition is
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related to the definition of the median of an even number of observations. Usually, the
mean of 2m ordered data points 27 < ... < Zg,, is defined to be (z,, + Z;11)/2. Under
this definition, the algorithm may not converge. However, if the median is unambiguously
defined to be either z,, or z,,+1, then it does converge in a finite number of steps. In
practice, as already remarked, we take the usual definition of the median and impose an
e-stopping criterion.

A second question concerns the properties of the solution. The median of n univariate
observations 1, ..., 2, may be defined as the value of a that minimizes ), |z; — a|. The
analogous property that we might expect of the median polish kriging estimators a, {7}
and {¢,} is that they minimize the L; criterion

2.2 Wi —a—ri—cl
k £

over all choices of a, {r} and {cg}. It appears that in most cases, but not all, this condition
is indeed achieved.

References for this section are Fink (1978) for convergence, Kemperman (1984) and
Sposito (1987) for the equivalence between the median polish and L; minimzation criteria.

Use of median polish for spatial trend estimation

Suppose the data points do indeed lie on a rectangular grid. The median polish
algorithm will estimate the trend at each grid point. This is then extended to a complete
surface reconstruction by linear interpolation within grid cells.

Now consider the more common case in which the data points do not lie on an exact
grid. This is usually handled by means of a low-resolution map, i.e. we place a grid over
the observations such that there is approximately one observation per grid cell. We then
apply the median polish algorithm with each data point identified with the nearest point
of the grid. As noted above, the algorithm can handle multiple or missing data points, so
it is not necessary that there be exactly one data point for each grid cell.

Usually, construction of the median polish surface is followed by ordinary kriging of
the residuals. The residuals may still be expected to be spatially correlated, but with
the large-scale variability absorbed by the median polish, one would expect them to fit a
stationary, and in many cases isotropic, model much more easily than the original data.
The reconstructed residual surface is then added to the median polish trend to obtain the
predicted surface corresponding to the original data.

One point should be noted in connection with this, when the data do not fall on a
regular grid. In constructing the residual associated with a data point (x,y), it is important
to use the estimated trend at the point (z,y), which is constructed by linear interpolation
between the grid points, rather than the trend at the grid point to which (z, y) is associated.
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By doing this, after kriging the residuals and reconstructing the original surface, the final
answer will be an interpolator, i.e. a surface which goes exactly through all the observed
data points. This is a property of ordinary or universal kriging and is usually considered
desirable.

Bias reduction in the estimated variogram

One further point is made in favor of median polish kriging: that covariances calculated
from data that are centered by median polishing may be less biased than those from data
centered by mean polishing. Cressie and Glonek (1984) gave some specific calculations
justifying this assertion in the case of one-dimensional data.

2.5 Hierachical Models for Trends

In this section we consider a generalization of the kriging problem, which arises in
numerous contexts when combining spatial data analysis with some other form of analysis
such as a regression of the data at each station against some covariates relevant to that
station. Examples include:

(i) The data analyses of chapter 1, and specifically the calculations leading to Figs.
1.7-1.10, in which a time trend was measured at each meteorological station, but no
attempt was made to smoothe the results by combining data from different stations. It
seems reasonable to assume, however, that any variations in the trend will occur smoothly
over space, so the question arises of how best to construct a smoothed surface.

(ii) A different example has arisen in connection with the analysis of SO, data from
the EPA’s CASTNET network (Holland et al. 2000). Weekly records of SO have been
collected at each of 35 stations in the eastern USA, along with associated meteorological
records (principally temperature and precipitation). At each station, it has been possible
to fit a regression model to express log SO, as a function of meteorology, long-term trend
and an irregular annual seasonal effect. Both linear regression and GAM (Hastie and
Tibshirani 1990) procedures have been used for this. As a result, it has been possible to
compute an estimate of the adjusted SO, trend at each station, along with its standard
error. The trends are negative across the region, but are strongest in the midwest region
of the United States, i.e. the western portion of the region under study. However, in many
contexts one would like to be able to report a regional trend — the averaged trend over
some specified region of the map. The question therefore arises of how best to smoothe
the trend estimates at individual stations, and to interpolate between stations.

In both of these contexts, we may assume there is some smooth underlying (but
unobserved) field Z(s), where Z(s) measures the “true” trend at location s. At station s;

we make an observation Z(s;), corresponding to the estimated trend at this station, after
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performing some kind of regression analysis. Thus our underlying point of view is that the
regression procedure amounts to measuring the true trend with error. We will write

Z(s;) = Z(s;) + ¢; (2.86)

where e; ~ N (0,032) represents the error in the regression analysis. For o, we shall in
practice use the standard error obtained from the regression procedure, though in the
discussion to follow we shall treat this as known, ignoring the fact that in practice o; is
itself estimated from the residuals of the fitted model.

Concerning the process Z = {Z(s;), j = 1,...,n}, we adopt the standard universal
kriging assumptions from (2.30), in other words

Z=XB+n, (2.87)

where X 3 represents a spatial regression component and 7 a vector of spatially correlated
errors, assumed to have a normal distribution with mean 0 and covariance matrix oV (),
with individual entries av(s;, s;;6), specified in terms of a scaling constant o and a finite-
dimensional parameter 6.

In this model, n represents a vector of perturbations in the unobserved spatial field
7/, whereas e, ..., e, have the role of measurement errors. Since they represent completely
different sources of variation they may be treated as independent, so henceforth we make
that assumption. It is less clear that eq,...,e, may be treated as independent of one
another, but for the moment we shall make that assumption as well.

The model defined by (2.86)—(2.87) is of hierarchical structure, with the “state equa-
tion” (2.87) representing the hypothesized true state of nature and the “measurement
equation” (2.86) generating the observations Z (sj) as a function of the state of nature.
More general forms of hierarchical model would require the use of special filtering tech-
niques (such as Markov chain Monte Carlo algorithms) to reconstruct an estimate of the
true surface Z, but in the present case, with both parts of the model being assumed
Gaussian, it is possible to take a direct approach via kriging.

Combining (2.86) and (2.87) into one equation, we have
Z ~ N(XB,aV(0) + W) (2.88)

where W is the diagonal matrix with entries o2, ...,02. The parameters o, 8 and 6 may
therefore be estimated via any of the methods used in section 2.2, for instance a maxiimum
likelihood or REML procedure. Note, however, that the form of the log likelihood must
be based on (2.36), or (2.39) in the case of REML estimation, with aV (#) replaced by
aV(0) + W. The analytic maximization with respect to «, which leads to (2.37) or (2.40)
is not available in this case.
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Once 0 has been estimated, one can estimate the surface Z, at both monitored and un-
monitored sites, by standard kriging, after noting that Cov{Z(s), Z(s;)} is just v(s, s;;0).

In introducing the above we noted that the assumption that the measurement errors
are uncorrelated from site to site may not be justified, since this amounts to an assump-
tion of no spatial correlation between individual measurements. This assumption may be
removed if we replace the diagonal matrix W by a general covariance matrix, representing
the (assumed known) covariances of all of ey, ..., e,. For the case of the temperature data
sets, W is easy to estimate, because the trend estimates have been obtained from simple
linear regression over a fixed time period at each station, so the correlations between esti-
mates Z(s;), Z(s;) is the same as the correlation of the raw data at stations s; and s;. In
the case of the SO4 regressions, the correlations are not so easy to characterize given the
more complicated form of regression analysis. However, Holland et al. (2000) proposed a
jackknife procedure to estimate correlations between estimates from different series, and
these correlations have been used in the discussion to follow.

In estimating and comparing different models, a number of different features have
been considered,

(a) Five forms of covariance function V(f) — exponential, Gaussian, wave, spherical
and Matérn,

(b) Option to include or exclude a nugget term (note that the measurement error
variances {032-} themselves have the interpretation of nugget effects but the general program
includes the possibility of estimating an additional nugget effect in V),

(¢) Polynomial terms up to fourth order modelled using the X 3 regression component,

(d) An additional option was included to permit the simplest form of anisotropic
model, geometric anisotropy as given by (2.3). In this case there is no loss of generality in
taking the transformation matrix A to be of the form

A= Dcos ¢ Dsin ¢
“ \-D7lsing D lcos¢

corresponding to rotation through an angle ¢ followed by expansion of one axis by D
together with compression of the perpendicular axis by D~!. The resulting covariance
function has elliptical contours; see for example Fig. 2.16 when the circular contours for
D =1 are contrasted with a typical case in which D > 1.

As an illustration of these methods, we consider the temperature trends example (i).
The raw data consist of the slopes of estimated linear trends, along with their standard
errors, fitted to 32 years (1965-1996) of winter mean daily minimum temperatures, at 182
stations in the continental USA. This data set has already been considered in Chapter 1.
In particular, Fig. 1.8(a) depicts the estimated trends, and Fig. 1.8 (b) the associated t
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statistics, where a coding was used of A to indicate the top sextile of values, B the next
sextile, and so on down to F. The range of estimated values runs from —.294 to +.288
(degrees F per year) and an alternative plot, shown in Fig. 2.17(a) to follow, shows the
values arranged in 10 equal intervals — plotted as 0 for a value between —.294 and —.236,
1 for a value between —.236 and —178, and so on up to 9 for a value between .230 and
.288. The same scale is used for the smoothed values in Fig. 2.17(b). In the following
discussion, we explain the procedure by which the smoothed values are produced.

(a) D=1, phi=0 (b) D=1.5, phi=pi/6

f \
-\
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Fig. 2.16. Contour plots for isotropic and geometrically anisotropic covariance functions.
(a) Isotropic case, D = 1. (b) Anisotropic case, D = 1.5, ¢ = %.

A variety of models was fitted by maximum likelihood, the negative log likelihood
(NLLH) values being given in Table 2.8. All these models are based on the Gaussian
covariance function after an earlier fit based on the Matérn covariance function has resulted
in 03 > 50, at which the algorithm used to evaluate the Matérn covariance function defaults
to the Gaussian form (recall that the Gaussian form arises in the limit as #3 — co0). The
model was based on the version of the model which does not use sample correlations
between stations, i.e. equation (2.88) with W the diagonal matrix of standard errors in
the linear regression equation. The model was tested for a nugget effect, but none was
found. Specifically, when a parameter ¢ representing the nugget:sill ratio was included in
the model, the value of ¢ quickly converged to 0, indicating lack of significance. The model
was also tested for geometric anisotropy, using the two-parameter transformation described
under (d) above, and with this the results were inconclusive. The main geometrically
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anisotropic model to be included in this comparison is indicated as GA in Table 2.8.

Likelihood ratio tests based on the fitted NLLH values indicate that a cubic spatial
trend is the most appropriate for this data set. For example, in testing the quadratic trend
(degree 2) against no trend (degree 0), the likelihood ratio test statistic is T = 2x (411.59—
404.56) = 14.06 with 8-3=5 degrees of freedom, which is statistically significant when
compared against the asymptotic x2 distribution which applies to the null distribution of
this test statistic. The P value is .015. A further test of degree 2 as the null hypothesis
and degree 3 as the alternative yields T = 14.14, 4 degrees of freedom, P value .007,
which is statistically significant. However testing degree 3 as the null against degree 4 as
the alternative yields T' = 6.4, 5 degrees of freedom, P=.27, not statistically significant.
Regarding the GA model with degree 3, testing this against the isotropic model of degree 3
results in T' = 5.5, 2 degrees of freedom, P value .064, which one may regard as borderline
— not significant at the .05 level, but perhaps worth computing so as to compare the
results with those of the isotropic model.

Degree of Number of NLLH
Polynomial Trend Parameters

0 3 —404.56
1 5 —-405.80
2 8 —411.59
3 12 -418.46
3 GA 14 —421.21
4 17 —421.66

Table 2.8. Comparison of model fits for temperature trends data

When the smoothed estimates of trends at individual stations are computed, they are
indeed much smoother than the original estimates, as is shown in Fig. 2.17 (b). As an
example, consider the station at Trenton, Missouri, marked 0 in Fig. 2.17(a). At this point,
our original estimate of trend was —.294 with standard error .138, based on 22 years’ data
at this station (1965-1986). After smoothing, the estimate is .079, prediction standard
error .020, coded as 6 on Fig. 2.17(b). The changes are not so dramatic at most other
stations, but in general there is a much higher spatial coherence between estimates in Fig.
2.17(b) than there is in Fig. 2.17(a). These comparisons are based on the isotropic model
with cubic trend.

In Fig. 2.18(a), a contour plot is shown for trends across the United States, with
prediction standard errors in Fig. 2.18(b). The corresponding plots are shown in Fig. 2.19
for the geometrically anisotropic version of the model. The two plots are quite similar, and
show that the strongest positive trends are in the northern midwest region of the country,
with much of the rest at near 0 trend, and a slight negative trend in the south-east.
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Trends in Winter Mean Daily Minima

(a) Unsmoothed trends

(b) Smoothed trends

Fig. 2.17. Unsmoothed (top plot) and smoothed (bottom plot) spatial trends for tem-
perature data set. The estimates have been mapped to a common scale and coded as 0—9
to correspond to equal deciles of the range of values.
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Fig. 2.18. Contour plots for smoothed spatial trends of meteorological data and standard
errors based on isotropic model with Gaussian covariance model and cubic trend
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Fig. 2.19. Contour plots for smoothed spatial trends of meteorological data and standard
errors based on geometrically anisotropic model with Gaussian covariance model and cubic
trend
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Fig. 2.20. Contour plots for smoothed spatial trends of meteorological data and standard
errors based on isotropic model with Matérn covariance model and cubic trend, including
correlations of measurement errors
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Fig. 2.21. Contour plots for smoothed spatial trends of meteorological data and standard
errors based on geometrically anisotropic model with Matérn covariance model and cubic
trend, including correlations of measurement errors
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Fig. 2.23. Same as Fig. 2.22, but with non-diagonal W matrix
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What happens when the diagonal matrix W in (2.88) is replaced by a non-diagonal
matrix, corresponding to the full covariance matrix of errors in the regression analysis? In
this case W is easy to estimate, since all of the regression estimates are linear combinations
of the original observations with the same weights at each station, so the correlations within
the W matrix are the same as the raw spatial correlations among residuals at each station.

When the model is fitted in this way, using a Matérn covariance structure, we again
find that a cubic trend is appropriate, but the estimated Matérn shape parameter 05 is
quite different — about 0.20, as shown in Table 2.9. This is based on an isotropic model;
for the geometrically anisotropic version, 65 is even smaller, about 0.12. In this case, the
difference between the isotropic and anisotropic forms is not statistically significant as
judged by the NLLH values, but the NLLH values are significantly different from those
in Table 2.8, in other words, including the correlations in the W matrix has apparently
improved the fit of the model to the data.

Parameter Isotropic Anisotropic

Estimate S.E. Estimate S.E.
log -5.82 0.14 -5.82 0.14
01 0.74 0.40 1.37 1.82
log D — — 1.48 0.64
0] — — -.95 0.04
02 0.20 0.18 0.12 0.12
NLLH -423.24 -424.94

Table 2.9. Parameter estimates for two model fits to temperature trends data with
correlations of measurement errors.

Contour plots in Figs. 2.20 and 2.21 show that the broad shape of the reconstructed
surface is similar to the reconstructions in Fig. 2.18 and 2.19, but is noticably more
irregular (especially in Fig. 2.19). An alternative way of representing the contour plots in
Figs. 2.18-2.21 is as a surface (perspective) plot, and this is shown in Figs. 2.22 and 2.23
(reconstructed surface only; not the standard errors). This confirms that the overall shape
of the reconstructed surface is the same for all four models, but it becomes successively
more irregular as additional parameters are added to the model.

At this stage, we do not have a clear view of which is the best model among those
considered. Given the statistically significant differences between the model fits in Tables
2.8 and 2.9, it would appear that including the non-diagonal W matrix improves the fit, but
at the cost of a much more irregular reconstructed surface (which may be right, but which
is certainly harder to interpret). Given that the entries of the W matrix were estimated
simply by calculating pairwise correlations among the trend estimates from the original
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data series, rather than by fitting any smoothed parametric model, it is possible that the
lack of smoothness arises from the estimation of W. On this basis, it is not clear that
including the non-diagonal entries of W really is an improvement. However, on the basis
of the estimates given, we conclude that the non-diagonal W matrix does improve the fit
but that in this case, the isotropic model for Z suffices, in other words, the best predictions
among those considered are those in Fig. 2.20 and the top plot of Fig. 2.23.

Our final example in this chapter is concerned with trend modeling of atmospheric
sulfur dioxide (SO3) concentrations (Holland et al. 2000). The need to monitor trends in
SO, arose from the Clean Air Act Amendments of 1990, which mandated reductions on
SO4 emissions — as a result of this act, emissions by 2010 are projected to be down to 9
million tons per year, compared to an estimated 19 million tons per year which would have
occurred without regulation. To monitor this, EPA has set up CASTNET, a network of
35 stations in the eastern United States, which are deliberately set in rural locations, away
from major population centers and known emissions sources. This is to avoid the effects
of purely local influences on the measured concentrations.

The analysis of Holland et al. (2000) proceeded in two stages: first, the estimation of
a trend at each station, and second, the combination of single-station trends into spatial
estimates and regional averages. The second stage employed spatial analysis and will
therefore be our main concern here, but we briefly describe the first stage to provide
relevant background information.

The measured concentration of SO, is known to vary seasonally and also to be in-
fluenced by meteorological factors, in particular, temperature and the wind speed and
direction. To adjust for these factors, a generalized additive model (GAM) was fitted, as
follows: for week 4 in year j at station £, the SOy level S;;, satisfies

log Sije = pe + 91,0(ws) + 92,0(Yij) + 93,6(tij1) + 94,0(wije, vije) + €ije, (2.89)

where g1.¢,92.¢ and g3, are smooth functions of week w;, year y;; (measured in decimal
parts of years) and mean temperature ¢;;¢, and g4 ¢ is a smooth function of the vector mean
(wije, vije) where u and v are the mean east-west and north-south components of wind
velocity. The data points are assumed to be defined weekly since this is the frequency
of measurement of SO;. We assume the errors {¢;;} are independent normal random
variables with mean 0 and variance o7 for each station £. The model (2.89) may be fitted
using the GAM software in S-Plus and the estimated function g2 used to define a station
trend (estimated percent reduction from 1989 to 1995) for each station. The resulting
percentages, plotted at the approximate locations of the stations, are shown in Fig. 2.24.
Also shown on this plot are the three grids (midwest, mid-Atlantic and South) that will
be used subsequently for regional trend analysis.
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Fig. 2.24. Estimated downward trends (percentage decrease from 1989-1995) based on
GAM model fitted to individual stations. The superimposed grids correspond to the three
grids used for regional calculations: midwest (o), mid-Atlantic (x) and South (+).
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The GAM analysis provided a standard error for each individual trend estimate, but
it did not provide covariances between trend estimates at different stations. Because these
covariances are important in subsequent analysis, we need some means oc calculating them.
The method used was a jackknife calculation (Efron and Tibshirani 1993): for each of the
81 months of data, a pseudo-estimate for each site was computed by omitting that month’s
data and recomputing the estimates based on the remaining months. Sample variances
and covariances of the pseudo-estimates may be used to approximate the variances and
covariances of the original estimates. The method assumes there is no significant time-series
dependence within the series, but autocorrelation analysis suggests this is a reasonable
assumption.

We now turn to the second phase of the analysis: estimation of a spatial covariance
model for the assumed underlying smoothed trend Z(s), using the GAM-based estimates
to give Z(s) at each station s. A variety of models, including different forms of spatial
covariance function, different assumptions for the degree of polynomial trend (0 or 1 — no
higher-order terms were found significant) and either diagonal or non-diagonal W matrix
(the diagonal form being based on ignoring the correlations between station estimates
found by the bootstrap procedure) were fitted and are tabulated in Table 2.10. Also tried
was a geometrically anisotropic (GA) form of the model. The Matérn model was also fitted
but in every case resulted in @\2 > 50, which defaults to the Gaussian case.

Degree of W matrix Model Number of NLLH
Polynomial Trend Parameters

0 Diag. Exponential 2 87.51
0 Diag. Gaussian 2 87.00
0 Diag. Wave 2 87.25
0 Diag. Spherical 2 87.14
1 Diag. Exponential 4 87.14
1 Diag. Gaussian 4 84.64
1 Diag. Wave 4 83.88
1 Diag. Spherical 4 84.76
1 Diag. Gaussian GA 6 83.89
0 Non-diag. Gaussian 2 83.23
0 Non-diag. Gaussian GA 4 81.97
1 Non-diag. Gaussian 4 82.00
1 Non-diag. Gaussian GA 6 80.82

Table 2.10. Comparison of model fits for SO, trends data

Conclusions from Table 2.10 are (i) there is very little to choose between the four
covariance models — exponential, Gaussian, wave and spherical; (ii) there is significant
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evidence of a trend in the diagonal-W case but this is much less strong in the non-diagonal-
W case; (iii) the GA model does not appear significant compared with the isotropic model,
(iv) using NLLH as a method of comparison, it looks as though the model fit is improved
by including the off-diagonal entries of W.

As an example of the resulting trend estimates and mean squared prediction errors,
Fig. 2.25 shows contour plots of these for the model with Gaussian covariance, isotropic,
linear trend and diagonal W matrix; Fig. 2.26 shows the plots for the same model but
with non-diagonal W. The measurement stations are shown as dots on the contour plots.
In this case the distance scale used for the analysis was degrees of latitude or longitude —
unlike the earlier temperature example, the scale was not initially converted to nautical
miles. It may appear less reasonable to treat degrees of latitude and degrees of longitude
on an equal footing, but since we have tested for geometric anisotropy and found no effect,
it would appear that the distinction does not have much practical effect. In any case, it
should be noted that the estimated value of R here, measured in degrees, is quite small
relative to the total scale of the data, implying that variations in the SO4 trend are spatially
dependent only over quite small distances of the order of 1-2 degrees.

The plots both show the sharpest decline in SOy level at roughly the point where
the three states of Ohio, Pennsylvania and West Virginia come together, but the peak is
sharper in Fig. 2.26 than in Fig. 2.25 and in other respects the two plots are not exactly
the same shape. This does not provide any verification of which model is better but it does
show that the distinction between the two modeling techniques (either with or without the
covariances in the W matrix) cannot be ignored.

FEstimating regional trends

Much of the interest in this kind of analysis lies in the possibility of using the smoothed
surfaces obtained from the spatial analysis to estimate regional trends. As an example, we
consider the “regions” defined by the three sub-grids of hypothetical measurement sites
(midwest, mid-Atlantic and South) represented in Fig. 2.24.

The methodology essentially follows that of section 2.4.4: having obtained a spatially
smoothed estimate of Z(s) at each site s, the integral Z(A) over a region A is estimated
by pointwise integration as in (2.78), with a mean squared prediction error as in (2.79).
However, the integrals in (2.78) and (2.79) were for practical calculation replaced by sum-
mation over the grids shown in Fig. 2.24. Note that there has been an implicit change of
notation here: we have used Z(s) in this section as the estimated trend (from the GAM
analysis) at site s, but the Z(s) used in the integrals (2.78) and (2.79) is the predicted
(kriged) value after the spatial analysis.

117



Fig. 2.25. Contour plots for smoothed spatial trends of SO2 data and standard errors
based on isotropic model with Gaussian covariance model and linear trend; diagonal W
matrix.
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Fig. 2.26. Contour plots for smoothed spatial trends of SO2 data and standard errors
based on isotropic model with Gaussian covariance model and linear trend; non-diagonal

W matrix.
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For the model being considered here (including linear trend, and so slightly different
from the values given in Holland et al. (2000)), the estimated regional trends and mean
squared prediction errors (MSPEs) are given in Table 2.11. In this table the MSPEs are
simply the square roots of the estimated prediction variances from (2.79) — the Bayesian
versions of the calculation in columns 4 and 5 will be explained momentarily.

Region Estimated Ordinary Bayes Bayesian
Trend MSPE Trend MSPE
Midwest -38.76 2.59 -38.60 2.63
Mid-Atlantic -40.60 2.23 -40.17 2.34
South —37.62 2.97 —-36.95 3.11

Table 2.11. Regional trends and mean squared prediction errors by non-Bayesian and
Bayesian calculations

The calculations of MSPE in column 3 of Table 2.11 are based on equation (2.79),
which in turn depends on (2.64) for the covariance of predictions at two sites. However, as
noted already in section 2.4, such calculations of prediction errors do not take account of
the fact that the covariance parameters of the process are themselves unknown parameters.

In Section 2.4.3, we presented an alternative approach to the problem based on
Bayesian calculations, which had the advantage that the uncertainty of all the model
parameters (in the notation used earlier, 8, « and ) could be incorporated in a single
model. The earlier discussion was for prediction at a single site, but the concepts extend
easily to the case of multiple sites, and we shall follow them here.

Similar to the earlier Bayesian analysis, we assume a joint prior density of (3, «,6)
of the form m(0)/« (recall (2.43)) which is of improper form for 8 and « but allows for
an arbitrary prior m(#). In the present example, the only unknown parameter in the
covariance function is the range parameter, so this becomes 6. It might be natural to
assume 7(f) improper on the range 0 < 6 < oo but it has been shown that, for this
parameter, an improper prior density leads to an improper posterior. Therefore, we must
assume a proper prior density for , and Holland et al. (2000) assumed an inverse gamma
prior, IG(a,b) with density b*6—%=1e=%/¢ /T'(a) on 0 < § < 0o, a > 0, b > 0. Holland et
al. assumed a = 2, b = 1.73 where the choice a = 2 is intended to represent a reasonable
compromise between the improper case a = 0 and an over-informative prior, while b was
chosen so that the prior mean b/(a — 1) matches the estimate range from the maximum
likelihood analysis. In the present discussion we have chosen the slightly simpler values
a = b = 2, but the principle is the same. The joint posterior density of (a,6) is given by
(2.45) but with the change that the expression G?(#)/a must be replaced by

(Z - XB)T{aV(0) + W} 1(Z — XP). (2.90)
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Compare (2.35). The distinction arises from the matrix W, which was not present in
section 2.4. Because of this, we cannot integrate out a analytically, as we did in going
from (2.45) to (2.46), and must work directly with (2.45), incorporating the change just
mentioned.

Once we obtain the posterior density of («, 8) given the original data Y, say m(«, 0|Y)
the posterior density for the quantity of interest, Z(A) say, is given by

m(Z(A)|Y) = /W(Z(A)\Y, a, 0)m(a, 0Y)dadd. (2.91)

(2.91) is similar to (2.76), but adapted to the present set up.
In practice, we proceed as follows:

(i) Since it is not possible to obtain 7(a, #]Y) analytically, we proceed by a Markov
chain Monte Carlo procedure (see, for example, Gilks et al. (1996)). This yields a Monte
Carlo sample of values (uy, 0y, 1 < m < M), whose sampling distribution approximates
the posterior distribution desired.

(ii) Instead of calculating the full posterior density from (2.91), we concentrate on the
posterior mean and variance of Z(A). The posterior mean is derived from the iterated
expectation formula,

E{Z(A)} = E[E{Z(A)|, 0}], (2.92)

where the inner expectation in (2.92) is just the conditional expectation of Z(A) when
a and f are known, i.e. the standard kriging calculation, while the outer expectation
evaluates the mean of this as a function of (a,f). The inner expectation is performed
analytically but the outer expectation must be performed numerically, averaging over the
Monte Carlo sequence (Qy,0pm, 1 <m < M),

For the conditional variance of Z(A), we use the iterated expectation formula for
variances:
Var{Z(A)} = E[Var{Z(A4)|a, 0}] + Var[E{Z(A) |a, 0}], (2.93)

where again, for each of the two terms in (2.93), the inner calculation of conditional mean
or variance is performed analytically using the standard kriging formulae, but the outer
calculation is numerical. The second term of (2.93) is the additional contribution to the
prediction variance resulting from the fact that o and 0 are a priori unknown, and for this
reason, the estimated variance by this method should be larger than that based on (2.79).

In practice, it does not seem to make much difference — at least, not for this example.
The fourth and fifth columns of Table 2.11 show the posterior means and posterior standard
deviations of Z(A) using the Bayesian formulae, and they are not very much different from
the values obtained without the Bayesian calculation. The main virtue of the calculation
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in the present case is that it has shown that the neglect of parameter uncertainty in the
kriging formulae has not had a great impact on the results.

One point that should be made about this calculation is that it is still not a fully
Bayesian calculation — although we assumed prior densities for a and 6, the GAM model
estimates from the first part of the analysis are still treated as fixed. Also, we have not
made any attempt to incorporate uncertainty about the W matrix, which could be an
important part of the calculation. In view of these points, there is scope for a more
comprehensive Bayesian analysis.

To conclude this section, we return to the interest in calculating regional trends. Fig.
2.27 shows estimated regional mean trends and prediction intervals (based on estimated
mean +2 x M SPE, non-Bayesian calculation) for each of the three regions as well as the
35 stations, and each of eight possible models. The sensitivity to different model choices is
by no means negligible, though the variability between models is not excessive after taking
into account the uncertainty of the estimates as accounted for by the prediction intervals.

As far as the implications for implementation of the Clean Air Act Amendments
are concerned, Holland et al. (2000) note that the estimated reduction in atmospheric
SO; levels is much greater than the estimated reduction in all emissions, estimated from
independent EPA sources as —28%, —18% and —10% respectively for the Midwest, Mid-
Atlantic and South. However, they suggest that the discrepancy arises from the rural
location of the stations: in rural locations, the main component of SO4 arises as a result
of long-range transport from power stations, and the estimated reductions in atmospheric
SO4 are quite consistent with the estimated emissions reductions from this source.
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Fig. 2.27. Comparison of regional average predictions for eight models: A, expo-
nential covariance function, no spatial trend, diagonal W matrix; B, Gaussian covariance
function, no spatial trend, diagonal W matrix; C, exponential covariance function, linear
spatial trend, diagonal W matrix; D, Gaussian covariance function, linear spatial trend,
diagonal W matrix; E-H, as A—D but including general W matrix. Predictions are calcu-
lated for (a) overall mean of 35 stations, (b) Mid-Atlantic grid, (c) Midwest grid, (d) South
grid. In each case the mean prediction and 95% prediction error bounds (non-Bayesian
calculation) are shown for each of the eight models. The horizontal line on each plot rep-
resents the observed mean of all 35 stations (plot (a)) or of the stations lying within the
grid in question (plots (b)—(d)).
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CHAPTER 3

Nonstationary Spatial Processes

In this chapter we consider a number of different approaches to processes which are
not spatially stationary. Of course, it is not possible to give a complete categorization of
all the techniques available, as the form of model appropriate for a particular application
depends very much on the details of the application. In this chapter, we shall highlight
five techniques:

(a) Moving-window methods, in which the predictor or interpolator at a particular
location, is based on a “window” of observations centered at that location,

(b) Methods based on an eigenfunctions expansion of the covariance function,

(¢) Deformation methods, in which it is assumed that the process is stationary and
isotropic only after some nonlinear deformation of the sampling space,

(d) Bayesian methods, in which inhomogeneity is expressed in the form of the prior
distribution,

(e) Models defined in terms of kernel smoothers.

These methods are dealt with, in turn, in sections 3.1-3.5.

3.1 Moving-Window Approaches

The idea of a moving-window approach is that to fit a spatial model and to perform
kriging at a sampling location s, we should restrict ourselves to a “window” of sampling
stations close to s, within which it is reasonable to assume a homogeneous model. Thus
the method retains all the mathematical techniques of homogeneous processes, while not
assuming that homogeneity applies across the whole sampling region. As a result, it
appears to be a reasonable compromise between the methods of chapter 2, which assumed
homogeneity everywhere, and the more sophisticated models for inhomogeneous processes,
which are considered in later sections of the present chapter. The principal advocate of
this methodology has been Haas (1990, 1995, 1998).

For the present description we shall largely follow Haas (1995), who develops the
method in the context of spatio-temporal processes. However the essential ideas of the
method apply in a purely spatial context as well, as in the earlier paper Haas (1990).
Apart from including the time domain, the paper of Haas (1995) develops a number of
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ideas in more detail than in the earlier work, in particular the idea of cross-validation as a
means of choosing the window size, and this is the main reason we follow this paper here.

Specifying the model

Suppose we have spatio-temporal data Z(t,s) where ¢ denotes time and s denotes
space. Specifically, we have a sample {Z(¢;, s;)} at n time-space points {(¢;,s;), 1 < ¢ < n}.
In most environmental applications this will consist of a fixed time series of observations
at each measuring station s;, but this format is not required for the methodology.

The method requires the specification of two parameters, the time window m7 and the
sampling fraction f.. Once these parameters are specified, the window is defined as follows.
Suppose we want to predict or interpolate at a specific time ¢y and location sg. Restrict
the observations to those which lie within the time window (to — %%, ¢o + %X). Within
that window, pick out observations in order of space, i.e. first select all the observations
at the spatial location closest to sg, then those at the location second closest to sg, and so
on until a fixed number n. = nf. of observations has been selected. Prediction at (¢, so)
will be based entirely on this group of n. observations.

The next step is to consider the form of regression model suitable for both the mean
and standard deviation of Z. Haas considered a general model of the form

Z(t,s) = pult, s, B) + P (u(t, s, ) R(1, 5) (3.1)

in terms of additional functions p and 1, where p is typically a regression function of co-
variates such as meteorology, in terms of additional parameters 3, which are also estimated
separately within each window.

For model fitting and kriging, it is necessary to specify a suitable spatio-temporal
corelation structure for the residual process R(s,t), restricted to the given window. The
basic covariance model assumed by Haas is

C{R(tl, 51), R(tz, 82)} = CT(tg —_ tl)Cs(Sg —_ 81) (32)

where C denotes the temporal covariance function and Cs the spatial covariance function,
each of which has been assumed stationary within the window. For the functions Cr
and Cg, he assumed the “spherical” form of isotropic covariance structure considered
in section 2.1. In other words, the same form of covariance is assumed for both the
spatial and temporal scale, though of course the parameters may be quite different for the
two functions. In the case of the spatial component, it is possible to relax the isotropy
assumption, while still retaining stationarity, by allowing geometric anisotropy.

The product form of equation (3.2), in which the spatio-temporal covariance function
is written as a product of a function of space and a function of time, is known as the

separability assumption and is widely discussed in the context of time-space processes. It
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is an assumption which is very widely used because of its convenience, though it is often
criticized as unrealistic when applied to actual time-space data. For the moment, we shall
accept this assumption, but when we discuss time-space processes in more detail later on,
we shall examine this aspect much more critically.

One specific way in which (3.2) may fail is if the processes are strongly seasonal, so
that different correlation functions apply in different seasons. Haas discussed this aspect
specifically and proposed doing separate analyses by season when it occurs.

Once the model functions for u, ¥, Cr and Cg are parametrically specified, under
as assumption of joint normality, we could in principle estimate the model by maximum
likelihood. Haas avoided this but instead described an algorithm including first OLS and
later GLS regression to estimate the parameters of p and v, along with the approximate
WLS procedure to estimate the parameters of Cr and Cg. We shall not describe the
algorithm but instead refer to Haas’ paper for the details. All the estimation is restricted
to observations within the space-time window about (o, so).

Finally, once the model is fitted, kriging formulae as in section 2.4 are used to calculate
an optimal predictor at (tg, so), say Z*(to, o), and its prediction standard error, S, (o, So)-

Checking the model and selecting the window size

The key idea here is cross-validation. Select a cross-validation subsample of time-
space locations {z; = (t;,s;), i = 1,...,ncv}. For each z;, let Z*(z;) with prediction
standard error S(z;) constructed from a data set in which Z(xz;) has been removed (this

process includes re-estimation of the entire model based on the reduced data set). One may
)

then construct cross-validation residuals RZ(CV and standardized cross-validation residuals

RZ(SCV) through the formulae

psov) _ 2" (m3) — Z(;)

(CV) _ % N ]
Ri =7 (SEZ) Z(x1)7 Se(fL’i)

(3.3)
Both forms of residuals are valuable in checking the model. For instance, if the model is

fitted correctly the standardized residuals RESCV) should be approximately independent
N (0,1) random variables, and this could be checked using normal quantile plots. This idea
was discussed in some detail by Haas (1990).

A second usage of residuals is to aid selection of the initial model parameters mr and
fe, which determine the size of the window. For this, is is more convenient to use the
unstandardized residuals. Haas recommended calculating a variance ratio

32
MSE

(3.4)

where 52 is the mean square of the S, values, in other words the estimated prediction
standard errors according to the kriging formulae, averaged over the cross-validation data
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points, while MSE is the observed mean squared error of the RZ(CV) values. If everything
is working correctly, (3.4) should be close to 1. In practice, S?> may be biased by two
factors, (i) the lack of homogeneity in the process, and (ii) estimation error in determining
the parameters of the process. The first tends to be the dominant effect if the window
width is too large and the second if the window width is too small. Both act, in general,
to make S? an underestimate of the true mean squared prediction error. However, this
also suggests using the variance ratio as a criterion for selecting my and f..

Focussing specifically on f., Haas gave a number of examples in which (3.4) was
evaluated for several values of f., the objective being to find a value for which the variance
ratio was close to 1.

However, one might question whether using (3.4) as a cross-validation criterion is the
best or most reasonable approach. In other contexts in which cross-validation is used in
statistics, the focus is on minimizing prediction error variance itself (rather than minimizing
the error with which we can estimate the prediction error variance). It is not clear whether
this criterion would lead to substantially different estimates from those used by Haas.

Reconstructing the full covariance matriz

One disadvantage of the woving-window approach is that it does not lead to a single
model to describe the whole data set. For example, different covariance functions are fitted
to different portions of the data set, and if we simply combine these together to form an
overall estimated covariance matrix, the result may not be positive definite. This problem
was addressed specifically by Haas (1998), who proposed the following solution.

Suppose we are interested in estimating the covariance matrix at n+q spatial-temporal
locations {z; = (t;, $;), i = 1,...,n+q} where z1, ..., z,, are the observed sampling locations
and Zp41,...,Tntq are ¢ additional sampling locations for whom we want to calculate
covariances with the rest of the data, for instance because we want to do kriging at those
points. The objective is to contruct an estimate 3 of the covariance matrix at these n + ¢
locations.

It is possible to use the moving-window approach to construct an initial estimated
matrix P = (pi;), as follows. For locations z; and z;, define m;; to be the midpoint
between z; and z;. Let p;; be the covariance between Z(x;) and Z(z;) according to the
model fitted to the data centered at m;;. Then we might expect the individual p;; to be
good estimates of the true covariances o;; say, but there is no guarantee that the matrix
P is positive definite. We seek a matrix 3 with entries {0i;} that is “close” to P in some
suitably defined sense, but also positive definite or at least positive semi-definite.

In considering how close P is to f], Haas considered two possible metrics:
(a) Frobenius norm: ||P — S||p = {22 22(pij — 7)1 12,
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(b) the 2-norm: ||P—E||s = {p((P—E)T (P —%))}'/2, where p(A) denotes the largest
eigenvalue of a symmetric matrix A.

Higham (1988), following Halmos (1972), showed that if P is a normal matrix —
which includes any symmetric matrix with real components — then there exists a unique
positive semi-definite matrix which is closest to P in both the Frobenius norm and the 2-
norm. Moreover, Higham (1988) gave an algorithm to calculate this matrix. Haas’ (1998)
proposal was, in effect, to use this procedure to determine an estimated covariance matrix
Y. that is close to P while also satisfying the property of being positive semi-definite.

3.2 The EOF method and extensions

A very general method of representing the covariance function of a stochastic process
without any stationarity conditions is through empirical orthogonal functions, usually ab-
breviated to EOFs. In the signal processing literature the method is also known as the
Karhunen-Loéve expansion; when restricted to a finite set of observations, it is equivalent
to the well-known statistical method of principal components. The method appears to
have been discovered independently by a number of researchers in the 1940s, for exam-
ple Kosambi (1943), Loeve (1945, 1946), Karhunen (1946, 1947), Obukhov (1947, 1954).
Holmstrom (1963) may have been the first to consider explicitly its application to at-
mospheric sciences; Cohen and Jones (1969) developed the method from a statistician’s
perspective. Other works surveying its origins include North (1984) and Yaglom (1987). In
section 3.2.1 we shall initially follow Cohen and Jones (1969), who developed the method
from familiar statistical concepts. Examples from climate analysis are given in section
3.2.2.

In recent work, statisticians have experimented with hybrids between the classical
EOF method and other approaches to spatial analysis; for example, Nychka and Saltzman
(1998) and Holland et al. (1999) used covariance functions which are a mixture of a
traditional stationary, isotropic covariance function and an EOF expansion, and Nychka,
Wikle and Royle (1999) have tried an alternative form of expansion in terms of wavelet
basis functions. We shall review these developments more briefly in sections 3.2.3 and
3.2.4.

3.2.1 The EOF expansion

Cohen and Jones (1969) introduced the method in the context of doing regression
about a variable of interest y say, as a linear function of a field X (s), where s ranges over
some domain D. In practice, of course, the field X would be sampled at only finitely
many points, but this point is discussed later. In the specific example which they used to
illustrate the method, y was temperature at Washington National Airport and X was the
pressure field over the northern hemisphere, but the ideas would work equally well if y was
the value of X (sg) at some point sg ¢ D. Thus, it is possible to view this as an alternative
approach to the classical kriging problem, but without stationarity assumptions.
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Suppose, then, we have replicated observations (X;,y;, i = 1,2, ...,n), where X;(s),
s € D are independent realizations of a random field on D and y; are observations of the
quantity of interest. By decomposing the distribution of y; into components in the linear
space spanned by X;(s), s € D and an orthogonal component ¢;, we write

D

with €; uncorrelated with X;(s), s € D.

By easy generalization of the standard normal equations of linear regression theory,
the least squares estimator of B(s) solves

> viXi(t) = /DZXi(x)Xi(t)B(s)ds. (3.6)

For simplicity, assume the y; and X;(s) all have mean 0.

As n — oo, we have n™1 Yy, X, (t) — Cy(t) and n= Y, X;(2)X;(t) — C(s,t) where

Cy(t) is the covariance of y; and X;(t) and C(s,t) = Cov{X;(s), X;(t)}. Hence by (3.6),
in the limiting case the optimal B(s) solves

Cy(t) = / C(s,1)B(s)ds. (3.7)
D
Thus, we require to solve an integral equation with kernel C(s,t).

In practice, it is likely that we would have only a finite number of observations of
X;(s) for each i, so we pretend that D is split up into m segments of areas wy, ..., Wy,
centered at m observation points sy, ..., S, Approximating the integral in (3.5) by a finite
sum, we then get

Yi = ijXi(Sj)B(sj) +e€, 1< 1 < n,
J
or, writing z;; in place of w;X;(s;) and S; in place of B(s;), we get the equation

yz':Zﬂ?ijﬂj-i-Ei, 1< <n,
J

which is of course exactly the form usually assumed in linear regression.

To make further progress with (3.7), we need the Karhunen-Loéve expansion of the
covariance function C(s,t), see e.g. Yaglom (1987). The basic idea is to solve the integral
equation

/D Cs, ) (£)dt = Ap(s), (3.8)
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in terms of eigenvalues A and corresponding eigenfunctions . According to the general
theory of integral equations with positive definite symmetric kernels, such an equation has
a countable set of eigenvalues, which we may without loss of generality assumed to be
ordered as A\; > Ay > ... > 0, and corresponding %1, 92, ... Under very mild conditions the
system {1,, v > 1} is complete and orthonormal where the second condition means that

1 ifv=p
[nomisias={, o

and the first condition means that any square integrable function ¢ may be expanded as
an infinite linear combination of ¢, v > 1, in the form

g9(s) = avihy(s), (3.9)

where

0 = /D 9(5), (5)ds.

In particular, if we apply such expansion to C(s,t) itself, we get
Cs,t) = Aty (8)hu (1) (3.10)

Another consequence of (3.9) is that we can expand the random process X (s) (f which
X;(s), i =1,2,...., are independent copies) in multiples of the 1),

X(s) = 2\, (s), (3.11)
where z,, v = 1,2,3,... are uncorrelated random variables with mean 0 and common
variance 1 — in the case of a Gaussian process, they are independent N(0,1) random
variables.

The simplest way to see (3.11) (in the Gaussian case) is to start with this as the
definition of the process X (t), and then verify that

(a) Each X(s) is a linear combination of the z, and therefore has a normal distribution;
the same is true for any finite linear combination of the form } . c; X (s;); therefore,
any finite set X (s1), X (s2), ..., X (sm) has a multivariate normal distribiution, which
fulfils the definition for X (s), s € D to be a Gauusian process.

(b) If X(s) is defined for each s by (3.11), then Cov{X (s), X (¢)} = C(s,t) for each s, t.
This follows very quickly by combining (3.11) with (3.10).

Therefore, the process defined by (3.11) is a Gaussian process with the required co-
variance function, so we might as well take (3.11) as the definition of the process X.
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In the finite case where the process is only observed at finitely many points s1, ..., Sy
with corresponding weights wy, ..., w,,, the integral equation (3.8) is approximated by

m

> " C(sjy skt (sk)we = Aty (s5)- (3.12)
k=1
If we write @)
T v v
C(Sj,Sk) = iv ¢u(33) = J—a

W Wk AV Wj
then (3.12) becomes

Z irog) = Ao, (3.13)

in other words, A, is the v’th eigenvalue of the matrix I' with entries I';;, and the corre-
sponding eigenvector is v(*) = (vg") ... U,(TZL’ ) )T. This is a principal components decom-
position of the covariance matrix I', and in practice would typically be found by applying
a principal components analysis to the sample covariance matrix.

We now return to the integral equation (3.7) which gives the optimal coefficients B(s)
for predicting a random variable y;. If we write

= Buthu(s) (3.14)

and substitute in (3.7), formally interchanging the integral and sum, we get

=X [ e sas
- ZﬂUAvlbu(t)

and so

- )le / C, (1), (1) dt. (3.15)

Equations (3.14) and (3.15) together define the function B(s) which solves the integral
equation (3.7).

We can also combine (3.5) with (3.11) (writing X;(s) for X (s), z;, for z,) to get

Zzw)\l/Z/ ¥, (s)B(s)ds + €;

(3.16)
=z A/?B, + e
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In practice, we replace (3.11) by
Xi(sj)w)? = 3" ziy A2, (s5)w)"
v=1
m
= Zz- Anul/2p8")
wn 7 7
v=1
and hence (3.16) becomes, on truncating the sum at some N,

N
vi=Y_ 2\ By + € (3.17)
v=1

which is equivalent to a principal components regression for y;. To apply the method in
practice we must choose NV, but in principal components regression there are many ways to
do this corresponding to the familiar tools that are used in deciding how many variables to
include in a regression equation, e.g. sequential F' tests, AIC, BIC, Mallows’ C,, criterion,
and so on.

Summary

1. For a very general class of covariance functions C(s,t) without stationarity condi-
tions, one can find a complete orthonormal basis of eigenfunctions 1, with corresponding
eigenvalues \,; the process X (s) may then be expanded through (3.11) and the covariance
C(s,t) through (3.10).

2. For predicting a random variable y; in terms of X;(s), s € D, the optimal linear
predictor is of the form [, X;(s)B(s)ds, when B(s) solves the integral equation (3.7) and
is given explicitly by (3.14) and (3.15).

3. In practice, if we observed the process X;(s) at only a finite number of locations
§ = $1,..., 8y, With weights wq,...,wy,, and if we define a matrix I" with entries I'j; =
C(sj, 8k)\/W;Wk, then finding the Karhunen-Lo¢ve expansion is equivalent to a principal
components decomposition for I', and the optimal prediction problem for y; is equivalent
to fitting a principal components regression.

3.2.2 Applications to climate change

The EOF method is not widely used as a conventional statistical methodology. How-
ever, it has become very popular as a tool in climate research, particularly, related to
detection and attribution questions. A number of recent references on this approach in-
clude Hegerl et al. (1996), Hegerl and North (1997), Hasselmann (1997), Allen and Tett
(1999). Here, we give a brief description of the method of Allen and Tett (1999), refering
the reader to the cited references for earlier versions of their approach.
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The problems of detection and attribution in climate change essentially have to do
with how one can measure the agreement between an artificially generated climate signal,
such as would typically be produced by a numerical general circulation model, and real data
as measured by surface observation stations or satellites. Typically, both the observational
and model-generated data are aggregated into grid cells across the earth’s surface, but
there are several thousand grid cells to cover the whole surface. For example, one common
scheme used 5° latitude and longitude grid cells, implying 36 latitude classifications (from
90°N to 90°S in 5° increments, and similarly 72 longitude increments, giving a total of 2,592
grid cells. In the following discussion we shall use £ to denote the number of grid cells. One
common kind of study is to generate m possible “response patterns” xy, k =1, ..., m using
the climate model, each one an /-dimensional time series corresponding to the response
to one particular kind of forcing factor. For example, 1 may be the response due to
the increase in carbon dioxide, z2 the response due to changes in sulfate aerosols, x3 the
response due to change in solar forcing, and so on — each of these factors being believed
to influence the observed climate change, according to model theories of the causes of
climate change. Assuming that the observed climate signal is a linear combination of the
components due to different forcing factors, this suggests a model of the form

y=XB+u, (3.18)

where y is £ x 1, X = (&1 ... Zy) is a £ X m matrix consisting of all the modeled
responses to forcing factors, and [ is the vector of coefficients which we are trying to
estimate. If the residual vector u in (3.18) has covariance matrix Cp, then the optimal
generalized least squares (GLS) estimator of 3 is

B=(XTCFX) T XTCRMy, (3.19)

and X
Var{g} = (XTCx'X)™! (3.20)

The crucial difficulty is that C'n is unknown and therefore we need some reliable method
of estimating it.

One way of deriving (3.19) and (3.20) from the standard ordinary least squares (OLS)
regression equations is to define a matrix P so that PCnPT = I,, and then to write the
regression equation (3.18) in the form Py = PXf + Pu where the covariance matrix of
Pu is Iy. The OLS estimator for 3 is then 8 = (XTPTPX)~1XT PT Py with covariance
(XTPTPX)~!. But if P and Cy are invertible we will have PTP = Cy', which leads to
(3.19) and (3.20).

The approach that has been widely developed in climate studies is to take model
observations from runs of the GCM that are conducted in stationary conditions without
forcing factors. Typically such runs are 1,000 to 2,000 years long and therefore provide long
enough data series to allow one to estimate climate variability with reasonable accuracy,
assuming that the climate model gives an adequate representation of how the real climate
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would look if there were no external influences due to greenhouse gases or other effects.
Thus, with observations Yy from n years’ of unforced model runs centered to 0 mean, one
could estimate .

Cn = —YyYE. (3.21)

n

The difficulty with (3.21) is that typically £ > n and so Cy is a singular matrix. Even
though this in itself is not a fatal objection, e.g. valid versions of (3.19) and (3.20) can
be given involving generalized inverses, the real difficulty is that with so many degrees of
freedom in the covariance function, the low-amplitude components of covariance are not
reliably estimated, and therefore, any direct attempt to apply (3.20) by substituting Cn

for C'y will give poor estimates for B and innaccurate estimates of uncertainty.

The solution is to define a x x £ transformation matrix P(**) corresponding to the &
largest EOFs of Yy, so that P(”)C’NP(”)T = I, and then to define the OLS regression
equation

PRy = pRIxXp 4 Py,

which leads to an estimator

4= (XTp®! px)-1xT pt)’ pr)y (3.22)

and estimated covariance

(xTpwT pt) x)-1, (3.23)

In practice, numerous refinements of this basic methodology have been proposed to
protect the resulting estimates from various sources of bias. However, the statistical basis
for these refinements is in many cases rather unclear. Among the issues discussed by Allen
and Tett (1999) are:

(1) The direct estimate of covariance (3.23) is likely to be an underestimate of the true
covariance matrix, and an alternative is

Var{B} = (XTCx X) ' XTCR Cn, O X)(XTCRIX) ! (3.24)

with C’Nl the estimate of Cn from the EOF construction and C’N2 an independent
estimate of the covariances of the s largest EOFs from a separate run of the climate
model. The use of independent unforced model runs to correct the estimate of variance
was apparently first suggested by Hegerl et al. (1996).

(2) The estimates are corrected for serial correlation, using a method of Zwiers and von
Storch (1995).

(3) The model runs for the forcing conditions (columns of X) are also subject to random
noise and therefore it would be desirable to correct for that source of bias.
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(4) There remains the question of how in practice to choose k. Allen and Tett proposed
a residual test based on

r? = (y— XB)TCx (v — XB) ~ X, (3.25)
where rejection of 72 based on (3.25) is taken as an indication that  is too large.
3.2.3 Combining stationary models and EOFs

Nychka and Saltzman (1998) suggested an alternative form of covariance model com-
bining a traditional geostatistical model (stationary, isotropic) with a truncated EOF ex-
pansion, in the form

C(s1,85) = (1) (s2) {pe—"*—”“” + Auwslwu(sa} (3.26)

v=1

which permits the standard deviation to vary with location s according to a general function
o(s), and a leading term which corresponds to a stationary isotropic model of exponential
covariance type. The remaining terms depend on eigenvalues A, and eigenfunction %, of
the covariance operator in simlar fashion to (3.10), and essentially allow various degrees
of nonstationarity according to the value of the index M.

By analogy with (3.11), if the process is Gaussian then we also have for the observed
process Z(s),

M
Z(s) = o(s) {pmzo(s) +Y %Aiﬂws)} (3.27)

v=1

in which Zy(s) is a stationary isotropic process with covariance e~ lls1=5211/6 and the random
coefficients a, are standard normal random variables, independent both of each other and
of the process Zj.

As an example, Nychka and Saltzman (1998) fitted the model (3.26) to ozone data
in the neighborhood of Chicago, using both real data collected by ozone monitors and
synthetic data generated by a computer model (the regional oxidant model or ROM). In
both cases, multiple replications of the field were used both to estimated the site-by-site
variances o2(s;) and to separate the correlation function into stationary and nonstationary
components; it would probably not be appropriate to attempt these models in the classical
“geostatistics” set-up of one onservation of the entire field. Nychka and Saltzman estimated
p = 0.5 for the ROM data, 0.25 for the observational data, in either case a substantial
departure from stationarity; they used M =5 in the expansion.

More details of the method were provided by Holland et al. (1999), who applied the
same ideas in modeling sulfur dioxide measurements from CASTNet (the EPA’s Clean Air
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Status and Trends Network), which covers the whole eastern U.S. They extended (3.26)
and (3.27) to include a nugget effect:

M
C(s1,82) = o(s1)o(s2) [P {(1 —a)d(s1— s2) + ae—||81—52||/9} + Z )\ulﬁu(31)¢u(52)] 5
v=1
(3.28)
where 0 < o < 1 and §(y) is 1 if y = 0, 0 otherwise,

M
2(s) = o(s) {<ap>1/2zo<s> +y auAi/%(s)} +e(s) (3.29)

where ¢(-) is a white noise process, €(s) ~ N[0,02(s)(1 — a)p] independently at each site s.

To estimate the model (3.28) they proposed the following procedure. Assuming for
the moment that «, o(s), p and 6 are all known, define

A

Rjs = C(sj, %) — o(s5)(sx) | { (1= @)d(s; — sp) + e/ ) (3.30)

where C(sj,si) is the sample covariance of sites s; and sg. Then form an eigenvalue-
eigenvector decomposition of the matrix R, retaining the M largest eigenvalues and as-
sociated eigenvectors. These then define the A, and 9,u of (3.28). The values of a and
o(sj) were assumed known (in the example of Holland et al., they were estimated from a
preliminary thin-plate spline fit to the site-by-site variances), and p and 6 were estimated
by a grid-search algorithm: for each candidate pair of values for p and 6, A1, ..., Aps and
1, ..., were estimated from the R matrix given by (3.30); they in turn were substi-
tuted into (3.28) to obtain a model-based estimate C(s;, sx); the final objective function

to minimize was
D {C(sj,s1)iC(s5, s)}>.
i<k

3.2.4 Wavelet expansions

Nychka, Wikle and Royle (1999) proposed alternative expansions using wavelet basis
functions. Since the method is still developing, we present only an outline of the approach
here.

Their approach is motivated by a number of practical features of applying spatial
prediction in large systems:

e Large networks, of say 5,000 stations, cannot be handled by traditional geostatis-
tics and kriging methods because the numerical difficulties of storing and performing
matrix operations such as inversion on matrices of order 5,000 x 5,000 are intractable;
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e To model such systems realistically it is essential to use a nonstationary covariance
matrix;

o Efficient numerical methods are based on iterative procedures such as conjugate gra-
dient algorithms for solving large systems of linear equations;

e The methods assume that the data exist on a finite regular grid though not necessarily
that all the grid points are observed;

e They may be easily extended to spatial-temporal systems involving a nontrivial tem-
poral covariance structure.

The basic model assumes an expansion of the process

Z(s) =Y avthy(s), (3.31)

v=1

in which we assume an M x N grid, the basis functions ¢, are given and the a,, v =
1,..., M N are random coefficients whose joint distribution is Npsn[0,%,] for some covari-
ance matrix ¥,. If we define a matrix ¥ with entries ¥, , = 1,(s,), then the covariance
matrix for the vector with coefficients Z(s,,) is given by

Yy =U%,07, (3.32)

Unlike the case where the v, are eigenfunctions of the covariance function of Z, we
can no longer assume that ¥, is a diagonal matrix; nevertheless, one of the motivations
of the approach is that in practice, one can approximate (3.32) very well with a X, which
is either diagonal or of some simple structure such as tri-diagonal. Nychka et al. gave
numerical examples based on diagonal ¥, which showed that one could obtain a very good
approximation through (3.32) of some standard stationary, isotropic covariance functions
such as exponential and Gaussian; the approximation performed well at the center of the
grid but not so well at the edges.

The actual method they used was based on a specific approach to multiresolution
basis functions using the W transform (Kwong and Tang 1994). We shall not attempt
to explain the details of this; the method is motivated more by the need to define a
representation which facilitates linear algebra computations than one which is good in a
functional approximation sense, though it appears to perform well from the latter point of
view as well.

3.3 Deformation methods

In this section we review methods based on the idea that a process might be stationary
and isotropic only after some deformation of the space of observations, and we describe
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methods which estimate both the deformation itself and the spatial covariance structure
in the deformed space. The original ideas on this method were due to Sampson and Gut-
torp (1992) and extended, with a somewhat different estimation method, by Guttorp and
Sampson (1994) and Guttorp, Meiring and Sampson (1994). Their methods are described
in section 3.3.1. Their estimation methods were not likelihood-based but an alternative,
aimed at producing maximum likelihood estimates based on some suitable parameteriza-
tion of the deformation, is given in section 3.3.2. Tow applications of this methodology
are presented in sections 3.3.3 and 3.3.4. Finally, section 3.3.5 outlines some of the more
recent developments, including attempts to reformulate the problem in a fully Bayesian
context.

3.3.1 The Sampson-Guttorp approach
Throughout this section, we will refer to either the covariance function
C(s1,82) = Cov {Z(s1),Z(s2)}, 81,82 € D,
or the dispersion
D(s1,82) = Var {Z(s1) — Z(s2)}, 81,82 € D.

If either C(s1, s2) or D(s1, s2) depends on s; and s only through the Euclidean distance
between the two stations ||s; — s3||, then we shall call the process homogeneous. This
corresponds to the concepts of stationarity (or intrinsic stationarity if defined from the
dispersion) and isotropy that were discussed in Chapter 2. Classical geostatistics, as re-
viewed in Chapter 2, is based primarily on homogeneous models, though there are some
fairly simple non-homogeneous models that can be handled by the same methods as classi-
cal goestatistics. Two fairly well-known examples (Journel and Huijbregts 1978) are based
on either

D(s1,82) = 270(|[Ao(s1 — 52)]]),

which is known as geometric anisotropy, or its extension

J—1
D(s1,52) =2 Y 75(|[4j(s1 = s2)[))-
§=0
known as zonal anisotropy. Here Ag, A1, ..., are arbitrary matrices and g, 71, ..., isotropic

semivariogram functions. However, this is still quite a restrictive class of models.

Geometric anistropy is based on the notion that a simple linear transformation of
the observation space will make the process homogeneous. Sampson and Guttorp (1992)
proposed a much more radical extension based on nonlinear transformations.

D(s1,52) = 270 (f(51), f(52)) (3.33)
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with o again an isotropic semivariogram and f a smooth nonlinear map from R% to R% . In
principle one may permit d’ # d though in most of the Sampson-Guttorp work it is assumed
that d' = d and we shall continue to assume that here. The idea behind (3.33) is that the
map f takes the coordinates from the real, geographical or “G” space, into an alternative
dispersion or “D” space in which the process is homogeneous. This approach may not be
universally applicable to inhomogeneous processes, and in subsequent discussion we shall
see some limitations to it, but it has become very widely applied because it seems to capture
the nature of the nonstationarity in many environmental data sets. For an entertaining
early example of how the interpretation of a spatial analysis may be completely changed
by such a transformation, see Lewis (1989).

The original paper of Sampson and Guttorp (1992) adopted the following strategy,
briefly summarized here, based on three steps:

(a) A mapping of the n sampling points from the G space into the D space is found
to minimize a stress criterion

i 10(dig) — hij}?
min h2
Zi<j 17

where d;; is the observed dispersion between sites ¢ and j, h;; is the distance between
sites 2 and j in D space and the minimization is taken over all monotonically increasing
functions §. This formulation of the problem permits it to be solved by a multidimensional
scaling (MDS) algorithm.

(b) The mapping of the N sampling points is then extended to a smooth function from
the entire G space into the D space, using a representation based on thin plate splines.

(c) The function ¢ is replaced by a smooth function g (so d;; ~ g(h;;)), which satisfies
the positive definiteness condition required for g to be the variogram of a homogeneous
process. For this purpose, Sampson and Guttorp used a very general representation of g
as a mixture of Gaussian-type variograms.

This approach has a number of ad hoc features and some clear disadvantages, e.g.
the restriction that § be monotone in step (a) (necessary for the MDS algorithm to make
sense) means that we can only consider monotonically increasing variogram functions in
step (c), and for some purposes, that may be an undesirable restriction. Guttorp and
Sampson (1994) mentioned some other undesirable features of the approach, and Guttorp,
Meiring and Sampson (1994) proposed an alternative version which seems more appealing:
combining steps (a) to (c¢) into a single step, they proposed choosing the deformation f
and the semivariogram -y to minimize

> (%) +MJ(f1) + I(f2)} (3.34)

i,J
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A

where d;; is the empirical (sample) dispersion between sites ¢ and j, d;; is the modeled
dispersion based on (3.33), f1 and fy are the z and y coordinates of the map f in (3.33),
and J(f;) is the “bending energy” functional of a scalar function f;, defined in the case of
a two-dimensional map by

= [{(52) 225 (5

The interpretation of A > 0 in (3.34) is that it is a smoothing parameter — the larger
A, the smoother the map f is required to be. The motivation for the last term in (3.34)
comes from the theory of thin-plate splines (Green and Silverman 1994), in which penalty
functions of the form of AJ(f), with A an adjustable smoothing parameter, are essentially
taken as the definition of smoothing splines.

Application of the methodology to ozone model assessment

As an example of the application of this approach to a fairly complicated real-data
problem, we outline the main steps in the analysis of ozone fields by Meiring, Guttorp and
Sampson (1998).

The purpose of this paper was to propose a method for assessing the agreement be-
tween real data obtained from 32 monitoring sites in a region of northern California, and
the output of a numerical model known as SARMAP. The data on hourly ozone levels
exhibited numerous features that required specialized statistical modeling. For example,
there is a strong diurnal effect which influences not only the means and the variances of
the ozone levels, but also the spatial correlations. In addition to the spatial correlation
structure, the data showed temporal correlations which were different at each site. These
features made it necessary not only to consider the problem as one of fitting a spatial-
temporal model, but also meant that simple models for the spatial-temporal correlation
structure, such as separability (where the spatial-temporal correlations factor into a prod-
uct of a spatial correlation and a temporal correlation) could not capture the true structure
of the data. Because of the importance of getting the diurnal effect right, a separate model
was fitted to each of the 24 hours of the day.

With these preliminaries, the actual model fitted by Meiring et al. followed these
steps:

(1) A square root transformation was applied to transform the data for each site-hour
combination to approximate normality. The square root transformation was chosen
after examining normal QQ plots of residuals of the raw data and of data with a
square root and logarithmic transformation. The square root transformation was not
universally the best of the three, but was judged to be the best overall.

(2) For each site-hour combination, the overall mean of the transformed data was esti-
mated, and subtracted from the data to give residuals of the form

we(z;) = v 2e(zi) — hi(x;)
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3)

()

(6)

where z;(z;) is the original observation at time ¢ and site z;, and hy(z;) for k =1, ..., 24
is the overall mean of all y/z;(x;) values correspnding to the k’th hour of the day.

An AR(2) model was fitted to each of the wy(x;) series, with coefficients fitted sepa-
rately at each site, thus

wi(z3) = o (@3)we—1(z5) + aa(@s)wi—2 () + ye(24),

with y;(z;) a residual process. After fitting this model, the residuals are approximately
uncorrelated in time but of course they are still spatially correlated.

Letting 0, (t) denote the variance of y;(z), and empirical dispersion function

ye(u) () }
VOuu(t) \/0zz(t)

was computed, separately for each of the 24 hours of the day. (In fact, to improve
the precision of the estimates and to avoid some problems with missing values, the
dispersions were calculated using all observations within a three-hour moving window,
but still a separate estimate was computed for each of the 24 hours.) The variance
functions 0., (t) were assumed to be constant in space but again dependent on the
hour of the day.

Dy(u,z) = Var {

The empirical dispersions D, (u,z) were then used as the input to estimating the
model (3.33), using an exponential semivariogram function with nugget for o, and A
chosen by visual inspection of the fitted variograms and deformation maps. A cross-
validation approach might have been used, but given the amount of computation
required, a visual approach was preferred. However, the same parameter A was used
for each of the 24 hours. Apart from that aspect, a completely separate model was
fitted for each hour.

The model fitted in step 5 was used to construct estimated (krigged) values of y;(x),
together with appropriate prediction variances, for each time point ¢ and each location
z in a subgrid lying within a single grid cell of the SARMAP model. In addition, the
mean functions hg(z) and the AR(2) coefficients o (x) and as(z) were interpolated to
subgrid points using a simple numerical interpolator (the function interp in S-PLUS
— it appears that no kriging was used for this step, nor did the authors attempt
to allow for the uncertainty in the interpolated value). A technicality here is that
the AR(2) coefficients must be constrained to remain within the stationarity region
of the AR(2) model — the achieved this by first rewriting the model in terms of
partial autocorrelations (a1 = ¢1(1 — a2), @s = ¢2) and then applying the actual
interpolation to the functions

Bi(x) zlog{%}, i=1,2,
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to ensure that the interpolated ¢;(z) remained in the interval (—1,1).

(7) The interpolated values of y;(x), hg(x), a;1(x) and as(z) were used to reconstruct
values of z;(x) for each time point ¢ ad subgrid location z, by reversing the sequence
of steps used to construct y;(z;) from z;(z;). In addition, prediction variances and
covariances between locations were estimated. The variance and covariance calcula-
tions are actually the most technically involved part of the computation, since they
involve reversing the square root transformation and hence required moments up to
fourth order of the interpolated process. The calculations were described in detail by
Meiring et al. in their paper, but we shall not attempt to reproduce them here.

(8) Finally, the sample average of the estimated z;(z), over all subgrid locations within a
single grid cell of the SARMAP model, were computed as an estimate of the overall
ozone level within the grid cell at time ¢, together with a variance of the overall average
value computed using the variances and covariances computed in step 7.

The usefulness of this kind of analysis lies essentially in its ability to tell how well the
deterministic numerical model is able to reproduce the monitoring data — a good numerical
model can be used to examine the effects of possible changes in emissions control strategies
and can be very important in understanding what factors are important in determining the
level of ozone. In the numerical examples in their paper, Meiring et al. reported generally
good agreement between the observation-based predictions and the output of the numerical
model; the main specific discrepancy they noted was that the model tends to overestimated
ozone levels during the night and early morning when the levels are generally low.

3.8.2 Maximum likelihood fitting

As already noted, the original paper of Sampson and Guttorp (1992) used an ad hoc
approach to fitting the model, while the alternative criterion (3.34), though not ad hoc, is
not a likelihood-based approach and therefore could be expected to be inferior in terms
of statistical efficiency compared with maximum likelihood or Bayesian approaches. The
possibility of fitting these models with a maximum likelihood approach was first pointed
out by Mardia and Goodall (1993) and later extended by Smith (1996). The present
discussion is largely based on the latter reference.

Consider the model represented as follows:

1. We have N replications Z1,..., Zn of a spatial field observed at each of n sites
(thus Zy = (Zk(s1), ---, Zk(8n)), where s1, ..., s, are the sampling sites, for £k = 1,2,..., N).
These are assumed independent with

N,, denoting the n-dimensional normal distribution, x4 an arbitrary n-vector of means and
Y an n X n covariance matrix.
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2. We assume o0;; = Cov {Zk(s;), Zk(s;j)} of the form

ai; = Co(f(si), f(s5))

where Cj is a homogeneous covariance function and f is represented by a linear combination
of radial basis functions ((3.39) below).

3. For the initial analysis we assume Cj has the Matérn structure

B 1 20yt GQK 205t
- 292_1F(02) 01 & 01 )

Co(t) (3.37)

Here 6, > 0 is the spatial scale parameter and 6s > 0 is a shape parameter. The function
['(-) is the usual gamma function while Ky, is the modified Bessel function of the third
kind of order 6, (Abramowitz and Stegun 1964, Chapter 9). This form was used by
Handcock and Wallis (1994) for their analysis of climate data and it seems to be very
widely applicable as a simple parametric form for spatial correlations. Nevertheless it is
not universally appropriate and we shall propose a more general representation for two-
dimensional isotropic covariances in (3.46) below.

The analysis being discussed here does not give any separate attention to analysis of
means and variances at each spatial location, assuming that these are estimated by simple
sample estimates, but concentrates on the spatial correlations. Thus, from now on, it is
assumed that the process has been standardized to have mean 0 and variance 1 at each
site.

With this simplification, the negative log likelihood based on Z, ..., Zy reduces to

N N-1 .
L= log|S[+—— tr (2—12) (3.38)

where Y is the usual n x n sample correlation matrix.

The traditional formulation of thin-plate splines (Green and Silverman 1994, Chapter
7) requires a function f to pass through a finite number of data points z; = f(x;,y;)
(1 = 1,...,n), to minimize the bending energy J(f) given by (3.35). The solution to this
problem may be represented in the form (Green and Silverman 1994, page 142)

fl@,y)=a+bz+cy+ ) dimi(z,y) (3-39)
=1
where
and .
ni(z,y) = r*logr, r={(z—z:)*+ (y—v:)’}2. (3.41)
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Thus (3.39) represents f as a sum of linear terms and n radial basis functions n; with centers
at the observed data points (z;,y;). The constraints (3.40) ensure that the problem does
not become overdetermined.

Smoothing splines differ from interpolating splines in that the fitted function f is no
longer required to pass exactly through the given data points z;: this is usually more
appropriate in a statistical context when there is noise in the data. The usual formulation
of smoothing splines is to minimize a function of the form

S(F) = {zi — f(@i,y) > + M (f) (3.42)

where z; is a possibly noisy observation of the function f(z;, ;) and A > 0 is a smoothing
parameter.

Although the exact solution to (3.42) is computable (Green and Silverman 1994, page
147-148), in practice we do not usually have an a priori fixed value of A and an alternative
approach is simply to restrict the representation (3.39) to a subset of radial basis functions.

Thus we assume
0; =0 fori & {i1,...;im} (3.43)

where %1, ..., %, are some subset of indices to be determined. This approach is similar to
the way radial basis functions have been used in non-linear time series analysis (Casdagli
1989, Smith 1993, Judd and Mees 1995), where they are an alternative to neural net
representations.

In the present context f is a bivariate function, so we apply the RBF approach to
each of its two components, f(1) and f® say. There is a potential difficulty with this
in that a function constructed in this way may not be bijective. Non-bijective functions
are a problem in the deformation approach because they correspond to a mapping which
folds over itself, which in most contexts seems counterintuitive. The difficulty was noted
by Sampson and Guttorp (1992) who suggested that, in most cases, the problem of folding
can be avoided by choosing a sufficiently smooth map, which is equivalent to keeping m,
the number of active RBFs, fairly small.

Some further simplification is possible. First, the constant a in (3.39) is unnecessary
— this is so because the resulting covariance functions depend only on differences between
coordinates in the D space and are therefore unaffacted by locations shifts in D space. So
we set a = 0. Second, in the case m = 0, the model is invariant under orthogonal rotations.
This suggests that, in the case m > 0 as well, we simplify the parametrization to

FO(z,) = B+ pbiboy + Y 0L i, y),
! (3.44)

FO(2,y) = phibaz + b3y + Y 67 n:(z, ),
1
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where b; > 0, by > 0, p € R, and each of the sequences {6§1), i=1,..,n} and {6§2), 1=
1,...,n} satisfy the constraints (3.40), (3.43). Finally we note that with f still permitting
arbitrary scale changes, we may without loss of generality set #; = 1 in (3.37). Thus, when-

ever m > 3, the final model has 2m — 2 free parameters by, ba, p, 02, 51(11), 51(12), - 5&)_3,
52

The model (3.37) does not allow for a nugget effect. This could be permitted, for
example, by allowing the value for Cy(0) to be greater than the limiting ¢ — 0 value
obtained from (3.37). In many applications, no nugget effect is observed with the Matérn
covariance structure, but with the climate data of section 3.3.3, it turns out that such an
effect is needed. A much broader extension is to abandon the parametric form entirely and
to represent Cy nonparametrically. A general representation for a d-dimensional isotropic
covariance function (recall Chapter 2) is given by

Co(h) = /O  Ya(wh)®(dw)

where ®(-) is a general positive measure on [0, c0) and

Ya(t) = (%) T (g) Jazs (1)

where J, is the modified Bessel function of order v. In particular, when d = 2 this reduces
to

Co(h) = /O " Jo(wh)®(dw). (3.45)

In practice the measure ® may be assumed concentrated on a finite number of atoms, so
(3.45) reduces to

C
Co(h) = bedo(weh) (3.46)

in terms of 2C parameters ¢1, wy, ..., pc, we. Representations of the form of (3.46) were
appraently first introduced by Shapiro and Botha (1991) and have been the basis of a
number of subsequent proposals, e.g. Hall et al. (1994), Lele (1995), Cherry et al. (1996).
Sampson and Guttorp (1992) used a similar representation but with Jy(¢) replaced by the
Gaussian-type kernel e~t". This was derived from the slightly less logical requirement that
the function Cy should be a positive definite isotropic covariance function in all dimensions
simultaneously, rather than just in the specific dimension d in which we happen to be
working. An advantage of the present approach is that it allows non-monotone functions

Co.

An important feature of the present approach is that only a subset of centers, repre-
sented by the indices 1, ..., i, in (3.43), is included in the model. This is contrast to Mardia
and Goodall (1993), who implicitly assumed that all the centers are included. Using all the

145



centers leads to intractable computational problems when the number of centers is large,
and might also be expected to result in badly overfitted models. Therefore, we must limit
the number of centers included, but the computational complexity of the problem rules
out any attempt at an exhaustive search over subsets.

To simplify this problem, the n centers are first arranged in order, with indices %1, ..., .
The problem then reduces to the selection of m, the number of centers to be included in the
model. The way we do the ordering is somewhat arbitrary. One reasonable approach, given
say r indices i1, ...,%,, would be to select i,y to maximize the increase in log likelihood
when indices i1, ..., 4,41 are included compared with the log likelihood when indices i1, ..., 7,
are included. Something like this approach was actually used for the ozone example given
in section 3.3.3, but not for the much larger climate data example of section 3.3.4, where the
approach taken was just to select the order of indices to achieve roughly even geographical
dispersion.

A more detailed analysis is possible for the choice of m, the number of centers to
include. One approach is via the maximized log likelihoods, with either a sequence of
likelihood ratio tests or some automatic model selection criteerion such as AIC. An alter-
native, possibly superior if the ultimate objective of the analysis is prediction at sites off
the network, is to use cross-validation. However, this is also very computationally intensive
if applied in the usual way of leaving out one station at a time and refitting the model
based on the remaining stations. Instead, an approach will be described based on leaving
out one quarter of the observations at each stage.

Suppose we write a typical data vector in the form

7(1)
Z = (Z@)
where Z(1) represents the approximately one quarter of the observations omitted, and

Z@) the remainder. We partition both the fitted correlation matrix ¥ and the sample
correlation matrix ¥ in the obvious way,

Y11 Yo S S i
Y= , Y= ¢ - .
( 221 222 221 ZJ22
The model is re-fitted using just the Z(®) components, and used to predict Z("). Since we
are not attempting to model the station means, we assume without loss of generality that

they are all 0. The optimal predictor of Z() is then AQNES AZ® where A = 21222_21.
The mean squared prediction error is given by

E{(z<1> _ 7T (7D _ Z<1>)}

(3.47)
—E [ tr {Z<1>Z<1>T _9AZ@ ZzIT | 472 7T AT}] .
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If we average (3.47) over the N data points, a sample-based estimate becomes
tr {211 - 221222_21221 + 21222_2122222_21221} . (3.48)

This calculation is repeated four times, with a different quarter of the stations omitted on
each occasion. Finally, the four cross-validation scores obtained from (3.48) are added, to
obtain an overall CV score for the model.

3.3.3 An example based on ozone data

This example uses the same data source as in the paper of Nychka and Saltzman
(1998); the precise data set used here was originally compiled by Andrew Royle. Twenty-
one monitoring stations from the greater Chicago area are shown in Fig. 3.1, together with
the locations of the cities of Chicago and Gary, Indiana. The data consisted of a sample
covariance matrix based on 89 vector observations, which we assume to be independent.
As previously discussed, the analysis will be simplified by ignoring any variation in the
station variances and focussing exclusively on the sample correlation matrix.

Wisconsin Lake

Michigan

Michigan

Illinois

Indiana

Fig. 3.1. Map of ozone stations.

The model described in section 3.3.2 treats the station locations as centers in a radial
basis function representation, and relies heavily on the selection of a suitable subset of
stations. The first step involved placing the posisble centers in order, which involved a
certain amount of trial and error, but with the intention that centers which make a large
contribution to the model are introduced early in the analysis. The rest of the discussion
will take this step for granted and concentrate on the determination of m, the number of
centers to be included in the model.
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Number of NLLH CcvV Number of NLLH CcvV

Centers Centers

0 598.7 3.34 13 772.3 4.01
4 649.3 3.35 14 777.9 4.33
5 672.3 3.47 15 782.2 5.22
6 689.2 3.49 16 793.0 7.68
7 701.3 3.53 17 802.0 6.44
8 745.3 3.33 18 805.6 3.92
9 753.7 3.44 19 813.6 7.10
10 754.3 3.44 20 813.9 5.32
11 765.7 3.66 21 815.8 4.33
12 772.1 3.74

Table 3.1: Minimum L values and CV scores for a sequence of models, ozone data.

Table 3.1 lists the 19 models, starting with m = 3 (for which all the 51(1) and 51(2)
coefficients in (3.44) are 0) and proceeding up to the full model m = 21. The table
shows both the minimum negative log likelihood (NLLH) values and the CV scores. All
the models are based on the Matérn form of covariance (3.37), with 2m — 2 independent
parameters. It can be seen that a likelihood ratio test or AIC approach would lead to a large
value of m being chosen, such as m = 19. However, the approach based on minimizing
the CV score leads to m = 8. This only just beats the models with m = 3, a linear
transformation from G to D space!

CVv

5 10 15 20

Fig. 3.2. Cross-validations scores for the ozone data.
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A plot of the CV scores is shown in Fig. 3.2. We might expect these to decrease
steadily for the first few values of m, to reach a minimum, and then to increase again.
This is far from the observed form of the plot, a situation which may be due to the
irregular spatial distribution of the stations combined with the strong nonlinearity of the
optimization problem. However, it is clear that the CV scores in the right-hand part of
the plot (say, for m > 12) are substantially larger than those in the left-hand part, which
indicates that we should not allow m to be too large. The subsequent discussion is based
onm =8.

The D space under this transformation is shown in Fig. 3.3. The striking feature of
this plot is that the three stations in the lower right-hand corner of Fig. 3.1 have been
pulled a considerable distance from the other 18, which reflects the fact that the spatial
correlations between the two groups, although still positive, are much smaller than those
within the larger group. The explanation may lie in the distribution of sources. Ozone in
Chicago itself, and in the suburbs to the north and west, is caused primarily by traffic,
whereas there are a number of industrial sources in the neighborhood of Gary, IN, where
the three discrepant monitors are located.

Fig. 3.3. D-space for the ozone data.
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Fig. 3.4. Semivariogram plots in G-space. Circles represent pairs of points which lie
entirely in the main cluster of 18 points; crosses represent pairs where at least one of the

pair is one of the three outlying points.

Fig. 3.4 shows the semivariogram plot in G space, and Fig. 3.5 the same plot in D
space, together with the fitted Matérn curve. The variability of the plot is much reduced by

transforming to D space and fits the Matérn curve r

easonable well. Each pair of stations is

represented by one point on the plot, those that involve one of the three discrepant stations

being marked by a cross, the remainder by a circle.

The effect of the transformation is to

move the crosses to the right of the picture and the circles to the left, showing that the

plot consists of two distinct clusters.

150



1.0 A

0.8 A

0.6 A

0.4 A

0.2 A

00 4/

0.0 0.1 0.2 0.3 0.4
Fig. 3.5. Semivariogram plot in D space, corresponding to Fig. 3.4 after applying the

transformation.

On the strength of these results, it appears that the methodology leads to estimators
of spatial covariance which take into account the discrepant behavior of ozone at the three
southeasternmost stations.

3.3.4. An example using climatic data

For our second example, we consider temperature measurements from 138 stations
scattered over the continental United States. The stations form part of the Historical
Climatological Network (HCN) discussed in Chapter 1. As ultimate objectives of the
study, we might consider how to measure climate trends taking into account that these
are not the same everywhere — it may be necessary to consider a model in which the
climate trend varies smoothly with spatial location, but the accurate estimation of such
a model would then require that one should take into account spatial correlations as well
as spatial variability in means and trends. However with that objective in mind, we now
focus exclusively on the spatial correlations and do not consider further the consequences
of this for climate change. A previous example in which spatial analysis has been used to
inform decisions about climate change is the paper by Handcock and Wallis (1994).

From this data set, a correlation matrix was constructed based on 40 years of annual
average temperatures at each of the 138 stations. The 40 years were selected as those
for which a reasonably complete record was available at all 138 stations. This correlation
matrix will then be treated as a sample correlation matrix on the assumption that ob-
servations from different years form independent, identically distributed random vectors.

151



Obviously this appraoch will fail to take into account the effect of both temporal corre-
lations between years, and long-term temperature trends such as might arise from global
climate change, but our aim in the present study is to uncover spatial structure in the data
rather than to produce a definitive analysis taking into account all aspects of variability.

For this data set, the same kinds of models were fitted by the same methods as for
the ozone data. A key issue is again the order ii,1s,..., in which the possible centers
of the radial basis functions are introduced into the model (cf. (3.42)) and in this case
there is even less scope to determine an optimal ordering. Not only are the combinatorial
problems of subset selection much greater with 138 stations than with 21, but the time
taken to compute each value of the log likelihood (which includes factorizing a 138x 138
matrix) is much greater, making the whole procedure extremely computationally intensive.
For this reason, a single ordering of the centers was determined prior to any model fitting,
mainly chosen so that at each stage of the model fitting process, the centers in the model
provide reasonable geographical coverage over the whole region being studied.

Based on this, and employing a log likelihood criterion for selecting the number m of
centers included in the model, an initial model selection was made with m = 21. For this
data set the Matérn covariance function again provided a reasonable fit, but it was found
essential to include a parameter representing the “nugget effect”.

Fig. 3.6 shows plots of the sample semivariogram in both G and D space, with
the fitted Matérn curve for the latter. Although the transformation from G to D space
unquestionably improves the fit as measured by the log likelihood, it must be admitted
that there is not much evidence from this in Fig. 3.6, especially when we contrast with
this with the very noticable improvement seen with the ozone data between Figs. 3.4 and
3.5! Maps of the G and D space are shown in Fig. 3.7 and it is evident that the main effect
of the transformation is to pull a group of stations in the southwestern states (California,
Nevada, Arizona) away from the rest of the country.

However there is also evidence in Fig. 3.6 that the semivariogram is decreasing at very
large distances. The Bessel function representation (3.46) allows for this possibility, and
we therefore use it in subsequent analysis. After some further experimentation a Bessel
model with four components was fitted, with results shown in Fig. 3.8. The map of the
D space is similar to that in Fig. 3.7, but the semivariogram plot now shows evidence of
two distinct clusters of points, with the semivariogram flat or decreasing in the right-hand
cluster.

In discussing these results with a climatologist colleague (Professor Peter J. Robinson
of the Department of Geography, University of North Carolina at Chapel Hill) it was
suggested that there might be a climatological explanation based on the patterns of air
circulation over the continent. There is a tendency for weather patterns to move northwards
up the west coast of the USA, then eastwards over the northern Rockies, and then to fan
out over the rest of the country. This might well induce a negative correlation between the
region southwest of the Rockies and the rest of the country. However, it was also pointed
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out that this pattern of air circulation is much more prevalent during the summer months
than the winter.

This suggested a re-analysis based on sample correlations computed separately for
the summer (June, July, August) and winter (December, January, February) data, with
results shown in Figs. 3.9 and 3.10 respectively. The distortion of the map created by the
southwestern states is indeed much greater in the summer than the winter, and the evidence
for the semivariogram to be decreasing at large lags is also much greater for the summer
than for the winter. These results therefore reinforce the climatological explanation.

In fact, examination of raw sample correlations shows a much higher proportion of neg-
ative correlations (usually involving the three southwestern states) than could be explained
by chance variation on the assumption that the true correlations are always non-negative.
This however points to a limitation of the whole approach taken in this section. If it were
indeed the case that in one part of the country, spatial correlations are negative over cer-
tain distance ranges, while in another part, correlations are always non-negative regardless
of the distance between two stations, then we could not expect the model (3.33) to capture
this adequately. To do that, we would need to model which explicitly allowed for the
homogeneous semivariogram function o to be different in different parts of the space.

The other feature of this example that should be made clear is that, for models and
data sets of the size being considered here, the question of uniqueness of local maxima of
the log likelihood function is something that definitely needs to be considered. Indeed,
all the evidence is that the local maxima are not unique, since re-runs of the same model
based on different starting values typically result in different estimates of the coefficients of
the radial basis functions. Thus in this case the concerns originally raised by Warnes and
Ripley (1987) are seen to be valid. In most cases, when two fits of the same model produce
different answers, the log likelihood values are very close, and the resulting maps and
semivariogram plots also very similar in appearance. Nevertheless, the algorithm sometime
stops at parameter values which are clearly a long way from optimality. Therefore as a
practical measure, it is recommended that the same model be re-run from several different
starting values before accepting any of the model fits as definitive.

Summarizing, the results for the climatological data are considerably more compli-
cated than those for the ozone data. Nevertheless the fitted models provide considerable
insight into the true spatial structure of the data, a statement which is reinforced by the
interpretation in terms of streamflow patterns.
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Raw Semivariogram

0 10 20 30 40 50

Transformed Semivariogram and Matern fit
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Fig. 3.6. Semivariogram plots for the climatic data, before and after transforming from
G space to D space, with fitted Matérn curve in the latter case.
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Transformed Semivariogram and Bessel fit
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Fig. 3.8. Semivariogram in D space and representation of D space using Bessel function
fit to the covariance function: all-year data.
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Transformed Semivariogram and Bessel fit

Fig. 3.9. Semivariogram in D space and representation of D space using Bessel function
fit to the covariance function: summer data.
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Transformed Semivariogram and Bessel fit
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Fig. 3.10. Semivariogram in D space and representation of D space using Bessel function
fit to the covariance function: winter data.
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3.3.5 Bayesian approaches

A natural development of maximum likelihood methods is to take a Bayesian approach,
since this also requires computing a likelihood function and in the context of a very high-
dimensional data problem, sampling from the posterior using a Monte Carlo approach may
not be very much more computationally demanding than trying to find the maximum of
a complicated and possibly multi-model likelihood function. Bayesian methods have the
advantage that when used in prediction, they correctly allow for the uncertainty in the
parameters being estimated, and also, as a result of the well-known “shrinkage” effect that
occurs when estimating high-dimensional parameters, they may also perform better simply
as estimators of the spatial structure. Therefore, there are natural reasons to consider a
Bayesian approach to the kinds of models defined in this section. Some of the disadvantages
are the obvious computational complexity of the problem, and the difficulty of specifying
a suitable parametric model, with associated prior distributions, in a rational way without
appearing to make some totally arbitrary decision. Two recent papers have attempted to
do this, however, taking quite different approaches to the problem, and we shall review
both of these briefly here.

Damien, Sampson and Guttorp (2001) considered a model of the form
Z(z,t) = p(z,t) + v(2)Y2E, (2) + Ec(z, t), (3.49)

in which p(z, t) is a deterministic mean function (actually taken to be constant in time, so it
is really u(z)), v(z) is a location-dependent variance function (actually constant in space in
their examples, so v(z) = v, though this is not essential for their formulation), E, is some
smooth spatial process and F.(z,t) represents local measurement error (independent for
each (z,t) combination). Thus the model as specified incorporates no temporal correlation
at all, though it could easily be extended to do so.

With this specification, the covariances at the same time point are of the form

Cov{Z(z,t), Z(y,t)} = {il(fé;ﬂ)j(;gzicorr{E(x) E.(y)}, z=#v,

As elsewhere in this section, we assume a deformation stucture for the spatial corre-
lations, which leads to

i = (viv;)2pe(||& = & 1)), (3.50)

where &; is the transformation of x; in the D space and py is some homogeneous spatial
correlation function indexed by parameter 6. After estimating a sample mean the likelihood
function is of the form

T
L(S|%) = [2z%|~(T-D/2 exp{—Etr(E_ls)}, (3.51)
where ¥ is the modeled covariance matrix and S is the sample covariance matrix.
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One possible approach would be to parametrize the x; — §; transformation using
radial basis functions or some other “basis function” approach, as in section 3.3.2, in order
the reduce the problem to a parametric model for which standard MCMC methods are
easily applicable. Damian et al. did not do that but instead treated the {;} directly as
unknown random quantities, with a prior distribution designed to penalize configurations
with high bending energy. The precise formula for bending energy was of the form

T T
W7 K e 4 @7 K

where £€() is the vector of first coordinates of the {&1}, € (2) similarly for the second coordi-
nates, and K; and K> are matrices whose entries are determined by the x; values. Damian
et al. cited earlier references including Bookstein (1991) and Sampson et al. (1991) for
the precise details of this construction. The “prior” on = = {§;, i = 1, ...,n} is then taken
to be of form

WT g e L e@T R e
'3 18+ & 2€ . (3.52)

272

m(Z) x exp (—

For the remaining parameters of the model, Damain et al. took a conventional approach of
assigning vague priors. In the specific formulation that they adopted in their examples, the
vector of standard deviations v; was replaced by a single parameter v, and the pg model
in (3.50) was taken to be the standard exponential decay function, pg(d) = exp(—60d), so
there is only a one-dimensional parameter 6 to worry about. It seems clear that these
specifications could easily be extended to include alternative forms of covariance structure
or more complicated representations for the mean and variance functions of the process.

With this specification of the model, the full joint distribution of all the random
quantities involved is obtained by combining (3.51), (3.52) with the prior = (v, #) say for v
and 0, to give a combined likelihood x prior function of the form

L{S|S(E, v, 0)}x(E)n (v, §), (3.53)

where the notation is chosen to indicate that the modeled covariance matrix . is an explicit
function of the D-space locations = and the parameters v and 6.

Generating a posterior sample from the density proportional to (3.53) essentially in-
volves alternately sampling E given (v, #) and sampling (v, 8) given Z. The actual sampling
strategy follows the by now standard Hastings-Metropolis method of generating a trial
value for the parameters being updated followed by an accept-reject step. The authors
remarked that in the trial sampling step for &;, it is beneficial to impose a spatial structure
on the increments, so that neighboring points have a tendency to move together rather
than being resampled independently.

One rather unclear feature of this method is the treatment of the parameter 7 in (3.52).
This parameter controls the amount of smoothness in the deformation and is therefore
analogous to the smoothing parameter X in (3.34) or the number of basis functions m in
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(3.43). In their examples, Damian et al. simply set 7 = 1 without specifically justifying
that value. Presumably cross-validation is also a possibility in this case, if it can be
implemented computationally, but it would also be worth exploring a hierarchical structure
whereby 7 itself is treated as a random parameter, with a presumably widely dispersed
prior distribution, and estimated through a third level of Monte Carlo sampling. This
would be consistent with the approach often taken towards similar problems in Bayesian
hierarchical models.

An alternative viewpoint of essentially the same set of problems has been taken by
Schmidt and O’Hagan (2000). Like Damian et al. (2001), they restricted themselves to
a fairly simple version of the problem without temporal correlations and assuming spatial
covariances of the form (3.50). The likelihood function is again given by (3.51) though
with the small change in their case that the determinant term |%|~(T=1)/2 is replaced by
132|=T/2. For the covariance function pg, they assumed a finite mixture of Gaussian terms

po(h) = ayexp(—bih?), (3.54)
k=1

where ar, > 0, > ar = 1 and by > by > ... > bg > 0, similar to the original paper of
Sampson and Guttorp (1992). As already remarked in section 3.3.2, one could in principle
obtain a more general representation through expansions of the form of (3.46).

For the prior distribution on the set of configurations = — where we adopt the same
notation as Damian et al. (2001) for ease of comparison of the two papers — if we
write the D-space coordinates & = (& & ... &,) as a 2 x n matrix and G-space
coordinates similarly as X, then Schmidt and O’Hagan take the prior distribution of =
to be multivariate normal with mean X and a covariance matrix of form V ® R, with
V a 2 x 2 matrix representing the dependence between the two coordinates, and Ry and
n X n matrix representing correlations between points. For R; they took an exponential
correlation function of form

Ra(,2") = exp(—ballz — 2'||*),

with by again a smoothing parameter (analogous to 7 in (3.52)) which controls the amount
of bending. Like Damian et al., Schmidt and O’Hagan did not attempt any formal inference
about by but suggested it could be set equal to ﬁ, where a is a typical squared distance
in G space. For the 2 x 2 matrix V, they remarked that identifiability considerations allow
one to restrict attention to diagonal matrices, and therefore proposed a prior distribution
in which the diagonal elements independently have inverse gamma priors. The resulting
prior distribution on Z is proper and this avoids certain problems of identifiability which
remain in the specified model (e.g. if all the values of Z are multiplied by a constant and
the parameter by in (3.54) adjusted accordingly, we get exactly the same model covariance
function ¥). Under a Bayesian analysis, the posterior weights given to statistically equiv-
alent configurations will be the in the same ratio as the prior weights, but provided the
overall prior distribution is proper, this will not cause any fundamental problems.
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For the priors on the parameters ay and by in (3.54), Schmidt and O’Hagan assumed
uniform distribution of ay,...,ax over the simplex ar/ge0, > ar = 1, and independent
log-normal priors for by.

One difficulty that they note with the model is that it does not incorporate a nugget
effect. Within the framework of (3.54), a nugget could be defined by letting by — oo.
However, as it stands, this would be inconsistent with the assumed log-normal prior for
all the bg. To get around this difficulty, Schmidt and O’Hagan proposed setting b; = oo,
while retaining log-normal priors for bs, ..., bk

Another possible extension of the model (noted at the end of their paper) is to allow
K also to be a variable parameter with some prior distribution. In this case, the number
of parameters of the model is not fixed a priori, and to fit the model by MCMC sampling,
one needs an extension of MCMC known as the reversible jump sampler (Green 1995).
Conceptually, this should not be difficulty, though Schmidt and O’Hagan do not consider
it in their paper.

In the remainder of their paper, Schmidt and O’Hagan describe in considerable detail
an MCMC algorithm for efficient updating of the posterior distribution, a procedure to
obtain predictive distributions for observations at unobserved locations, and some sim-
ulated and real-data examples. We shall not attempt to describe any of these features
in detail, but it is worth remarking that, as with Damian et al. (2001), the sampling of
points in D space is not taken independently but constrained so that there is a tendency for
nearby points to move together. In the method of Schmidt and O’Hagan, this is achieved
through a principal components decomposition of the sample covariance matrix S, which
they interpret as ensuring that groups of sites which are highly correlated in G space tend
to move together in D space.

To conclude this section, we note some comparisons and contrasts between the meth-
ods of Damian et al. (2001) and Schmidt and O’Hagan (2000), as well as the maximum
likelihood approach of Smith (1996). Maximum likelihood estimators do not have good
statistical properties in very high dimensions and this is essentially the reason why Smith
(1996) did not take the full configuration matrix Z as a vector of unknown parameters,
preferring the parameterize the deformation f in terms of a finite number of radial basis
functions. In the present writer’s view, this is still the simplest approach conceptually,
though there is a lot of arbitrariness in the selection of a radial basis function, the loca-
tion of the centers, and the number of centers included. The practical justification for the
method relies on the assumption that the first two decisions — choice of basis function and
locations of centers — do not have a huge sensitivity on the results provided “reasonable”
choices are made in each case, while the third decision, how many centers to include, has
the same intepretation of a smoothness parameter as arises somewhere in every model of
this type. The two Bayesian approaches we have reviewed do not rely on low-dimensional
parametrizations of =, but impose some structure in the prior distribution. In both cases,
the prior must impose some smoothness constraint on the deformation and the way this is
done still appears to be somewhat arbitrary. Apart from the smoothness parameter, the
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overall form of the prior is quite different for the two approaches, with that of Damian et
al. much more explicity tied to the traditional “bending energy” formulations of spline
theory. Finally, although the paper by Schmidt and O’Hagan appears to go further in
developing a detailed and efficient computational algorithm, the ability of either method
to handle large data sets would still appear to be untested at the present time.

3.4 The Le-Zidek approach

An alternative Bayesian approach was introduced by Le and Zidek (1992) and Casel-
ton, Kan and Zidek (1992), and has been further developed in a series of papers, e.g. Brown,
Le and Zidek (1994), Le, Sun and Zidek (1997), Zidek, Sun and Le (2000). It differs from
the Bayesian approach of section 2.4 by allowing a more comprehensive prior structure on
the covariances, in particular, exploiting the well-known Wishart conjugate prior for the
inverse of an unknown covariance matrix. Other developments involving Wishart priors
were due to Loader and Switzer (1992), Monestiez and Switzer (1991) and Mardia and
Goodall (1993), but the Le-Zidek development is the most general and comprehensive, so
we concentrate on that here.

Le and Zidek (1992) pointed out two disadvantages of classical kriging: the dependence
on parametric, isotropic assumptions about a covariance matrix ¥, and the fact that the
kriging step proceeds under the assumption that > is known; this nearly always means

that kriging variances are underestimated because they do not account for uncertainty in
3.

Previous Bayesian approaches had been tried, for example Omre (1987) computed
a Bayesian interpolator, and Omre and Halvorsen (1989) extended this to include linear
trend with unknown coefficients. The resulting model was identical to an approach due
to Fedorov and Mueller (1988, 1989) (see Chapter 6), though the Fedorov-Mueller ap-
proach was non-Bayesian. Omre, Halvorsen and Bertig (1989) elaborated on the earlier
Omre-Halvorsen approach to illustrate two competing linear structures. However, in this
approach the final estimation of the spatial covariance matrix is based on an empirical
Bayesian step, with resulting estimates treated as if they were known a priori. It is there-
fore not clear whether this answers the traditional criticism of kriging, i.e. that uncertain
components treated as if known.

Another approach due to Loader and Switzer (1992) used Bayesian arguments to mo-
tivate an interpolation procedure, though their approach is not fundamentally Bayesian.
They did consider anisotropic models. However they did not explicitly determine the poste-
rior distribution of unobservables, and their approach was limited to producing predictions
at a single site, not considering the covariance of predictions at different sites.

The new approach introduced by Le and Zidek (1992) aimed to avoid these objections
by putting everything in a fully Bayesian context. However, as we shall see, it still requires
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some parametric modeling of the Wishart matrix ¥, and therefore does not entirely answer
the objections that they raised to earlier approaches.

In this section, we first give some relevant mathematical background on multivariate
and matrix-valued random variables and a review of Bayesian multiple regression theory,
and then we develop the Le-Zidek formulae in detail.

3.4.1 Review of multivariate distribution theory

Although the basic distribution theory is standard (e.g. Johnson and Kotz (1972),
Mardia, Kent and Bibby (1979), Press (1982), Anderson (1984)), the results are not often
all collected in one place, so we do this for reference here.

We begin with the multivariate normal distribution: the p-dimensional random vector
X has a multivariate normal distribution with mean p and nonsingular covariance matrix
¥ (notation: X ~ Np(u,)) if its density at X =z is

(2m) P[5 V2 exp {—%m TS m} | (3.55)

For the purpose of the discussion here, we do not need to consider the case of singular X,
when the multivariate normal distribution is still well-defined but does not have a density.

A convenient generalizion of this which we shall call the matriz normal distribution
(this does not seem to be standard terminology, though it is a natural concept) applies
when X = (z;;) and M = (u;;) are both (p x ¢)-dimensional matrices and the covariance
matrix ¥ is of the form

Cov{zij, e} = wikvje, (3.56)

with W = (w;) a p X p matrix and V = (vj¢) a ¢ X ¢ matrix. In that case we write

X ~ Npg(M,WRYV),

the ® notation meaning the Kronecker product of W and V, i.e. the matrix whose entries
are given by (3.56). Some elementary facts about Kronecker products include

We V=WV,

3.57
WeV)l=wleVv! (3:57)

and we shall also write W' = G = (gi), V™' = F = (fjz)- To extend (3.55) to apply
to the matrix normal distribution, we note that the quadratic form in the exponential of
(3.55) may be written as

Z Z Z Z(i%‘ — pij) (Tre — pre)ginfie = tr{G(X — p)F(X — )™}, (3.58)
T 7 k¢
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where tr(A) denotes the trace of the matrix A, so the density is
1
(2m) P92|GI2 PP exp |~ tr{G(X — w) F(X — )"} - (3.59)

A side benefit of the representation (3.59) is that likelihood calculations involving a (p x ¢)-
dimensional matrix normal distribution require the calculation of determinant and inverse
for a p X p and a ¢ X ¢ matrix, but not directly for a (pq) x (pg) matrix, a considerable
computational saving if p and ¢ are large. This is relevant, for example, for the calculation
of the likelihood function in separable spatial-temporal processes (Chapter 5).

We now turn to the Wishart distribution: for integer m and p, the random matrix D
has a Wishart distribution repesented by

D ~ W,(A,m). (3.60)

if D may be represented as D = Z;n:l ZjZJT when Zi, ..., Z, are independent N, (0, A).
The density is proper when m > p — 1, and is given by

I D (m—p—1)/2 1 _
pim| |J1|m/2 exp {—Etr(DA 1)} (3.61)
where ¢, ,, is the constant
v -1
Cpom = omp/2 . p(p—1)/4 H T (%1_]) . (3.62)
i=1

Johnson and Kotz (1972) also write this as

o= e, (3))

P .
T, (%) — qp(p—1)/4 H T (%) . (3.63)

=1

where

In Bayesian statistics, the Wishart distribution is often taken as a conjugate prior for
the inverse of a multivariate normal covariance matrix, and this is sometimes distinguished
by the terminology inverse Wishart distribution: if (3.60) holds and C = D', B = A~}
then we write

C ~ W, (B,m), (3.64)

with density proportional to |C|~(m+P+1)/2 exp{—L1tr(C~1B)}.

Another useful concept is the matriz t distribution (Dickey (1967), Johnson and Kotz
(1972)), which is the distribution of T = J7'X when X ~ Np,(0,I, ® Q), JJT ~
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W,(P,m + p — 1) independent of X (P and @ are respectively positive definite p X p and
P
¢ x g matrices; I, is the p x p identity matrix), and which has density given equivalently

by
-1
—pq/2 m+p+q_1 m+q_1 .
T ( 2 L 2 (3.65)
. ‘Q|(P+q—1)/2|p‘Q/2|Q + TTPT|—(m+p+q—1)/2
or .
,n,—pq/21—1q (m-i—p;'q—l) {Fp (m+2p—1>} )
(3.66)

. ‘P‘—(m+p—1)/2|Q|—p/2|P—1 + TQ—lTT|—(m+p+q—1)/2.
We write T' ~ t(p, q; P, Q, m).

A key result to the derivations of Caselton, Kan and Zidek (1992) and Le and Zidek
(1992) is the following decomposition: suppose C ~ Wp_l(B,m), where C and B are

decomposed as
011 Cl2> (Bll BIZ)
C= , B = , 3.67
(021 022 BZl BZZ ( )

where C17 and Bi; are a X a, C12 and Biy are a X b, etc. (p = a+b). Define

Ci2 =C11 — C12C5' Con,

T = C1205,

e (3.68)
B2 = B11 — B12B55 Bo,
n= B12B2_21.
Then

ng ~ Wb_l(Bzz, m — a), (369)
Cl|2 ~ Wa_l(Bl|27m)7 (3.70)
7|Cij2 ~ Nap(n, Crj2 ® B3y), (3.71)

where, also, Co3 is independent of (Cyja, 7).

Since the proofs of (3.69)—(3.71) are not readily accessible, in the remainder of this
subsection we outline them. This material may be omitted by the reader not interested in
the details.

We use the following standard results:

Result 1 (inverse of a partitioned matrix; Mardia, Kent and Bibby (1979), section
A.2.4):

166



If Aand B = A™! are each partitioned as in (3.67), then

By = (A1 — A1pAgy Ay) 7t = Al_é,
By = _B11A12A2_21’
Byy = — A5 Asy By,
By = (Agp — A1 AT} Arp) ™ = Ay

2|17

Equivalently,
Biy = —Aj{ A12B2s, Ba1 = —BaaAxi AT

Result 2 (Mardia, Kent and Bibby (1979, Theorem 3.4.6):
Suppose D ~ W, (A, m), m > a, where D and A are partitioned as in (3.67), then
Dy ~ Wy(Agp1,m — a), (3.72)
and Dy|; is independent of (D1, D12).
Proof of (3.69):
Writing A = B™Y, D = C~1, we have D ~ W,(A,m). By Result 2, (3.72) holds.

However, Result 1 shows that Ay, = B3, Dy, = Cy,'. With these substitutions, (3.72)
is equivalent to (3.69).

Proof of (3.70):

T
We have D1 = Z;n:l Z J(.l)Z J(.l) where ZJ(.l) consists of the first a entries of the vector

Zj ~ N(0,A). Therefore Z\" ~ N(0,A;;) and Dy, ~ Wo(A1,m). But D! = Cyp,
Al_l1 = B3, hence the result.

Proof of (3.71):

Writing
T = 01202_21 = —D1_11D12,
B12Byy = — A7 Asa,

By, = A1,
Cip2 = D,
the result reduces to showing that
Diy' Dis| Dy ~ Nop(A7 Ava, Dy © Agpy). (3.73)
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Writing Z ;2) for the last b entries of Z;, the conditional distribution of Z 3(2) given Z 3(1)

_ 1 . . _ .
has mean A21A111ZJ(- ) and covariance matrix A2|1 = Agg— A21A111A12 (recall section 2.4),
SO we can write

2" = An AR 2V + 77,

where Z j(-?’) has distribution N (0, Ayj;) independently of Z J(.l). Then

T
Dip=Y 27

I

<
I
—

T m T
20207 Ar Ay + 3 202

j=1

o

<
I
—

" T
= DA An+ > 202" (3.74)

=1
Consider the distribution of the second term in (3.74), where we first condition on the

T
entire sequence ZJ(-l), 1 < 7 < m. For a single j, Zygl)ZJ(.?’) is a p X p matrix which is the
Kronecker product of two p-dimensional vectors; therefore, its distribution, conditional on

T
Z 3(1), is normal with mean 0 and covariance matrix (Z 3(1)23(1) ) ® Ag|1- Summing over all

T
4, the conditional distribution of Z;"zl ngl)Z J(-?’) given ZJ(-I), 1 < j < m, is normal with

mean 0 and covariance matrix D13 ® Apj;. But this depends on ZJ(.I), 1 <j < m, only
through D1, therefore by an iterated expectation step, the conditional distribution given
Dy, is the same. Substituting in (3.74), the conditional distribution of Di5 given D1 is

Nop(D11 A7 Ara, D11 ® Agpr).

The result (3.73) follows immediately from this.

As a final step in the argument, the independence statement that follows (3.71) follows
from the independence statement at the end of Result 2: we have that Ds; is independent

of (D117D12)- But D2|1 = 02_21, D11 == Cl_|21’ Dlg = —D1101202_21 == _Cl_|217-’ SO 022 is
independent of (C’l—|21, Cl_|217'), which is equivalent to what was asserted.

3.4.2 Bayesian inference for multivariate regression

This material is also standard, though the complete results are not often all collected
togther, e.g. Press (1989) gives the derivations but in the slightly simpler case that the

prior distibutions are vague. Therefore, we re-derive the results here in the general case.
Other references are Lindley and Smith (1972), Box and Tiao (1973).

We assume vy, ..., y, are independent with

y; ~ Np(Bzj;,X).
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Here z; is a g X 1 vector of covariates and B is a p X ¢ matrix of regression coefficients.
The prior distribution on (B, X)) is assumed to be of the form

-1
Y~ W, (Y, m),

3.75
B|Y ~ Npy(B*, =@ F71). (8.75)

Define V = ¥~!. Combining (3.59) and (3.61), we see that the joint density of (B, V) is
proportional to

v |mramp=1)/2 g _%tr (V((B-B"FB-B" +0)}. (3.76)

The hyperparameters which must be specified to define this joint density are (m, ¥, B%, F).
The vague prior formulation of Press (1989) corresponds to m = —q, ¥ =0, B° = 0, F = 0.

The likelihood, i.e. the joint density of v, ...,y, given B and V, is proportional to

1 n
V"2 exp{ -2 > (yj — Bx;)"V(y; — Bx;)
j=1 (3.77)

1
=|V|"/2 exp [—itr{V(Syy — BSyy — Sya BT + BSMBT)}}
where we define
Z T Z T
Syy = y_ij 3 S.’Ey = %Z/J ’

Sym = Zij?7 S:z;m = Z.Z'J.’L’f

Combining (3.78) and (3.77), the posterior distribution of (B,V) given Y = (y1,...,yn) is
proportional to

(3.78)

1
|V‘(m+n+q—1)—1)/2 exp [_itr{v (Syy - BS:ny - Sya:BT + BS{C.’L‘BT

(3.79)
+(B-BY)F(B- BT + \11) H :
Let us rewrite the expression
Syy — BSszy — SyzBT + BS.. BT + (B — B®)F(B - B%)T (3.80)
in the form

(B—- B*G(B - B*)T + H. (3.81)

It is readily checked that (3.80) and (3.81) are the same if we define

G =Sz + F,

B* = (Sy, + B°F)G™!, (3.82)

H=S8,, — B*Sy, — 8ysB*" + B*S,,B*" + (B* - B")F(B* — B")T.
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Therefore, the joint density (3.79) is equivalent to
1
|V |(mAnta—p=1)/2 oyy, — 5t {(V(B-B"GB-B)"+H+V)}|. (3.83)

Comparing (3.83) with (3.76), therefore, the posterior density amounts to updating
the prior hyperparameters as follows:

m — m —+n,
U —-Vv+H,
B° - B*,
F—G.

(3.84)

In particular, the posterior density of Y given Y is Wp_l(‘lf + H,m+ n) and the posterior
density of B given Y and ¥ is Np,(B*, X @ G71).

We can also represent the marginal posterior of B in matrix-t form: if J = £~1/2
then J(B — B*) ~ Np,(0,I, ® G~') conditionally on J, so the distribution of B — B* is
t(p,q; (P +H) 1 G71,m+n+1). Using (3.66), the posterior density of B is proportional
to

@ + H + (B — B*)G(B — B*)T|~(m+n+a)/2, (3.85)

The final piece of “standard theory” we review is the predictive distribution of a new
observation, cf. Press (1982). Suppose a new p-dimensional observation y* is to be taken
at a covariate vector z* such that

y*|z*, B,¥ ~ N,(Bz*,¥). (3.86)

Under the Bayesian framework, the conditional distribution of y* given y, ..., ¥, is obtained
by integrating out the distribution (3.86) with respect to the posterior distributions of B
and X; this is also known as the predictive distribution. It may be derived as follows.
Conditionally on ¥, we have B ~ Np,(B*, ¥ ® G™'), and then (3.86) implies

Y2, S, Y1, s U ~ Np(B*z*, (1 + 2*T G~ 1% D).
Hence the Bayesian predictive mean of y* is B*x*, and the marginal predictive distribution

of y* — B*z* given z*,y1,...,yn is t(p,1; (¥ + H)" 1,1+ 2*TG " 1z*,m+n —p+1). By
(3.65), the predictive density of y* is proportional to

—(m+n+1)/2
{1 + TG e + (y* — B*2*)T (0 + H) " (y* — B*m*)} . (3.87)

3.4.3 Details of the Le-Zidek approach
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The fundamental idea of the approach is to assume there are a set of p = u+ g
locations at which we would like to know the value of the field being measured, but for
practical measurement purposes, only the last g locations are “gauged” while the first u
are “ungauged”. The complete field is assumed to be represented by n independent p-
dimensional vectors y;, j = 1,...,n, but only the last g components of each y; are actually
observed. The model for y; is

yj ~ Np(Bzj, %) (3.88)

where z; is a g-dimensional covariate vector, B is a p x ¢ matrix of regression coefficients
and ¥ is a p X p residual covariance matrix.

The vector y; and the matrices B and ¥ may be partitioned into gauged and ungauged
sites:
(1 B S %
= (Y B = 1 Y — 11 212
Y; y](?) ? (Bg ) ’ (221 Y9 ) )
As in section 3.4.1 we write

S1j2 = S11 — T1285 T, T=Y12Y5,.

Recall from section 2.4 that the conditional mean of yj(l) given yj(-2) is Bix; +T(y](2) — Byx;j),

i.e. 7 is the slope of the regression equation, and the conditional variance is ¥i,.

Note that we may also write ¥ in the form

o Sijg + 782277 7899
E227'T Y92 )

By analogy with the framework of section 3.4.2, we assume the following joint prior

for B and X:
S~ W, (Y, m),

3.89
B|Y ~ Npy(B*, =@ F71). (3.89)

Using (3.69)—(3.71), the prior distribution for ¥ may be equivalently rewritten:

Yigg ~v Wg_l(\l’zz, m— u), (3.90)
Y2~ WJI(‘I’1|27 m), (3.91)
7|12 ~ Nug(n, L1z ® Us), (3.92)

where (W3, Wq9,7) represents the same decomposition of the prior covariance matrix ¥
as (Y22, X1)2, 7) does of ¥; in particular n = U1, Ut Also Yoy is a priori independent of
(E]_|2, T).
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The observed data are given by

being i.i.d. realizations of
Y; 1B, X,z ~ Ng(Bazj, Xa2).

To generate the full posterior distribution of (B, ), we first note the following ele-
mentary fact about Bayesian statistics: if the model parameter 6 factorizes as (61, 02) with
01 and 05 a prioriindependent, and if the distribution of the observed data D depends only
on 2, then the posterior distributions of #; and 6, are also independent, the posterior for
0, being the same as the prior and the posterior for 6, the same as if we did not consider
0, at all. In obvious notation,

m1(01)m2(62)f (D|6-2) — o (0) - m2(02) f (D|62)
ff771(91)7r2(92)f(D\92)d91d92 f7r2(02)f(D|02)d92
We apply this reasoning with 61 = (3q)2, 7, By — BY — 7(By — BY)), 02 = (B3, X12),
noting that the distribution of the observed data is defined entirely in terms of the mean

Bs and the covariance matrix Yo5. Also, By — B? —7(By — Bg) is a prior: independent of
Bs and has the prior distribution

{B1 — B} = 7(Bs — B)}E ~ Nug(0, 21, @ F71). (3.93)

Using the results of section 3.4.2, we have

S2|D ~ W, N (Wag + Haz,m — u+ n), (3.94)
By|D, Y25 ~ Nyy(B3, 592 @ G™1), (3.95)
where
G = Syp + F,
B3 = (Sy,s + ByF)G ™, (3.96)

Hzy = Syyys = B3Suys = SyaaB3" + B3SaaBy' + (B3 — B3)F(B; — BY)”,

using obvious notation, e.g. B® and B* are partitioned in the same way as B, Sy, is the
sum of products matrix between yj(.2) and zj, 1 < j < n, and so on.

The equations (3.91)-(3.96) together define the complete posterior distribution of
(B,%) given D. One consequence worth noting is the marginal posterior distribution of
B given D and ¥: combining (3.93) and (3.95), this is

B1|D, S ~ Nyg(BY, (1222mT) @ GH + 815 ® F7 1), (3.97)
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where Bf = BY + 7(B3 — BY).

The calculations may be extended to predictive distributions of future observations,
as follows. Suppose a new observation y* is to be taken corresponding to covariates x*.
We partition y* into y(" (first u coordinates) and y@" (last g coordinates) and consider
separately the predictive distributions of 4" and y(* given y(®~. The predictive density
of y@7 is given by (3.87) with the obvious changes of notation, i.e.

{y®" — Biz*}|z*, D ~ t(g,1; (Wap + Hap) L, 1+ 2" TG 2, m —u+n—g+1). (3.98)

The conditional distribution of ()" given y®" is normal with mean Byz*+7(y®" — Byz*)
and covariance matrix ¥;5. We also have from (3.93) that

{Biz* — 7Bax*}|D, 7,513 ~ N, [BYz* — 7BYz*, (a*T F~12*)y ).
Hence
L*,@)* D b N, BO * (2)*_B0 * 1 *TF—l )3
y [y D, T N0 ~ Ny[Biz® +7(y px*), (1 + 2 ) g 2]

We also have that 7|X;, is given by (3.92), so after integrating out this conditional distri-
bution,
yO Y D, %y ~ Nu[Blae* +a(y®” — Bya™),
(42 TP 4 (4" BT (" — Bt)} ol

Finally using (3.91) as well, we deduce

{y")" = BYz* +n(y®" — Blz*)}y®", D
~t(u, 0 T+ TP et 4 (y @7 = BYe) 05, (v — BSa*),m — u+ 1),
(3.99)

Equations (3.98) and (3.99) are equivalent (in different notations) to the main results (16)
and (17) of Le and Zidek (1992).

It is important to understand the structure of this result. The predictive distribution
of y(2)* is just the standard result for a predictive distribution in a multivariate normal
family, as in (3.87). On the other hand, the conditional distribution of y(l)* given y(2)*
is derived entirely from the prior — although (3.99) has been derived as the conditional
distribution given D, it is in fact independent of D. However, the marginal predictive
distribution of y”, which may be derived by combining (3.98) and (3.99) and then

integrating out y®”, does depend on D through (3.98).
3.4.4 Hierarchical models

As recognized by Le and Zidek (1992) and developed further by Brown, Le and Zidek
(1994a), the theory that has been presented in section 3.4.3 is only a part of what is required
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to produce realistic spatial interpolations. The conditional distribution of the ungauged
sites given the gauged sites is unaffected by the data, i.e. the posterior distribution is the
same as the prior distribution, so we clearly need more structure on the prior parameters
BY and especially ¥ to develop a workable method. However, this could be done through
a hierarchical approach. For example, one possible model is to assume that there are no
covariates, the overall mean is given by a common p, and the ¥ matrix is based on a
common correlation coefficient p between each pair of stations, i.e.

2 .f.: .’
‘I’:{Zgz iz (3.100)

In this case, we can modify the structure of section 3.4.3 very slightly to assume B° =
(fy pty -, )T (a p x 1 vector dependent on a single parameter p) where u|¥ has a simple
normal distribution N (ug,1/f) with f an arbitrary scalar; the limit f — 0 corresponds to
an uninformative prior. They also refer to the possibility of a regional model in which the
stations are classified into geographical regions and the parameters p, 02 and p are different
for each region, with spatial correlation 0 between different regions. Another possibility,
not explicitly mentioned by Le and Zidek but seemingly natural for their approach, is to
model ¥ by one of the standard geostatistical covariances, for example, ¥ = (¢;;) where

i o? if 2 = 3,
V= {oza%‘dii/ﬂ if i # 4, (3.101)

where d;; is the distance between stations ¢ and j, B is the range parameter of the ex-
ponential variogram model, and « € [0, 1] is a parameter whose value reflects the nugget
effect (a = 1 is no nugget effect).

The models may be characterized by defining a vector of hyperparameters 6 where, for
example, in (3.100), § = (02, p), and in (3.101), = (02, a, B) (or (02, B) if the possibility
of a nugget effect is ignored). Our model is then of the form

y§2)|B7 %, Lj~ Ng(BZ"Ejv E22)a

(3.102)
SO, m~ W, (U,m), B|E,B° F~ Ny(B°, L@ F),

where the first equation in (3.102) represents the first stage of the hierarchchy, i.e. the
distribution of the observed data in terms of B and ¥, while the second equation repre-
sented the second stage of the hierarchy, given the joint distribution of B and Y. Implicit
in the hyperparametric approach is that we represent all the unknowns of the second stage
(B°, ¥, F and m) as functions of a set of hyperparameters 6.

There are then two ways we may proceed. One way is to add a third stage to the
hierarchy in (3.102), specifying either a proper or improper hyperprior for § and calculat-
ing a fully Bayesian posterior distribution using Markov chain Monte Carlo methods, as
in many modern approaches to hierarchical models. A second approach, slightly simpler,
is to estimate the parameters # by an exact or approximate maximum likelihood scheme,
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and then to treat the estimates as fixed values, in effect ignoring the uncertainty in 6. This
is sometimes known as the “empirical Bayes” approach, or “type II maximum likelihood”.
Le and Zidek favored this approach because it is computationally simpler to implement
and (they argued) the posterior distributions for B and ¥ are generally not too sensitive
to slight misspecifications of #. In spite of their preference for this approach, it should
perhaps be pointed out that the actual interpolation step (the conditional distributions at
the ungauged sites given the gauged sites) is rather heavily dependent on the prior distri-
bution and therefore may be affected by uncertainty in 6 rather more than the predictive
distributions at the gauged sites. For this reason, it may still be desirable to consider the
fully Bayesian approach.

It should be pointed out that it is possible to integrate out the values of Bys and Y99
in (3.102). Since the second row of (3.102) implies (using (3.90))

N2 U, m ~ Wit (Uag,m —u), Ba|S, B, F ~ Nyg(B3, 522 ® F1),

letting Y?) = (y§2), ...,yg)) denote the g x n observed data matrix and X = (21, ..., Z)
the corresponding matrix of covariates, we have

Y(2) |B2a E22a Boa \Ila Fa m~ NQP[B2X3 ZJ22 ® In]a

and hence
Y @S9y, B, U, Fym ~ N,y[BIX, Y9y @ (I, + XTF1X)),

This is of the form
S5/ 2(Y® — BIX)|Syy, B, U, F,m ~ N0, I, ® (I, + XTF1 X)),

so in the definition of the matrix ¢ distribution in section 3.4.1, we identify T with Y(2) —
BYX and J with ¥='/2 and thereby deduce

Y® — BYX|B®, ¥, F,m ~ t(g,n; U3, I + XTF ' X,m —u— g + 1),

so for example, using (3.65), the marginal density of Y'(?) is proportional to

-1
r. <m —u+ n) {Fn (m —u— g) } |\1122|n/2.
2 2 (3.103)
L+ XTF1X + (Y® - BIX)Tw} Yy — BYX)|~(m—utn)/2,

(We have retained the T';, terms in (3.103) because of the possibility that m is itself regarded
as a hyperparameter, as it sometimes is.)

At this point, there would appear to be two ways of proceeding. One is to use (3.103)

directly to define the likelihood of the observed data given the hyperparameters, using
it either as the input to a Bayesian approach or else maximizing with respect to the
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hyperparameters to obtain type II maximum likelihood estimators. This possibility is
mentioned by Brown, Le and Zidek (1994a) but not pursued by them, apparently because
of computational difficulties. Instead, following a paper by Chen (1979), they advocated
an application of the EM algorithm (Dempster, Laird and Rubin 1977), in which the model
is retained in the form of (3.102), and the algorithm alternates between maximizing the
likelihood of @ given Y95 (the M step), and computing the posterior mean of the sufficient
statistic (355 ,log |Ya2|) given the current values of f and the observed data (the E step).
We omit the details of this, referring to section 4 of Brown, Le and Zidek (1994a).

Brown, Le and Zidek (1994a) also considered the possibility of multivariate observa-
tions, for example, several pollutants measured at each station. This approach requires
no mathematical generalization of what has already been given, because for instance, if
there are K measured variables at each of the p stations of the full set of (gauged and
ungauged) stations, we simply repeat the same theory with ¥ and ¥ now (pK) x (pK)
matrices. However, specifying parametric models for such large matrices is likely to prove
a difficult challenge in itself, and to simplify matters, they suggested a Kronecker product
form for this:

U=A®Q, (3.104)

with A a p X p matrix of intersite covariances and 2 a K x K matrix of covariances
between the variables. This approach involves some oversimplification — for example, it
is a consequence of (3.104) that the correlations between measuring stations are the same
for all the pollutants. Brown, Le and Zidek argued that this is reasonable because the
same air transport processes apply to all the pollutants. (However, this may not be true.
For example, ozone is a product of photochemical reactions taking place over large spatial
scales and time scales of several hours, whereas fine particulate matter tends to vary over
much shorter time and space scales. It might be possible to extend (3.104) to a sum of
Kronecker product matrices, each representing a different physical process.)

Le, Sun and Zidek (1997) made a further extension of the theory to data missing by
design. This model is designed to cope with the situation, quite common in practice, that
not all of the variables are measured at all of the measuring stations. They assumed that
of the g K possible combinations of gauged sites and measured variables, some number L of
them are deliberately missing from all the observations. One could, in principle, still model
the prior covariance matrix through the Kronecker product model (3.104), but because of
the missing variables, only a (9K — L) x (9K — L) submatrix of (3.104) would be modeled.
At this point, there would appear to be two ways that one could proceed:

(i) Maximize the likelihood (3.103) or apply the EM algorithm but using only the
(9K — L) x (9K — L) submatrix of ¥ corresponding to the observed data,

(ii) Use the EM algorithm based on the full (¢K) x (¢K) matrix 3, in which the E
step is modified to take account of the missing data.

Le, Sun and Zidek (1997) considered only the second method and did not say why they
rejected the first, but presumably, it was because if g and K are large, the M step would
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be too computationally burdensome, requiring the determinant of a (9K — L) X (9K — L)
matrix without any simplification along the lines of (3.57). Instead, they showed how one
could apply the E step to (X5 ,log|Sa2|) after taking account of the missing data — in
effect, this is another application of the gauged and ungauged sites analysis of section 3.4.3,
but with the role of the ungauged sites now taken by the L site-pollutant combinations for
which data are unavailable. We refer to their paper for the details of this.

A limitation of this approach is that is appears to require that the same vector of
observations is available at all time points — it would be nice if the theory also worked for
data missing at random, but it would appear that it does not.

3.4.5 Discussion and applications

Brown, Le and Zidek (1994a) mention several reasons why their approach is preferable
to traditional kriging:

e Traditional kriging ignores the uncertainty in the estimation of the covariance struc-
ture, but this approach incorporates that into the prior distributions. The use of multi-
variate and matrix-valued ¢ distributions is analogous to the use of the ¢ distribution in

elementary statistics to allow for the uncertainty in o2.

e Typical geostatistical models are based on oversimplified parametric models assum-
ing stationary and isotropic covariances. Bayesian methods allow parametric models to be
updated based on the incoming data.

e The use of covariates allow for additional effects which may be either time or space
dependent. For example, they would allow the use of a spatial trend f(s) (where s is
location) represented by some parametric function of s as in the papers of Fedorov and
Mueller (1988, 1989).

e Traditional kriging considers only the interpolation of the field one location at a time,
whereas this approach allows full multivariate posterior distributions to be given for all
the ungauged locations. This is valuable, for instance, in the construction of simultaneous
prediction intervals.

As an example, Brown, Le and Zidek (1994a) considered the interpolation of an air
pollution field from seven stations in Ontario, where three variables were measured at each
station: Oz (ozone), SO4 (sulfate) and NOj (nitrate). (In fact the three variables were not
always measured at the same location, but they ignored this feature in that ppaer, unlike
the later paper of Le, Sun and Zidek (1997)). They used monthly averaged data for 72
months beginning in January 1983, and took logarithms of the monthly averages as the
basic variables used in the analysis. The time-dependent covariates they used were 1, t,
cos(2mt/12) and sin(27t/12), where ¢ is time in months. Thus the model allows for a linear
time trend and sinusoidal seasonal effect. They found that after adjusting for these effects,
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the resulting data for SO4 and NOg exhibited no seasonal variation or serial correlation
— there was some residual correlation for Os but this was ignored.

In their analysis they had data from 7 stations but considered the possibly of predicting
the air pollution field at a further 400 stations. If the m > p condition is to be satisfied
for a proper Wishart prior, we therefore require m > 407. The EM algorithm produced
a point estimate of m = 467, which does not imply a great many degrees of freedom to
spare. In practice, they performed further spatial smoothing by inserting the estimated
Y99 matrix into the interpolation algorithm of Sampson and Guttorp (1992), which allows
for nonstationarity by incorporating a nonlinear deformation function into the analysis.
This approach to nonstationary models is discussed in detail in Section 3.3. This allows
the predictions of the model to be extended to the entire region of interest. They did
point out, however, that incorporating the Sampson-Guttorp approach in this way deviates
from a strictly Bayesian view of the method, because, for example, it takes no account of
estimation errors in the Sampson-Guttorp method. Yet another possibility might be to use
maximum likelihood or Bayesian versions of the Sampson-Guttorp method, which would
allow for a strictly hierarchical approach to be retained, but at the cost of several further
layers of computation.

Another application of the methodology was given by Sun, Zidek, Le and Ozkaynak
(2000). This paper was about the interpolation of the PMjq field from 10 monitoring
stations in the vicinity of Vancouver, British Columbia. The measurements were based
on the Tapered Element Oscillating Microbalanace (TEOM) instrument, which effectively
measures the accumulation of particles on a filter, with readings typically being taken
hourly. Sun et al. considered daily aggregate data for 1996, filling in missing values by
interpolation. They considered the interpolation of the field to 299 additional locations.
They found that an AR(1) model provided a good fit to the temporal dependence, with
a common AR parameter of 0.34 being estimated for each of the 10 locations. Residuals
from the AR(1) model were used for the spatial analysis. The time trend was represented
as a sum of day-of-week and week-of-year parameters, and the Sampson-Guttorp (1992)
method was again used to obtain a spatial interpolator allowing for nonstationarity in the
underlying field. A final feature of their method was the use of cross-validation to assess the
fit of the model. Each of the 10 stations was omitted in turn, and a sequence of predictions
obtained at that station after refitting the model (including the Sampson-Guttorp step) to
the other 9 stations. In this way, they were able to assess the true coverage probabilities of
the estimated prediction intervals. Combining all the stations, they concluded that nominal
99%, 95% and 80% achieved respectively 96%, 91% and 78% true coverage probabilities.
They suggested that the discrepancies between nominal and actual coverage proportions
may be due more to extreme values among the PM;¢ measurements than to lack of fit of
the spatial model.

They did highlight some difficulties in this approach. Taking residuals from a time
series analysis and then doing a spatial analysis creates the possibility of a phenomenon
which they called “spatial leakage”, in which the spatial correlations of the residuals from
the time series analysis may be different from those of the original data. In practice, for
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the daily data, they computed both sets of spatial correlations and found them to be in
good agreement, but they remarked that the spatial leakage problem was much worse with
hourly data. An alternative approach might be to incorporate the temporal correlations
directly into the analysis, for example by assuming the g x n observed data matrix Y has
covariance matrix X ® I', with > the g X g spatial covariance matrix and I' the n X n
temporal covariance matrix. In spatial-temporal analysis this condition on a covariance
matrix is known as separability (see Chapter 5), and is appropriate when the temporal
correlation structure is the same at all sites, as appears to be the case here. This feature
is easily incorporated into the analysis given earlier — for example, in (3.103), the matrix
I, + XTF~1X should be replaced by I' + XTF~1X, and in (3.78), the definitions of S,,,
etc. should be replaced by

Syy =YT'YT S, =XT7'Y7T,

Sy =YT1XxT 5., =XI"1xT. (3105)
Of course, the predictive distributions of sections 3.4.2 and 3.4.3 would also have to be
modified to account for the temporal correlations, and we do not give those details here.
Sun et al. hinted that they considered such an approach, but remarked that it would
require further ad hoc assumptions and their method appeared to work quite well for the
application in question.

3.5 Kernel-based models

Recently an alternative approach has become popular, initially as an alternative rep-
resentation for stationary processes, but easily extendable to nonstationary processes. Hig-
don (2001) has given a nice review of the concepts; other recent references include Higdon
(1998), Higdon et al. (1999), Barry et al. (1996) Ver Hoef and Barry (1998), Ver Hoef et
al. (2000), Fuentes (2001) and Fuentes and Smith (2001).

The initial idea for a stationary process was to write a given process as a convolution
of white noise with a smoothing kernel:

z(s) = /SK(U — s)w(u)du, s € S, (3.106)

where S is some domain of observation (for example, the whole of two-dimensional space),
K(-) is a smoothing kernel and w(-) is a white noise process, which will be defined in a
moment.

The motivation for defining a spatial process as an integral of white noise can be
said to go back to Whittle (1954), who gave a similar representation for discrete spatial
processes. Specifically, Whittle considered processes {&;.} defined (for integer s,t) by a
relationship of form

D ajrbojik = €st, (3.107)
7,k
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with {e;+} uncorrelated random variables of mean 0 and variance 1. Equation (3.107) may
be thought of as the spatial equivalent of an autoregressive process in time series analysis.
Defining

_ ik
L(z1,29) = E aj.k%1%9
gk

for complex variables z1, zo, Whittle demonstrated that if L(z1,22) # 0 whenever |z;| =
|z2| = 1, then we can rewrite (3.107) in the form

k= ij,kes_j7t_k (3.108)
3.k

where b; 1 is the coefficient of #1 2 in the expansion of 1/L(z1, z2). Equation (3.108) can
be thought of as the discrete analog of (3.106).

In the continuous case (3.106), it is necessary to be a little careful over what we mean
by the white noise process w(u), since the process does not exist as a real function in the
usual sense. The following definition will suffice for all our purposes. Assuming a two-
dimensional process (an equivalent definition may easily be given for other dimensions),
for any € > 0, let u.;; = (i€, je) for ¢ = 0,+1,+2,...,5 = 0,£1,£2,..., and let w,; ;
be independent N(0,€?) random variables. For any measureable function a(u) for which
[s a®(u)du < oo, define

[ atwude=tim 3 ol (3.109)
2,]Ue,i,5

where the limit in (3.109) may most easily be interpreted as convergence in distribution.
Note that an immediate consequence of this definition is that [ a(u)w(u)du has mean 0

and variance
li 2 2 ) — 2
lime® Z a”(Ue,i ) /Sa (u)du,
1,J:Ue,i,;ES
and that z(s) defined by (3.106) has mean 0 and covariance function

C(h) =E{z(s)z(s — h)}
=E {/es s Ku-s)K(u' —s+ h)w(u)w(u')dudu'}

- li—l)T(l)E Z Z K(u67i7j - 8)w67i7jK(u6)i’7j, - S + h)weji’,jl
€
(2,5:e,i,;€S) (4,3 u, 41 ;1 €S)

= lim €2 o o
el_)lT(l) € Z K(ueazﬂ S)K(uﬁazaj S + h’)
$,J Ue,i,; ES

/Ku—s)K(u—s+h)d

/K u— h)K(u)du
(3.110)
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Thus the covariance function is stationary, and furthermore, is isotropic if K(u) depends
only on ||ul||. If either

(i) [K(s)ds < oo and [ K?(s)ds < oo,
or
(ii) C(h) is integrable and non-negative definite,

then there is a one-to-one relationship between K (-) and C(-), so the process may be
equally well specified in terms of either. (In the non-isotropic case, the relationship is no
longer one-to-one because C(-) does not uniquely determine K (-), but it is still legitimate
to seek a kernel K (-) for which (3.110) is consistent with empirical covariances.)

Thiébaux and Pedder (1987, Chapter 5) gave examples of how (3.106) could be used
to define a spatial process, and Higdon (2001) discussed the whole concept in detail. If
S = R? and we define

K(w) = /R 2 e K (z)dz, C(w)= /R 2 e *C(z)dx,

then (3.110) is equivalent to 3 .
C(w) = K?(w), (3.111)

and this relationship may be used to calculate either of K or C from the other (first
performing a Fourier transform, then applying (3.111), and then inverting the transform).
Here are three examples of this procedure, the first of which is taken directly from Higdon
(2001), the other two apparently new.

1. Suppose
K(u) = exp ——HUH2
2r )’

for some 7 > 0. Then
K(w) = /exp iwTu — iuTu du
2T
= /exp LT - i(u —itw) T (u — iTw) ¢ du
2 2T

= 27T exXp (—ngw> .

Therefore if we define 7/ = 27,
C(w) = 4r?r? exp(—TwTw)

7_/
=77 217 exp <—5wTw>
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and hence

1 2
C(u) = mTexp (—2—7_,||u\| ) .
The specific example Higdon gave of this was for 7 = 1, when C(u) o exp(—||u||?/4).

2. In a d-dimensional process let

7.(.d/2¢

o) = 00 7 dJ2)a®

(e ful))” Ko (allul])

denote the Matérn covariance function, where here K, is a Bessel function. The Fourier
transform of the covariance function, also known as the spectral density (Fuentes, 2001),
is given by

Cpaw(W) = d(a® + [lw]|2)7=4/2. (3.112)

Hence the corresponding kernel function is
KpowW) = ¢"?(0® + [|w|[?)7/274/
which is the same as (3.112) with (¢, o, v) replaced by (¢'/2, o, v/2 — d/4). Hence

K¢707V(u) = C¢1/2,a,u/2—d/4(u)'

Thus the kernel is itself a Matérn covariance function, but with different parameters. If
we denote the parameters of the covariance function by (¢¢, ac, Vo) and the corresponding
parameters of the kernel function by (¢x, ax,vk), the relationship is

1% d

¢Ka¢é‘/2a g = Qc, VKZTC_Z (3113)
We require vo > 0 for C' to be a legitimate covariance function. However, the kernel K
can be a well-defined positive function even if vg < 0; therefore, (3.113) is valid for all

vo > 0.

3. Ind = 2let K(u) = 2(1 — [|u[|*)I(||u|| < 1). This is the Epanechnikov kernel,
considered further below, where the constant 2 ensures [ K(u)du = 1. Then C(h) = 0
unless ||h|| < 2, so we write ||h|| = 2¢ where 0 <t < 1. Define

8  8t2
Co= 7= — Q5
15 3
oo
1 — 37
16  8t2 (
-2 3.114)
="t g0
8t
C3:—§,
8
C4—15.
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Also let .
Bw(a,b):/ t27 (1 —t)btdt,
0

cf. Abramowitz and Stegun (1964), equation (6.6.1). Then

4
16 3k 1
= — Bi_p|=,—+-=]. A1
C(h) ) kz::ock 1—t (2,2+2> (3.115)

A derivation of (3.115) is given at the end of this section.

Higdon pointed out a number of features of this modeling approach which might make
it desirable:

e It is possible to specify the process directly in terms of K and thus not have to worry
about whether c is positive definite,

e The definition is extendable to non-normal w(s), e.g. Wolpert and Ickstadt (1998),
Ickstadt and Wolpert (1999),

e The domain S can be restricted for certain purposes, e.g. to model edge effects,
e Dimension reduction — the process w(s) could be restricted to a small number of
locations s = s1, ..., S;, to create a convenient parametric representation for the entire

process z,

e Nonstationary covariances — the process (3.106) can be extended as

z(s) = /SKs(u)w(u)du, seS, (3.116)
with a general space-dependent kernel K,
e Space-time models, e.g. (3.106) could be extended to
z(s,t) = /SK(u - s)w(u,t)du, s € S, (3.117)

with t a time variable,

e Dependent spatial processes, e.g. a pair of form

z1(s) = [ Ki(u— s)w(u)du,
/S (3.118)

2a(s) = /S K (u — s)w(u)du,
1
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with different kernels Ky, K5 but a common white noise process wu.

Given that the emphasis of this chapter is on nonstationary models, for the rest of
the present discussion we shall give particular attention to equation (3.116) and its various
ramifications.

One very nice feature of the model (3.116) discovered by Higdon et al. (1999) is that
when the kernel K,(u) is a Gaussian kernel for each s, the covariance function of the
process is explicitly computable. The details are as follows. First, by a Gaussian kernel
we mean that for each s, there is some 2 x 2 covariance matrix X(s) such that

1 _ 1 _
K(u) = %\E(sﬂ 172 exp (—iuTE(s) 1u) .
If we parameterize

2
(s) = (;ab pbc;b> . S =(a? pal erpdt v?), (3.119)

then Higdon et al. show

1 1
where
W = b2 + b/2 —(pab + plalbl)
~ \—(pab+ p'a't') a® +a'” ’
2 _ 2 2 12
o1 = 2maa /(1= p2)(1 - p'2>\/ B
(p* —1)(p™ — 1)b% (3.121)

I

2pp'aa’bt’ + a2((p2 — 1)b% — b'?) + a’*((p'* — 1)b'? — b2)
a2a’*((p? = 1)b2 + (' — 1)b'%)

q2 = —2(2pp’ad’bb’ + a®((p* — 1)b* — b'2) + (1/2((,0'2 - 1)b'2 —b?).

It is perhaps worth pausing to consider a number of possible applications of (3.120)
and (3.121). The attractive feature about this is that since there is an explicit formula
for the covariance function of the process, it is possible to write down the full covariance
matrix and hence the likelihood function for the process at any configuration of sampling
points. To complete the specification of the model, one must determine how the parameters
a, b, p, o', ¥, p’ in (3.119) depend on sampling points s, s’. One possibility would be to
define the functions

$1(s) =loga(s), ¢a(s) =logb(s), ¢s3(s)=log {%} , (3.122)
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and let ¢x(s), k =1,2,3, vary smoothly over space according to a thin-plate spline or an
expansion in radial basis functions, similar to (3.39). The specific motivation for defining
¢ in this way is that (3.122) allows —oo < ¢ < oo and, conversely, is easily inverted so
that the functions a, b and p satisfy the needed constraints a > 0, b > 0, —1 < p < 1. One
could use the radial basis function representation to represent each ¢ (s) as a parametric
function and then fit by maximum likelihood, or alternatively, by analogy with (3.34),
choose ¢, k =1,2,3 to minimize the functional

P p— .. 2 3
) (—”) 3 AT (),
Pij k=1

2]

in which r;; and p;; are respectively the sample and population covariance (or correlation)
between sites ¢ and j, J is the bending energy functional and Ag, £ = 1,2, 3 are prescribed
smoothing constants. A disadvantage of this approach is that it is very closely tied in with
the Gaussian form of covariance function, to which it reduces when the ¢ functions are
constants, and this does not allow the flexibility of either the Matérn covariance function or
of a general nonparametric representation such as (3.46); moreover, Stein (1999) has argued
that the Gaussian covariance function has undesirable theoretical properties, and while it
is not clear that Stein’s arguments preclude the application of the Gaussian covariance
function to practical problems involving small numbers of monitoring stations, it would
perhaps be unwise to build too elaborate a theory tied specifically to this form of covariance.
Another aspect of the theory is that one could easily extend it to deal with the case when
the observed process is a finite sum of independent processes of the form (3.116), and this
would be a nonstationary extension of the expansion of a stationary covariance function
in terms of Gaussian covariances, cf. Sampson and Guttorp (1992), Schmidt and O’Hagan
(2000).

The actual development of Higdon et al. (1999) proceeded along rather different lines:

1. Instead of a representation of the form of (3.122), they considered a reparameterization
of (a, b, p) in terms of the focus points and an overall scaling parameter of the ellipse
defined by 7% (s)z = 1. The focus points and the scaling parameter were assumed
to be realizations of another spatial stochastic process.

2. The whole structure was embedded in a Bayesian hierarchical model including addi-
tional random components for the mean effect and an additional measurement error
variance. The model could then be fitted by MCMC techniques.

In more recent work, Higdon (2001) has considered models in which the integral in
(3.106) is replaced by a sum over a finite number of white noise components. The method
has obvious extensions to the nonstationary case (3.116). The direct analog of (3.106) in
this case is the model

z(s) = ijK(s — uy), (3.123)

185



with w, ..., wy, i.i.d. N(0,1) and s1, ..., S, supposed sampling locations for the w;. The
process (3.123) is assumed to be sampled at n locations s = sy, ..., S5, and embedded in a
linear model

y=pl, + Kw +¢, (3.124)

where p is a constant overall mean, 1,, is the n-vector of ones, K is an n x m kernel matrix
with entries K (s; — w;), w ~ Ny, (0,I,), € ~ N, (0,021,). The overall covariance function
of this process is of form KK7T + ¢2I,, which is of “mixed models” form, so the process
can be fitted by well-established maximum likelihood or REML methods for this form of
covariance matrix. Alternatively, as pointed out by Higdon, one could take a Bayesian
approach.

Extensions considered by Higdon (2001) include:
(i) The model (3.124) may be extended to a multi-resolution process, of the form
P
y=ply+ Y Kewe+e, (3.125)
=1
with p separate kernels and white noise processes superimposed,
(ii) spatial-temporal processes
yr = pl, + Kw; + €, (3.126)

in which ¢ is time and the individual components of wy, say w;¢, 1 < j < m, could be
taken as independent in time or as the realization of some time series (independent for
each j). Higdon considered the case in which each w;; process was a random walk in time
t.

Representing a nonstationary process as a kernel integral of stationary processes
An alternative representation discussed by Fuentes (2001) and Fuentes and Smith
(2001) is to replace the white noise process in (3.106) with a stationary process, whose

parameters may, however, themselves be allowed to vary over space, thus creating a non-
stationary process. The basic representation formula is

z(s) = /SK(S — )29 (x) (8)du, (3.127)

where zg(,,)(-) is a stationary process (for example, a Matérn process) with parameters 0(u)
possible varying according to location u.

Although it is possible, as will shortly be shown, to rewrite the model (3.127) as an
integral of white noise and hence to apply similar techniques to those developed by Higdon,
the actual modeling process is different, since Higdon treats the kernel K as a function
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of unknown parameters to be estimated, whereas the intention behind (3.127) is to use
a simple predetermined form of kernel and concentrate on the estimation of the process
Zg(u)(+). If O(u) varies slowly as a function of u, then the process is nearly stationary
over small regions (exactly stationary if #(u) is constant), but by allowing 6(u) to vary,
one allows for the possibility that the locally stationary process will look quite different
in different portions of the sampling region. Thus, the method is consistent with the
moving windows approach of Haas, but by representing the whole process as a well-defined
stochastic model, avoids the problem of positive definiteness over the whole sampling space,
which is a difficulty in the Haas approach.

There are, however, two possible interpretations of (3.127), and it is worthwhile to
clarify these before proceeding:

(1) we could write zg(,)(s) in terms of its spectral representation (cf. Yaglom (1987)),

a0 (5) = [ €7y @)w(a)d, (3.128)

in which fy denotes the (spatial) spectral density of the process zp and w is a white
noise process on R?2, or

(2) We could assume the process Zg(u)(S) is a given spatial process in s for each u, but is
independent for different u. In that case, one has the covariance function

Cov{z(s),2(s')} = /K(s —u)K(s' — u)Cyy)(s — s')du (3.129)

as given by Fuentes and Smith (2001), where Cy(-) is the covariance function of the
process zg(+). This function is well-defined for any (s, s’), and is guaranteed to be a
positive definite covariance. Moreover, when 6(u) is constant it is indeed a stationary
process, though in that case, the covariance function is not Cy but rather CyCk,
where Ck is defined by (3.110). In general, we are interested in cases where 0(u) is
not constant and in this case the process is genuinely nonstationary.

The alternative model defined by (3.127) and (3.128) can be rewritten in the form

z(s) = /Ks(x)w(:v)dm, (3.130)

Ky(z) = e ® / K (s — u)\/ foq)(z)du, (3.131)

and is therefore consistent with (3.116).

where

In this case, the covariance function of the process is

Cov{z(s),z(s')} = /Ks(a:)Ks:(a:)da: (3.132)
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in which the overbar denotes complex conjugate (necessary here, because Ky (x) is a

complex function). When 6(u) is a constant 6, (3.131) reduces to K,(z) = e =/ fo(z),
and (3.132) to

/ei(S_S’)wag (zr)dx = Cy(s — &), (3.133)

since the left hand side of (3.133) is exactly the representation of the covariance function
Cy in terms of its spectral density (Yaglom 1987).

By analogy with the reduction of (3.127) and (3.128) to (3.130), we can attempt a
similar reduction of the model which leads to (3.129), but the result in this case is a little

different. Allowing for the process z@(u)(s) to be independent for each u, one can write the
spectral representation (3.128) in the form

2oy (5) = / "% [ Fotwy (@wa (@) d, (3.134)

where w,, (x) is an independent white noise process for each u. (3.127) and (3.134) combine
to produce the representation

z(s) = //K(s - u)eiST””, [ fow) (z)wy (z)dzdu. (3.135)

One can rewrite (3.135) in the form

where, proceeding formally,

@) = { [ (s =)\ [T @)} as

and the process Wy (x) has orthogonal increments in the sense that for any s, s’, whenever

x # T,
E {dW,(z)dW, (z')} = 0,

but the process is not orthogonal with respect to s because
E{dW,(2)dWe (o)} = [ K(s = 0)K(5' ~ ) foqu)(w)da,

In this case the process is not reducible to one of the form (3.116).

Just as (3.117) extends Higdon’s model to a spatial-temporal process, so it is possible
to make a similar extension with (3.127), so that

z(s,t) = /SK(S — u)2g(u) (8, t)du, (3.136)
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with each zg(,)(s,t) a spatial-temporal process. For example, it is possible that zg,)(s,t)
for each u will have a separable covariance function (i.e. one which factors into a product
of spatial and temporal covariances), but the overall process z(s,t) will not have this
structure.

Example

Fuentes and Smith (2001) give an application to SOs modeling over the eastern U.S.
We give only an outline of the analysis here and refer to the paper for the full details.

The background of this example lies in the E.P.A.’s need to understand the effects of
possible changes in emissions control policies on observed levels of atmospheric pollutants.
A numerical model that incorporates meteorology and atmospheric chemistry, known as
Models-3, is run to simulate the SO levels in the week of July 11, 1995, which is one
particular week when very high SO, levels were observed. If the model succeeds in repro-
ducing the observed monitoring data, then it can be re-run under alternative assumptions
about emissions, to simulate the effect of new pollution regulations. However, a critical
part of the assessment of model accuracy is its ability to reproduce observed monitoring
data under the actual emissions scenario of the week in question. Fig. 3.11 shows Models-3
output for this week, averaged over 36 km? grid cells, while Fig. 3.12 shows the observed
monitoring data, averaged over the week from hourly measurements, at 38 monitors which
are part of the Clean Air Status and Trends Network (CASTNet). We shall use a spatial
model fitted to the Models-3 data to “predict” the values at each of 6 sites, shown in Fig.
3.13. Comparison of the predictive distributions with the observed monitor values will
then serve as a check on the accuracy of Models-3.

The modeling strategy is based on the covariance (3.129) but with the integral replaced
by a finite sum, so we actually assume

Cov{z(s), z(s")} = % Z K(s—53)K (5" — 8m)Cy(s,) (s — 5'), (3.137)

where the locations s,, were taken on a 9 x 9 grid (so M = 81 in this example). The kernel
K was taken to be of scaled Epanechnikov form, so

k() = =2 (1= 50 ) st < m,

where in this example h = 229 km. The value of h was chosen to give reasonable overlap
between the 81 sampling locations of s,, and does not reflect any “optimal bandwidth”
considerations.

The stationary covariance Cy(.y(-) in (3.137) was taken to be of Matérn form, and initial
analysis of the results indicated that the Matérn sill parameter ¢ varied substantially over
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the spatial region of the study. This was modeled hierarchically: if we write s, as s;;
(1<i<9,1<j<9) where i and j are scaled longitude and latitude coordinates, then

B(sij) = a+1i +cj + €4(sij), (3.138)

where 7; and ¢; are random longitude and latitude effects, and €4(-) is a residual spatial
process which is itself taken to be a Gaussian process with a Matérn covariance function.
The whole analysis employs Bayesian hierarchical modeling concepts which have two ad-
vantages in this kind of analysis: first that they allow us to fit a nested model of the form
(3.138) within the overall modeling equation (3.137), and second, that the Bayesian struc-
ture allows us to calculate predictive distributions for individual observations in a manner
that correctly allows for the estimation of unknown model parameters.

A final complication is the “change of support” problem. We have specified a covari-
ance function between points, not grid boxes. A point covariance function is needed if we
are to obtain predictive distributions at individual locations, as is the objective. However,
the Models-3 data are on grid boxes, not at individual locations. The model fitting must
reflect this discrepancy between the scale of model-based grid-cell averages and monitoring
data which are taken at individual locations. However, if one calculates averages over grid
boxes B and B’, one has

1 1 1
Cov{—/ z(s)ds, —— [ z(s ds'} = 7/ C(s,s')ds'ds. 3.139
51 1O B [ 2% ) = BB S O (3:139)

The actual fitting took (3.137) as the definition of the pointwise covariance C(s,s’), but
converted it to the form (3.139) before computing the likelihood function for the Models-
3 data. The integrations in (3.139) were replaced by discrete sums for computational
convenience.

Fig. 3.14 shows a map of the fitted posterior model of the sill parameter, and Fig.
3.15 shows the fitted longitude and latitude effects, and the estimated semivariogram of €4,
corresponding to (3.138). The fitted model is then used to compute predictive distributions
for six CASTNet monitoring locations in the states of Florida, Michigan, North Carolina,
Indiana, Maine and Illinois (Fig. 3.13). Fig. 3.16 shows posterior densities for each of these
locations. It is particularly noticable that the Indiana site has a very dispersed predictive
distribution. This site is near the Indiana coal fields and the predictive distribution may
reflects a large local heterogeneity of the SO field in that area. The North Carolina SO9
level also seems somewhat elevated, and with a relatively large predictive variance (though
not nearly as large as for the Indiana site), which may reflect the influence of the Tennessee
power plants.

Finally, the right-hand plot in Fig. 3.17 shows the predictive means and 90% credible
intervals for the predictions based on Models-3, plotted against the observed monitoring
data. As a comparison, the left-hand plot shows a much more simple-minded comparison,
which simply involves plotting the Models-3 output for the nearest grid cell against the
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observed monitoring data. This crude comparison takes no account of the change of support
problem, nor does it contain any measure of uncertainty. The right-hand plot shows, much
more clearly than the left-hand plot, the true difficulty with this example: whereas the
fit between model output and monitoring data is very good at four of the sites, at the
remaining two (Indiana and North Carolina) the model clearly overpredicts the actual
SO. data, implying that further understanding of these locations is needed in order to
improve the model.

Appendiz: Derivation of (3.115)

With K (u) = 2(1 — [[ul[2)I(||u|| < 1), rewrite (3.110) as

C(h):/K<u—g)K(u+g) du,

where we assume ||h|| = 2¢, 0 < ¢ < 1 (if ¢ > 1 the integral is 0). Writing u = (x,y),
there is no loss of generality in assuming % = (t,0), and we consider only the integral over
x > 0,y > 0, since the other three quadrants are the same by symmetry. Moreover, within
this quadrant the integrand is positive only when (z + %)% + 2 < 1, so we may write

1=t py/1=(z+t)*
C(h):gfo /0 {1-(@-t)? -y} {1 - (z+1t)* —y*} dydz.

First perform the integral with respect to y: we get

Clhy =2 0 ) \/1—(m+t)2[{1—(m—t)2}{1—(a:+t)2}

2
. . (3.140)
—s{2- @0 - @+ H{l- @+ 4 o {1 (@ + )2} | ds.
After some manipulation, the term inside square brackets in (3.140) is seen to be
4
> er(z + )k, (3.141)
k=0

with cg, ..., ¢4 given by (3.114). Moreover, the substitution = + ¢ = /1 — u shows that

1-t

1—t2
V1i-(@+t)(z+t)" = / w2 (1 — u)k/2=1/2
0

3k 1
=B R
1‘t2<2’2+2>

The result (3.115) follows after combining (3.140), (3.141) and (3.142).

0 (3.142)
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Fig. 3.11 Models-3 output, mean SOy concentrations, week of July 11 1995
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SO2 concentrations (CASTNet)

Fig. 3.12 CASTNet data, mean SO5 concentrations, week of July 11 1995
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SO2 concentrations (CASTNet)

Fig. 3.13 Mean SO, concentrations at selected sites, week of July 11 1995
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Fig. 3.14 Modes of posterior distribution of Matérn sill parameter from Models-3 data
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Fig. 3.16 Predictive distributions of Models-3 concentrations at 6 selected sites
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CHAPTER 4
Models Defined by Conditional Probabilities

Chapters 2 and 3 were concerned primarily with Gaussian models, i.e. ones in which all
the joint distributions could be described by multivariate normal distributions, in which the
covariance function of the process was defined in a wide variety of ways. The alternative
broad strategy for defining spatial models is the conditional probabilities approach, in
which the model is defined in terms of the conditional distribution of the observation at
one location given its values at other locations. The most convenient models of this kind
are those when the spatial locations have some form of lattice structure with “neighbors”
defined by the links of the lattice, and the conditional probabilities at a single site are a
function solely of the values at a neghboring site. Such models are called Markov random
fields and have been much studied by both probabilists and statisticians. They were
originally developed in statistical physics — for example, the famous Ising model for phase
transitions was of this form and the first example of what we now call Markov chain Monte
Carlo methods was developed in the context of simulating from a statistical physics system
(Metropolis et al. 1953). The idea of using models of this type as statistical models has its
origins in work by Whittle (1954) and Bartlett (see, e.g. Bartlett (1978) for discussion and
earlier references) but the most significant breakthrough was the paper by Besag (1974)
which laid out both a probabilistic structure for Markov random fields and methods of
inference.

From a modern-day perspective, Markov random fields are often used as prior distri-
butions as part of a hierarchical model structure. Although such models are often based
on lattices, the lattice need not be regular (e.g. some spatial analyses have been based
either on states within the USA, or counties within a state, where one certainly does not
have any regular lattice structure, though it is possible to define “neighbors”, e.g. by the
condition that two states or two counties have a common border) and in some cases there
is no lattice structure at all. For this reason, the title of this chapter reflects that the
models may be more general than just models defined on lattices, though by far the most
commonly applied models do involve some kind of lattice structure whether is is regular
or not.

4.1 Markov random fields as spatial models

In this section we outline the basic ideas of Markov random fields on finite lattices,
and their inference, following the seminal paper of Besag (1974).

4.1.1 Introduction to lattice models
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As in earlier chapters, we are concerned with a spatial process in which values are
measured at a set of points. In contrast with earlier cases where the sampling points are
distributed arbitrarily, however, we now consider models where they are on a fixed lattice,
such as a square or triangular lattice. Typically we shall assume there are n lattice points
and write 4, 7, k, ... for the points of the lattice, X;, X;, X, ..., for the measurements made
at those points. Associated with each point ¢ there is a set of neighbors of 7, which we
denote by N;. We assume the neighborhood relationship is symmetric in the sense that
J € N; if and only if ¢ € N;. Fig. 4.1 shows three typical examples of lattice arrangements.

@ (b) (©

Fig. 4.1. Three examples of lattices. (a) Square lattice, first-order neighbor scheme. (b)
Square lattice, second-order neighbor scheme. (c) Triangular lattice.

Within such a structure, we could in principle determine a totally arbitrary spatial
model by specifying all possible joint probabilities p(z1, ..., 2, ), interpreted as a proba-
bility mass function in the case of discrete random variables and as a probability density
function in the continuous case. Alternatively, one can try to define a model by speci-
fying conditional probabilities of the form p(z;|x;, j # 4). Throughout this chapter, the
letter p will be used interchangably to denote a probability mass function or a density
function, and to denote either marginal, joint or conditional probabilities — the meaning
will be clear from the arguments of the function. Prior to the early 1970s, researchers had
studies spatial distributions both from the conditional-probability viewpoint and the joint-
pronbability viewpoint, but there was no clear understanding of the link between them. In
many contexts, the meaning of a probability model is easier to understand if it is expressed
in terms of conditional probabilities, but if one just writes down conditional probabilities
in an arbitrary way, there is no clear-cut route to translate the conditional probabilities
into joint probabilities, and indeed no guarantee that any such joint probability distribu-
tion exists. However, by the early 1970s, it had become clear that in an important class of
special cases, known as Markov random fields (MRFs), there was a precise link between the
conditional and joint probabilities. This result became known as the Hammersley-Clifford
theorem after its originators, though the original proof of Hammersley and Clifford re-
mained unpublished for many years. Besag provided a short proof of a special case of
the Hammersley-Clifford theorem, one which is however adequate for almost all statistical
applications, and was the first to develop general methods of statistical estimation for such
processes. These in turn have had an important influence on modern ideas such as the
Gibbs sampler, first introduced explicitly by Geman and Geman (1984), but whose basic
concepts relied heavily on earlier work by Besag and others.
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An example of a lattice model is the auto-logistic model: X1, ..., X,, are 0—1 random
variables and

PI‘{Xz = 1|4XvJ = Zj, J 75 ?,} = PI‘{XZ = 1|AX'J = Zj, j € Nz}

~expai+ ) e, Big;) (4.1)
1+ exp(ai + 3 jen, Bis®s)

Another model is the auto-normal:

Xil(Xj = x5, § # 1) Wi + Z Bij (x . (4.2)

JEN;

Another model that at first sight may seem the same as (4.2) is

= p; + Z Bi; (X )+ €i, € independent N(0,0?), (4.3)
JEN;

which is known as the simultaneous equation model. Simultaneous equation models are
widely used in econometrics but are in fact somewhat different from Markov random field
models — the precise connection between (4.2) and (4.3) will be given later.

The obvious question about any of (4.1)—(4.3) is to decide whether the equation spec-
ifies a legitimate probability model, in the sense that the equations uniquely determine the
joint probability distribution of all the random variables. In the case of (4.1) and (4.2) the
answer is: yes, provided 3;; = B;; for all 4 and j. This is most easily seen by writing down
an explicit formula for the joint density. In the case of (4.1) this is

p(x1, ..., 2n) = K exp Zakﬂfk + - Z Z BikT;xk (4.4)

j kEN;

where K is a normalizing constant chosen to make the probabilities sum to 1. For, if (4.4)
holds, we have

PI‘{)(Z - 1|4Xv‘7 = Zj, j 75 Z} _ p(:(;l, ey Lj—1, 13371'—}—13 ,.I'n)
PI‘{XZ = O|X_7 = Zj, _] 75 7,} p(.’l,‘l, ...,$i_1,0,$i+1, ,.Z'n)

(4.5)
=exp | o; + Z Bijx;

JEN;
where the factor 1 in (4.4) has disappeared because the index pair (7, j) is counted twice in
(4.4) but only once in (4.5). This is where the symmetry assumption comes in: otherwise
Bi; in (4.5) would have to be replaced by (8i; + Bji)/2.
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Similarly, the joint density consistent with (4.2) is

p(w1, -, ) = (2m0%) "D | BV exp ~557 > (@5 — )bk — ) (4.6)

where the matrix B has entries {b;z} given by

1 if j =k,
bjk =4 —Bjr if j € Ny, (4.7)
0 otherwise.

To see that this is consistent with (4.2), fix index 7 and complete the square in the exponent

as
1

- 202

1
(s — ,U,i)z + o2 Z (i — ,U'i)ﬁij(xj - lffj) + .
JEN;
2

1
=g mi—pmi— Y Biylej—u)p +

20 :
JEN;

where in each case ... denotes terms that do not depend on z;. This conditional density
implies (4.2). Note that we have again used the assumption £;; = fj;.

To write (4.3) in a similar way, suppose again we define a matrix B with entries {b;x}
given by (4.7) and we assume that B is invertible, but this time we do not need to assume
symmetry. Then (4.3) can be written in vector form as

B(X—pu)=¢€

implying that X is a multivariate normal random variable with mean g and covariance
matrix B~'B~T¢2, or in terms of the joint density

(@1, ey 2n) = (270%) "D | Bl exp {—%(X — )" B"B(x - u)} (4.8)

which can also be written in the form (4.6), but with a different definition of the matrix
B. In other words, any model specified by (4.3) can also be rewritten in the form (4.2),
but with different coefficients. One advantage of the form (4.2) is identifiability, since the
matrix B in (4.8) is only identifiable through BT B.

These examples show that the general problem of verifying whether a family of con-
ditional distributions is consistent with some joint distribution is not trivial. In general,
suppose we are given a family of one-dimensional conditional distributions of the form
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p(x;|zj, j #1). To calculate the joint distribution p(z1, ..., z,), we first fix some reference

state (z7,...,z;) and then characterize the ratio in the form

p(Z1, - Tn) _ p(&1, - TF, Tig1, Tit, o Tn)

p(z3, ..., zy) Pl (LY, e T, T 1, Ty 2y ey T)
n—1 * " (49)

_ P(Tix1|2], o ), Tiga, ey Tn)

Pl p(rl g |TT, s Tf Tiga, ey Tn)

Since we can carry out the operation (4.9) for any (z1,...,2z,), we can calculate all the
joint probabilities relative to the reference state, and then renormalize to obtain the com-
plete joint probability distribution. However, this implies some restrictions on the class
of allowable functions. One condition is that the operation (4.9) must be invariant to
permutations of the coordinates. This amounts to a consistency condition on the condi-
tional probabilities. Another consistency condition is that the result must be invariant to
the choice of the reference state, e.g. if we chose an alternative x**, also having positive
probability, then as calculated by (4.9), we have

p(x) _ px) p(x")

p(x*)  p(x**) p(x*)
Conditions of this form were discussed by Brook (1964). The final complication in using
(4.9) to specify joint probabilities is in the calculation of the normalizing constant needed
to complete the calculation. If there are n sites each of which may be in one of m possible
states, then there are m™ possible states of the system, a prohibitive number unless n is
extremely small. This fact in itself has motivated much of the modern theory of MCMC
methods, which provide a means of estimating such a constant by simulation.

(4.10)

4.1.2 Markov random fields and the Hammersley-Clifford Theorem

We saw in section 4.1.1 that lattice models can be easily defined and provide a good
intuitive understanding of how a variable at a given location depends on its neighbors,
but it is not so easy to specify exactly when models defined by conditional probabilities
lead to consistent systems of joint probabilities. The most important class of models when
this can be done is the class of Markov random field models, and the mechanism for
defining consistent systems of probability distributions is provided by a result known as
the Hammersley-Clifford theorem. This result was first given by J.M. Hammersley and P.
Clifford in an unpublished paper from 1971, and subsequently rederived in different forms
by a number of other authors. Besag (1974) gave an elementary proof in the case of a
finite lattice subject to a further condition (the positivity condition), and we concentrate
on that approach here. For further information about the Hammersley-Clifford theorem
and its historical development, we refer to the published discussion from Besag (1974),
Clifford (1990) which included a copy of the original proof, and Smith (1997a).

A Markov random field is characterized by the property that all conditional probabil-
ities take the form

p(xilzj, 7 # 1) = plwilz;, j € N;) (4.11)
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where N; denotes the set of neighbors of i under some lattice structure. Of course (4.11)
includes cases in which N; consists of all other sites in the network (the complete graph),
but in most cases of practical interest we are working on a network where each site has
a fixed small number of neighbors, and in such cases the Hammersley-Clifford theorem
provides a real simplification.

We define a clique to be any subset of sites with the property that each member of the
clique is a neighbor of each other member. In most cases the cliques are extremely simple
sets: for example with a square lattice, the cliques are single sites, and pairs of sites which
are mutual neighbors; there are no other cliques.

We shall assume (initially) that there are only finitely many values z; available at
each site, and that one of these is 0. The latter condition is not a restriction because we
can simply relabel the values at each site without changing the structure of the model.

The final condition and controversial is positivity: given any state x = (z1, ..., Z,) such
that each component x4, ..., z,, has positive marginal probability, we assume that the joint
probability p(x) is also positive. Since there are only finitely many possible states per site,
we can simply eliminate all states of zero marginal probability and write the condition as
p(x) > 0 for all x.

Following Besag, we define

g(x) = log {%} . (4.12)

Then Besag claimed that there exist functions g;(;), gij(xi, x;), etc., such that

q(x) = wigi(zi) + Y miwigij(mi, w5) + Y wiw;wrgie(i, v, vx)
i i<j i<j<k (4.13)
+ oo+ 1129 TnG12. n(T1, T2y ..y Tp)-
To see (4.13), for example, we define g;(z;) by
ngz(xz) = Q(Oa SR Oa Zj, Oa ceey 0) - Q(O)a
and similar if more complicated differencing operations define higher-order ¢’s as well.

The Hammersley-Clifford theorem, in the form stated by Besag, is now as follows:

For a Markov random field, g;;.. s(xi,%;,...,xs) is non-zero if and only if {i,j,...,s}
form a clique. Subject to this restriction, the g’s are arbitrary.

The importance of this result is that in conjunction with (4.13) and (4.12), it enables us
immediately to write down the general form of joint probability distribution for any MRF.
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Therefore, given a conjectured family of conditional distributions, we can immediately
check whether they are consistent with some member of this family.

Proof. For any state x, let x; denote the same state with the 7’th coordinate set equal
to 0. The following argument is the same for any ¢, so without loss of generality set i = 1.

From (4.13) we have

q(x) - q(xl) = 91(5131) + Z.Tjgij(l‘l, .’Ej) + ...

Suppose k ¢ N;. Then g(x) — ¢(x1) is independent of the k’th component zj for all x.
Putting z; = 0 for ¢ # 1 or k, we see g1x(x1,xx) = 0. With different choices of the vector
x, the same argument also shows that all higher-order g’s are 0 as well.

The converse argument (that any family of ¢’s satisfying the conditions of the theorem
suffices for a MRF) follows simply by observing that the ¢’s given by (4.13) define a MRF.
This completes the proof.

The controversy over the positivity condition arose because Hammersley apparently
believed the theorem was true without such a condition, though subsequent developments
showed that this was not true. Some of this was included in Hammersley’s own published
discusson of Besag (1974). The result has also been extended to two other cases, under a
similar positivity condition:

e the case where the number of possible states per site is countable, provided ) ed™®) <
Cx}?

e the case of continuous random variables, p(x) being interpreted as a probability
density but otherwise the same equations (4.12) and (4.13) holding, provided e?®) is
integrable.

4.1.3 Specific Spatial Models

We have already seen some specific examples of lattice models, namely, the auto-
logistic and auto-normal schemes given by (4.1) and (4.2) respectively. These are particular
instances of what Besag called auto-models, in which the ¢ function is of form

q(x) = Z zigi(z) + Z Bijzix; (4.14)
) 1<j

in which 3;; = 0 unless 7 and j are neighbors. For such models, the associated conditional

probabilities are of the form

PI‘{XZ' = .’II,L"XJ‘ =Ty, ] 7é Z)
PI‘{XZ' = O‘Xj = .’L‘j, ] 7é Z)

=exp |z { gilz:) + Y Bijzi ¢ | (4.15)
J
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in which $;; = 0 unless 7 and j are neighbors, and also 3;; = f;; for all 4, j.

The auto-logistic and auto-normal are the two best-known examples, but there are
other examples in which the conditional distributions take other exponential family forms,
such as the auto-Poisson and auto-exponential models. The auto-Poisson model takes
the form that each X;, conditionally on its neighbors X; = z;, 57 € IV;, has a Poisson
distribution with mean p;, of the form

u; =exp | a; + Z ,Bij:vj (4.16)
JEN;

but there is an important restriction: in order for (4.16) to satisfy ) _exp{q(x)} < oo,
we must have 3;; < 0 for each (4, j) pair. Intuitively, the auto-Poisson model would seem
ideally suited to applications such as disease counts, but the non-positivity condition on
the {3;;} implies that it is only usable in cases of negative interactions between neighboring
sites. This is a severe restriction and has led to alternative conditionally Poisson schemes

Models for square lattices

When the sites take the form of a square lattice, it is natural to label each site
with a two-dimensional coordinate (i,7), where ¢ and j are integers, and to denote the
corresponding random variables Xj ;, etc. Also, we can simplify the classification of models
by restricting ourselves to those which obey some stationarity or homogeneity assumptions.
A first-order model is one in which the site (7, j) has just four neighbors: (i—1, 5), (i+1, j),
(i,j—1) and (7, j+1) (Fig. 4.1(a)). One simple model allows for differential row and column
effects in the form

a(x) =Y T+ 1Y Tig@ivg+ B2 ) TigTii, (4.17)

where the isotropic model f; = (3 is a special case of (4.17). A second-order model includes
diagonal cross-links between site (Z, j) and the neighbors (i—1, j—1), (i—1, j+1), (¢+1,5-1)
and (i4+1,j+1) (Fig. 4.1(b)). One can, of course, continue the discussion to define third-
and higher-order models.

In the case of a second-order model, one can naturally extend (4.17) to

gx) =Y wij+ B Y TijTiv1+ P Y TiTi

(4.18)
+n Z TijTit1,541 T 72 in,j$i+1,j—1

but this is not the most general form of model, since in this case there are cliques of three
neighbors so one could include terms of the form z; jx;_1 jx; j—1, and so on, thus going
beyond the framework of auto-models.
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For Gaussian models, one can re-express these models in terms of the conditional
mean of a random variable given its neighbors, e.g. analogously to (4.17) one has

E{X; | X jr, (¢,5") # (,0)} = a+ Br(Xi1j + Xig1,5) + Bo(Xijj—1 + Xijr1)  (4.19)
or, analogously to (4.18),

B{X; ;| Xijr, (@',5") # (4,5)} = a+ B1(Xiz1,; + Xit1,5) + B2(Xij—1 + Xijt1)

(4.20)
+ 71 (Xic1j-1 + Xig141) + 72 (Xic1 1 + Xig1,5-1)-

4.2 Inference in lattice models

Section 4.1 showed how to define a large class of lattice models. We now consider
statistical inference about the parameters of such models. Again, the initial ideas on this
subject were given by Besag (1974), and extended by Besag (1975) who introduced the
idea of mazimum pseudolikelihood estimation (MPLE). However, with the development
of modern MCMC techniques, it is now possible to talk about estimation in more gen-
eral frameworks, including Monte Carlo approximations to the exact maximum likelihood
estimates (MCMLE).

In this section, we review a number of different methods.
4.2.1 Coding methods

This idea was discussed by Besag (1974). Suppose we have a square lattice with a
first-order neighborhood scheme (Fig. 4.1(a)). Suppose we condition on the odd points,
i.e. all points (4,7) such that i — j is odd. Conditionally on those points, the even points
are independent, so one can write down an exact joint density for the even points

[1 vl @5 # 69) (4.21)

(i,7): i—j even

and interpret this as an exact likelihood for the even data points, conditionally on all the
odd data points. Thus one can maximize (4.21) with respect to any unknown parameters,
interpreting the results as conditional maximum likelihood estimators. These estimators
will not be efficient, however, because they are based on only half the data points.

One can, of course, define a complementary scheme based on the joint density of all
the odd points conditioned on the even points. For more complicated lattices, it is more
difficult to find subsets of the lattice points which are conditionally independent given the
rest, but in principle, the idea is applicable in any regular lattice, and a number of specific
examples were given by Besag and some discussants of his paper.
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4.4.2 Pseudolikelithood

Besag (1975) extended the coding idea of Besag (1974), to suggest a general scheme
for estimating lattice processes.

In the coding scheme for a regular lattice, one can define a conditional likelihood as in
(4.21), or the equivalent formula based on odd lattice points. One obvious way to combine
the two is simply to multiply the two conditional likelihoods together, resulting in

H p(xi,j

(4,3)

i g, (i,5") # (6, 5)) (4.22)

where the product is taken over all lattice points (i,7). However (4.22) is in principle a
much more general idea, not dependent on any particular form of lattice structure, but
simply defining a “likelihood function” as the product of all one-dimensional conditional
distributions. To distinguish this from a true likelihood function, it is widely known as the
pseudolikelihood. Maximum pseudolikelihood estimates are chosen so as to maximize the
pseudolikelihood with respect to unknown parameters of the model.

The advantage of maximum pseudolikelihood estimates is that they are extremely easy
to compute. The disadvantage is that we do not know very much about their sampling
properties, except in a few particular instances. The use of standard approximations
for standard errors via the observed information matrix, and for comparing models via
likelihood ratio tests, are not valid when applied to pseudolikelihoods. In the case of
standard errors, one way round the problem would be to use the information sandwich
approach (subsection 2.2.3), but we are not aware of any instances of this method actually
being applied in the present context. More detailed statistical properties are reviewed in
a later section.

4.2.3 Fxact and approximate MLEs for Gaussian processes

The calculation of exact MLEs for Gaussian processes is simpler than for other kinds of
conditionally defined processes, because in the case of a joint normal density such as (4.6),
the normalizing constant for the probability measure is explicitly defined. In other kinds
of models, such as (4.4), there is no exact formula for the normalizing constant K, short of
summation over all possible states, which is prohibitively slow in a large lattice. Thus we
can in principle compute the MLEs for the auto-normal process directly, by maximizing
(4.6) with respect to the unknown parameters, whereas we cannot do the same thing with
a non-Gaussian likelihood such as (4.4). In practice, even (4.6) may be hard to evaluate
in a large lattice, given the need to evaluate |B|.

An alternative approach is to evaluate |B| approximately, using methods first given
by Whittle (1954). Whittle’s ideas were in fact developed for simultaneous autoregression
models of the structure of (4.3), but Besag pointed out that, because of the close similarity
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of the likelihood expressions in (4.6) and (4.8), we could effectively use the same approx-
imations with auto-normal models. As discussed by Besag, %log |B| is approximated by
the coefficient of 2928 in the power series expansion

10g 1-— Z,Bjkz{zg . (423)

3.k

For example, in the case of model (4.19), (4.23) is the absolute term in the power series
expansion of

log{l — B1(z1 +Zl_1) — Ba2(22 +22_1)}

while in the case of model (4.20), the corresponding expression is

log {1 —Bi(z1+27") — Ba(z2 + 25 ") — (2122 + 27 "25 1) — 22125 " + 27 '22) } .

The method assumes that the covariance matrix B is derived from a stationary process.
This assumption was criticized by Guyon (1982), who argued that neglecting edge effects
was important in dimension d > 2. Guyon proposed an alternative scheme, also based on
Whittle (1954), using estimates of the spectral density, but correcting those estimates for
edge effects.

4.2.4 Simulated maximum likelihood

Suppose now we are faced with computing maximum likelihood estimates in a model

with a joint density of form
p(x;0) = C(0)F(x;0) (4.24)

where F is a known function of data values x in terms of unknown parameters 6, and C(6)
is a normalizing constant defined by the property that the sum or integral of p is 1, but
not directly computable. The auto-logistic model, when written as (4.5), is precisely of
this form, but so are a wide class of other models of similar structure.

To use (4.24) for maximum likelihood estimation, we need to be able to evaluate C(0),
or at any rate the ratio C(0)/C(6p) for any 6 relative to some fixed reference value 6y.

We now approximate this ratio through a simulation scheme, as follows. Fix 6y and
let XM ..., XM) denote M simulated realizations from the stochastic process when 6 is
the true parameter. For the moment, we do not consider how such simulations might be
generated. Also let X denote the actual data which are observed.

We then have that

1 <~ F(X™;0) F(X;6)
MZ

X000 F(X;0) (4.25)

m=1
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is an unbiased estimate of
C(6y) F(X;00)

c) F(X;6)’
in other words, the likelihood ratio of 6, to 6.

To see this, the key step is the calculation

F(X(m);0) F(x;0)
Eg, {m} = ; F(x: 0y) - C(60)F (x; 00)

= C(6o) ZF(x; 0) (4.26)

In Monte Carlo maximum likelihood estimation (MCMLE), the usual procedure is
to generate a single sequence X ... X®) from some given 6y, then to minimize the
sum (4.25) analytically with respect to . The simulation procedure is more efficient the

closer 6 is to the true MLE [9\, so sometimes the procedure is repeated several times, using
the estimate from one minimization at the initial 6y for the next. One good use of the
pseudolikelihood method (subsection 4.4.2) is to generate the initial 6.

We still have to describe how to generate the simulations {X (™)} for given 6. For
lattice models, the most convenient methods are of MCMC type, of which the two most
widely used variants are the following:

FON

Gibbs sampling. Start with arbitrary x(©) = ( ..,a:%o)). Generate a new value of

x1, denoted z{V, from the conditional distribution of X; given X5 = 2\, ..., X,, = 2.

Then generate a new value of z5, denoted a:gl), from the conditional distribution of Xy

given X; = xgl),X3 = acgo), ey Xy = x&o). Continue up to the generation of x%l) from
the conditional distribution of X,, given X; = acgl), vy X1 = xgbl_)l. This completes one
ieration of the sampler. Then, starting from the new vector x(!)| return to z; and repeat
the whole process to generate x(2). Repeat many times.

The Hastings-Metropolis algorithm. Again we start with an arbitrary x(®) and generate
a new “trial value” x’ from some distribution ¢(x’;x(%)) which depends on x(?). Typically,
but not necessarily, x’ is formed from x(°) by just changing one component. Then form
the ratio
q(x(o); x')F(x';00)

“= q(x'; xO)F(x(©);6y)

If @« > 1 then we accept x’; in other words, set x() = x/. If @ < 1, we perform an
independent random drawing: with probability «, accept x’ and set x(1) = x'; otherwise,
reject x’ and set x(1) = x(0).
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We shall not dwell on the details of either the Gibbs sampler or the Hastings- Metropo-
lis procedure since they have by now been covered in many books and papers. Moreover,
there are many variants on the basic procedure, such as those based on the Swendsen-Wang
algorithm (Swendsen and Wang 1987). In practice it would be unusual to generate the
samples x(1), ... x(M)  required for the MCMLE procedure, in exactly the way that has
just been described. For example, it is usual to discard some of the initial iterations as
warm-up iterations, and once past the warm-up stage, it is usual to group the iterations
together in blocks and only take the first or last member from each block.

The basic idea of MCMLE was apparently first stated by Penttinen (1984) and elab-
orated by Geyer and Thompson (1992). References on Gibbs sampling and Hastings-
Metropolis methods include Hastings (1970), Geman and Geman (1984), Besag et al.
(1991), Gelman and Rubin (1992), Geyer (1992), Besag and Green (1993), Smith and
Roberts (1993), Tierney (1994), Carlin and Louis (1996) and Gilks et al. (1996).
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4.2.5 Bayesian methods

Under the Bayesian approach, a prior density () is specified; Bayesian analysis then
proceeds by computing a posterior density

7(0)X)  p(X; 0)7(6) (4.27)

where the constant of proportionality is chosen so that when (4.27) is integrated respect
to 0, the answer is 1.

In the case where both p(X;6) and m(f) are available in closed form, the problem
may be solved by Monte Carlo sampling of . Both the Gibbs sampler and the Hastings-
Metropolis algorithm, described in the previous subsection, may be adapted to this pur-
pose, and are widely used.

Under a model of form (4.24), there is an additional complication: we cannot evaluate
(4.27) directly because we do not know how to calculate C(f). In that case, we must
proceed indirectly, replacing (4.27) with

0% eo {MZ F X, 90} K80 (4.28)

1

where {X(™), 1 < m < M} form a sample of values from the distribution of X given
0 = 6p. Thus MCMC comes in twice, once to generate the {X (™)} values in (4.28), and a
second time to sample from the resulting approximate posterior density of 6.

4.3 Examples

Table 4.1 shows a famous data set due originally to Mercer and Hall (1911), but since
re-analyzed by many other authors, including Whittle (1954), Besag (1974) and Cressie
(1993). The data are derived from an agricultural field trial and show wheat yields on 500
plots arranged in a 20 x 25 array. The left-hand 12 columns are given in the top half of
the table, and the right-hand 13 columns in the bottom half.
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3.63
4.07
4.51
3.90
3.63
3.16
3.18
3.42
3.97
3.40
3.39
4.43
4.52
4.46
3.46
5.13
4.23
4.38
3.85
3.61

4.15
4.21
4.29
4.64
4.27
3.55
3.50
3.35
3.61
3.71
3.64
3.70
3.79
4.09
4.42
3.89
3.87
4.12
4.28
4.22

4.06
4.15
4.40
4.05
4.92
4.08
4.23
4.07
4.67
4.27
3.84
3.82
4.41
4.39
4.29
4.26
4.23
4.39
4.69
4.42

5.13
4.64
4.69
4.04
4.64
4.73
4.39
4.66
4.49
4.42
4.51
4.45
4.57
4.31
4.08
4.32
4.58
3.92
5.16
5.09

3.04
4.03
3.77
3.49
3.76
3.61
3.28
3.72
3.75
4.13
4.01
3.99
3.94
4.29
3.96
3.78
3.19
4.84
4.46
3.66

4.48
3.74
4.46
3.91
4.10
3.66
3.96
3.84
4.11
4.20
4.21
4.37
4.47
4.47
3.96
3.54
3.49
3.94
4.41
4.22

4.75
4.56
4.76
4.52
4.40
4.39
4.94
4.44
4.64
4.66
4.77
4.45
4.42
4.37
3.89
4.27
3.91
4.38
4.68
4.06

4.04
4.27
3.76
4.52
4.17
3.84
4.06
3.40
2.99
3.61
3.95
4.08
3.92
3.44
4.11
4.12
4.41
4.24
4.37
3.97

4.14
4.03
3.30
3.05
3.67
4.26
4.32
4.07
4.37
3.99
4.17
3.72
3.86
3.82
3.73
4.13
4.21
3.96
4.15
3.89

4.00
4.50
3.67
4.59
5.07
4.36
4.86
4.93
5.02
4.44
4.39
4.56
4.77
4.63
4.03
4.47
4.61
4.29
4.91
4.46

4.37
3.97
3.94
4.01
3.83
3.79
3.96
3.93
3.56
3.86
4.17
4.10
4.99
4.36
4.09
3.41
4.27
4.52
4.68
4.44

4.02
4.19
4.07
3.34
3.63
4.09
3.74
3.04
3.99
3.99
4.17
3.07
3.91
3.79
3.82
3.99
4.06
4.19
5.13
4.52

4.58
4.05
3.73
4.06
3.74
3.72
4.33
3.72
4.05
3.37
4.09
3.99
4.09
3.56
3.57
3.16
3.75
4.49
4.19
3.70

3.92
3.97
4.58
3.19
4.14
3.76
3.77
3.93
3.96
3.47
3.29
3.14
3.05
3.29
3.43
3.47
3.91
3.82
4.41
4.28

3.64
3.61
3.64
3.75
3.70
3.37
3.71
3.71
3.75
3.09
3.37
4.86
3.39
3.64
3.73
3.30
3.91
3.60
3.94
3.24

3.66
3.82
4.07
4.54
3.92
4.01
4.59
4.76
4.73
4.20
3.74
4.36
3.60
3.60
3.39
3.39
3.45
3.14
3.01
3.29

3.57
3.44
3.44
3.97
3.79
3.87
3.97
3.83
4.24
4.09
3.41
3.501
4.13
3.19
3.08
2.92
3.05
2.73
2.85
3.48

3.91
3.92
3.53
3.77
4.29
4.35
4.38
3.71
4.21
4.07
3.86
3.47
3.89
3.80
3.48
3.23
3.68
3.09
3.36
3.49

4.27
4.26
4.20
4.30
4.22
4.24
3.81
3.54
3.85
4.09
4.36
3.94
3.67
3.72
3.05
3.25
3.92
3.66
3.85
3.68

3.72
4.36
4.31
4.10
3.74
3.98
4.06
3.66
4.41
3.95
4.54
4.47
4.54
3.91
3.65
3.86
3.91
3.77
4.15
3.36

3.36
3.69
4.33
3.81
3.95
4.20
3.42
3.95
4.21
4.08
4.24
4.11
4.11
3.35
3.71
3.22
3.87
3.48
3.93
3.71

3.17
3.53
3.66
3.89
3.67
3.94
3.05
3.84
3.63
4.03
4.08
3.97
4.58
4.11
3.25
3.69
3.87
3.76
3.91
3.04

2.97
3.14
3.59
3.32
3.57
4.24
3.44
3.76
4.17
3.97
3.89
4.07
4.02
4.39
3.69
3.80
4.21
3.69
4.33
3.99

4.23
4.09
3.97
3.46
3.96
3.75
2.78
3.47
3.44
2.84
3.47
3.56
3.93
3.47
3.43
3.79
3.68
3.84
4.21
3.76

4.53
3.94
4.38
3.64
4.31
4.29
3.44
4.24
4.55
3.91
3.29
3.83
4.33
3.93
3.38
3.63
4.06
3.67
4.19
3.36

Table 4.1. Mercer-Hall data, first 12 columns (top) and last 13 (bottom).
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Fig. 4.2. Row and columns effects for Mercer-Hall data, computed by least-squares
ANOVA (top plots) and by median polish (bottom plots)
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Fig. 4.3. Variogram estimates for Mercer-Hall data, computed separately for E-W and
N-S directions, and for the left-hand and right-hand halves of the data.
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Some preliminary analysis suggests that the data do not come from a stationary
process. For example, Fig. 4.2 shows estimated row and column effects from a two-way
analysis of variance, computed both by standard least squares ANOVA (top half of plot)
and by the robust median polish method which was described in section 2.4 (bottom half).
Both sets of estimates show that the column effects are very variable in the left-hand
half of the plot, but much less so in the right-hand half. There is also some suggestion
of variability in the row effects, with more inter-row variation in the later rows, but this
is not nearly so marked. This suggests that, as an alternative to analyzing the whole
data set as a single homogeneous model, we should consider the left-hand and right-hand
halves separately, and this has been done, with the split exactly as in Table 4.1. In Fig.
4.3, variogram estimates are plotted, computed separately in the E-W and N-S directions,
and for the left-hand and right-hand halves of the data. The plots confirm the greater
variability of the left-hand half of the plot in the E-W direction.

p1 B
Full data set:
Coding, first analysis 0.332 0.128
Coding, second analysis 0.354 0.166
S.E. 0.03 0.03
Whittle method 0.368 0.107
MLE 0.364 0.114
S.E. 0.024 0.025
Left-hand half:
MLE 0.400 0.000
S.E. 0.029 0.033
Right-hand half:
MLE 0.275 0.191
S.E. 0.041 0.043

Table 4.2. Estimates for model (4.19) in Mercer-Hall data, using both coding and Whittle
methods (quoted from Besag, 1974) and by exact MLE, the latter being computed both
for the full data set and spearately for the left and right halves.
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In Table 4.2, estimates of 81 and B» in model (4.19) are shown, taken from Besag’s
(1974) results for the coding and Whittle methods, and the present author’s calculations
of exact MLE. Two sets of coding estimates are given, one for “odd” sites and the other
for “even” sites. In Table 4.3, similar calculations are given for model (4.20). In this case
there are four different configurations for the coding estimates, as described in detail in
Besag’s original paper.

p1 P2 2! Y2
Full data set:
Coding, first analysis 0.344 0.043 0.079 —0.062
Coding, second analysis 0.318 0.085 0.016 0.011
Coding, third analysis 0.407 0.243 -0.067 -0.034
Coding, fourth analysis 0.361 0.236 —-0.092 —-0.041
S.E. 0.05 0.06 0.07 0.06
Whittle method 0.381 0.160 -0.015 -0.056
MLE 0.380 0.171 —-0.020 —0.060
S.E. 0.024 0.046 0.037 0.035
Left-hand half:
MLE 0.400 0.019 0.000 —-0.025
S.E. 0.029 0.075 0.055 0.055
Right-hand half:
MLE 0.329 0.274 —0.042 —0.116
S.E. 0.042 0.053 0.051 0.049

Table 4.3. Estimates for model (4.20) in Mercer-Hall data, similar to Table 4.2.

It can be seen that for analyses based on the full data set, Whittle’s estimates are in
all cases very close to the exact MLEs — the coding estimates appear to be more variable.
However there are also significant differences between the left and right halves of the data,
especially in the parameter 3 (as expected).

One advantage of exact maximum likelihood is that it enables us to test directly
between nested models, using likelihood ratio tests. Under the full data set, the likelihood
ratio statistic for testing model (4.19) against model (4.20) is 2.86, with 2 degrees of
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freedom, a P-value of 0.24. For the left and right halves of the data, the corresponding
statistics are 0.22 (P=0.90), 5.19 (P=0.07). Only the last of these comes close to being
statistically significant, but overall there is no reason to reject model (4.19).

In summary, for a data set of this size, given present-day computing speeds, I would
recommend using an exact maximum likelihood procedure, which has the advantage of
permitting direct calculations of standard errors and likelihood ratio test statistics. In the
present data set, the main feature is the apparent nonstationarity which has been dealt
with by the rather ad hoc procedure of splitting the data into two halves. This procedure
indeed confirms that the two halves are statistically different, but of course it does not
show that the stationary model is necessarily applicable to either half of the data; the best
one can say is that there is no obvious evidence to contradict such an assumption.
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CHAPTER 6

Design of a Monitoring Network

In previous chapters, we have seen how a spatially distributed quantity may be esti-
mated from a finite set of monitoring stations, and we have characterized the error in such
estimation procedures. In this chapter, we consider the design of the network: assuming
that the position of the monitoring stations is, at least to some extent, under the control
of the agency responsible for the measurements, where should they be placed in order to
maximize the usefulness of the network? This problem is faced every time an organization
such as the U.S.E.P.A. is charged with collecting data on a new pollutant, and it also arises
in many other contexts, e.g. the positioning of meteorological stations.

In practice, many considerations based on cost, political influence, geographical conve-
nience, and so on, may influence the design of a network. So it is inevitable that mathemat-
ical formulations of optimal design are only one part, possibly not very significant, of the
decision-making process. Nevertheless, even when economic and political constraints are
taken into account, the monitoring agency usually has a considerable amount of discretion,
and it makes sense to exercise that discretion in a way that maximizes the information that
is gained from the network — however that is defined. Therefore, in this chapter we shall
concentrate on mathematical formulations of the problem, and will discuss computational
approaches to the solutions of such problems.

Mathematical formulations of this problem have generally followed one of two broad
strategies, though there are several more ad hoc approaches. The two broad strategies may
be characterized as the maximum entropy approach and the optimal design approach. The
maximum entropy criterion may be derived from Bayesian considerations (section 6.1) but
is also sometime intuitively justified as a measure of the information in an experiment, or
equivalently, the reduction in uncertainty of a variable of interest as the result of performing
an experiment. This approach has been particularly developed by Zidek and co-workers,
e.g. Caselton and Zidek (1984), Caselton, Kan and Zidek (1992), Zidek, Sun and Le
(2000). After some mathematical preliminaries in section 6.2, we develop this approach in
detail in section 6.3. The second approach to network design derives from the theory of
optimal design of experiments, including such concepts as D-optimality and A-optimality,
which we review in sectoin 6.4. This theory was first applied in a network design context
by Fedorov and Miiller (1989). However, the direct “message” of that paper, which was
an attempt to show how optimal designs developed for regression applications could be
directly applied in spatial analysis contexts, did not hold up as researchers started to look
at more realistic models. Nevertheless, there has been extensive recent research on how
classical design criteria could be applied in the context of spatial models which are typical
in environmental applications. An excellent recent book on this topic is Miiller (2000),
and we review this whole area in section 6.5.
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Besides the two mathematical formulations, numerous more ad hoc approaches have
been proposed, motivated by specific applications such as the United States National Atmo-
spheric Deposition Program/National Trends Network (NADP/NTN) which was studied
extensively in the late 1980s and early 1990s as part of the effort to reduce acid rain over
North America, and more recently in connection with EPA networks for ozone and par-
ticulate matter. Some of these ad hoc methods have been developed considerably further
down the road of practical application than the more theoretical approaches. We review
these methods in section 6.6.

A different but related problem is that of “data assimilation”. This refers to a large
class of methods, mostly developed by atmospheric scientists, that involve integrating real
data into a numerical model. The canonical example is that of short-term weather forecast-
ing, where numerical models of the weather are constantly evolving but must incorporate
real data from observing networks when it becomes available. Sometimes, the weather
forecaster has discretion over where to take observations — for instance, an observational
aircraft may be due to fly through part of the weather system, but the route it takes may
be chosen to maximimize the usefulness of the observations it gets. In this context, there is
a question of determining the optimal route. Some recent work in this problem is reviewed
in section 6.7.

Finally, section 6.8 presents a summary of the chapter and some overall conclusions.

6.1. A Bayesian formulation of optimal design

An early discussion of the design of experiments from a Bayesian point of view was
given by Lindley (1956). Lindley proposed a criterion which amounts to maximization of
the expected Shannon information to be gained from an experiment, when the objective
“is not to reach decisions but rather to gain knowledge about the world”. Later Bernardo
(1979) showed that this criterion can also be derived from a Bayesian decision-theoretic
point of view, provided one makes certain “reasonable” assumptions about the form of the
utility function. In this initial section, we shall outline Bernardo’s argument.

Suppose we are considering conducting an experiment F which will yield data X
distributed according to a model
X ~p(- | 0).

Here p(- | 0) is a known distributional family depending on the true value € of a random
unknown parameter ©. Note that, as in all Bayesian formulations, we are treating any
unknown parameter as the realization of a random variable rather than as a fixed constant.
Also suppose that the object of interest is a function of ©, denoted ¥ or ¥(©), with a true
value denoted by 1. Suppose the prior density of © is mg(f) and that of ¥ is 7y (1)). The
marginal density of X will be denoted px (z) = [ p(z | 0)7e(0)df. Since © will not enter
the following discussion except through ¥, henceforth we write 7 (-) instead of 7g(-). The
posterior density of ¥ given data X = z, evaluated at ¥ = ¢, will be 7 (¢ | x).
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Bernardo (1979), following earlier work by Lindley (1956), proposed the following
measure of the information contained in E when the prior density is 7(-):

I{E,W}:/pX(x)/w(w | z)log %dt/)daﬁ. (6.1)

Given that the inner integral is essentially an information divergence between the prior
and posterior densities, the expression (6.1) may be interpreted as an “expected gain of
information” which results from performing the experiment F.

In a monitoring network context, if we let E denote a decision to select a specific
set of monitoring sites, X as the data generated by such a network, and 3 as a specific
parameter or random variable of interest, then (6.1) suggests a criterion which we may use
to discriminate among different proposals for E, with the “best” network being the one
which maximizes I{E, r} for some given prior density 7. In section 6.2, we shall see how
some authors have used this in the actual design of a network.

In the remainder of the present section, we shall outline Bernardo’s elegant derivation
of (6.1) from some basic principles of Bayesian decision theory.

Decision-theoretic formulation

According to the Bayesian view of the world, ¥ is a random variable, and the outcome
of the experiment F may be represented by the statistician’s reporting a probability dis-
tribution, 77 (1)), to represent her “belief” about 1 after conducting the experiment. The
dagger T here may be thought of as a symbol representing “reported”.

In a decision-theoretic formulation of the problem, there will be a utility function,
u(nt(-), 1), which represents the gain in reporting a density 77 when the true value of ¥

is 9.

Suppose we perform an experiment producing data z, and let «(- | z) denote the
posterior distribution of ¥ given x. The expected utility is then

/ u(at (), ) | 2)dy. (6.2)

We suppose that the utility function possesses the following properties:

(a) u is proper if (6.2) is maximized over all probability distributions 7' by setting

mt(y) = n(¥ | z).

This captures the natural (for a Bayesian) property that the optimal solution to the
decision problem is the posterior density. Another way to think of it is that this condition
guarantees the coherence of the procedure.
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(b) u is local if u(m¥(-), %) depends on the function 77(-) only through its value at ),
ie. wi(y).

This says that the utility function at a particular value of i should not depend on

other values of ¥ which have not occurred. As pointed out by Bernardo in his paper, this
is reminiscent of the likelihood principle in the theory of statistical inference.

Bernardo’s theorem says the following: If u is proper and local, then it must be of the
form

u(m?(),9) = Alogn! (v) + B(4), (6.3)
where A is constant and B is a function of ¥ alone.
Sketch of proof of (6.3):
Since u is local, u(7'(-),4) = u(x¥(¢)), ). Therefore, the property that u is proper
becomes: Among all functions 71(-), and for all probability densities ©(-), the value of

[u(rT (), ¥)m(p)dy, subject to [nl(p)dy = 1, is mazimized when ¥(-) = 7(-).

By the principle of Lagrange multipliers, the optimal 77(-) is an extreme point of the
functional

P () = [l (6),9)m(w)do - 4 [ [t wan - 1] (6.4)
for some constant A.

However, for this to be achieved, we must have

Piin'()} = %F{WT(')+€T(')}\6=020 (6.5)

for all sufficient smooth and small functions 7. To see that (6.5) must be true, expand (6.4)
in a Taylor series for small € and fixed 7: F{rT(-)+er(:)} = F{nt()}+eF {nT(-)}7(-)+o(e).
If Fy # 0, the second term can be made either positive or negative for sufficiently small |¢|,
so w! cannot be an extreme value of the functional F. Therefore F; = 0, which is (6.5).

Evaluating the derivative in (6.5), this condition reduces to

[ @), o) - 4 [ rw)aw =0 (6.6)
where u; denotes the first-order partial derivative of u with respect to its first argument.

However, for (6.6) to be true for all 7 in a sufficiently broad class, we must have

ur (7 (9), )m () = A (6.7)
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for each .
For u to be a proper utility function, (6.7) must be true when 7' (1)) = 7(2)), and so
ur (m (), Y)m(y) = A (6.8)

for each .

But (6.8) is just a differential equation in the (scalar) quantity 7(¢), and it may easily
be checked that this has solution

u(m(¥),v) = Alogn(y) + B(1))
where B(%)) is a constant depending only on . This is (6.3).
Interpretation

The expected utility before doing the experiment is

[tatogn(0) + B@)n(w)dy, (6:9)

where (1)) is the prior distribution.

The expected value of the utility after doing the experiment is

/{/{Alogr(w | ) + B(¥) }r (¢ | x)dw}px(a;)dx, (6.10)

where (¢ | z) is the posterior distribution given X = z and px(z) is the marginal
distribution of X. The difference between (6.10) and (6.9) is therefore the expected gain
in utility as a result of doing the experiment.

However, the term involving B(%) is the same in (6.9) and (6.10) — this follows at
once from the elementary identity 7(¢) = [ (¢ | z)px (z)dz.

Ignoring B(1), then, the difference between (6.10) and (6.9) is

A / / log{r (s | )}n(® | ) — log{m (1)} ()] dpx (z)d. (6.11)

However, let us also note the identity

A [ [1ogr(w) (r(w) - 7( | 2)} dupx (@) =0, (6.12)
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which follows, after exchanging the order of integrals, because [ 7 (¢ | 2)px (x)dz = 7 (1))
for each .

Substituting from (6.12), (6.11) becomes

A [ [ tog((w | 2)} - log{m(w)} dur (s | a)px (@),
which is (6.1).

The alternative representation (6.11) is of interest in itself, since it may be interpreted
as the expected information after the experiment minus the information before the exper-
iment, and this is another way of thinking about the purpose of the experimental design
as “maximizing the information contained in the experiment”

6.2 Information in the multivariate normal and ¢ distributions

As a technical preliminary to the results of section 6.3, we show how to calculate the
information in the multivariate normal and ¢ distributions. We refer back to section 3.4
for the basic distribution theory.

Suppose X ~ N,(p,X). The density of X, evaluated at X = =z, is given by (2.X1)
and may be denoted f(z). Then

log £(X) = ~log(2m) 1 log ] — 5 (X — )" S} (X — ).
But B{(X — p)"2"H(X — p)} =p, so
1(X) = B{log X} = £ {1+ log(2m)} - %log 5. (6.13)
In the case of the ¢ distribution, we shall actually work with the matrix t distribu-

tion discussed in section 3.4.1, though for the present purposes, we shall only need the
multivariate form of it.

Suppose T ~ t(p, q; P,Q,m) and let f(t) denote the density at T = t. By (2.X11),

+p+qg-—1 +qg—1
o 1 =~ s (P20 ) <, (752

m+p+q—
2

m-+p+
+#log|Q|+%log|P|—

1
5 log |Q + tT Pt|.

We evaluate E{log |Q + tTPt|} as the limit of -LE{|Q + t" Pt|"} as r — 0. From the
fact that (2.X11) is a density, we deduce

_ _ Lg((m+q—1)/2) - ~1)/2)| p|—aq/2
Q + T pt|~(mtpta=1)/2gq _ ppa/2__"4 Q| ((m+a-1)/2)| p|=a/2
fia+ep F((m+p+a-10/2) o
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and so, replacing m by m — 2r,

/ Q + tT pt|~(m—2rtp+a—1)/2g

_ paf? Ty((m—2r+q—1)/2) Q| (m=2r+a-1)/2) p|=a/2.
Fg((m—2r+p+q—1)/2)

Taking the ratio of the last two expressions,

Ly((m=2r+q-1)/2) = Ty((m+g-1)/2)
Po((m =2r+p+q¢—-1)/2) Ty((m+p+q-1)/2)

E|Q+TTPT|" = Q.

Therefore,

Elog|Q + TTPT| = d{logF ((m—=2r+q—1)/2)

—logTy((m—2r+p+q—1)/2) +7"10g|Q‘}

r=0

However,

-1 d 1—j
on, () = L togn+ 3 togr (127

j=1

by (2.X9), and since - logI'(z) = ¢ (), where 9(-) is the digamma function, we have

jlogf( _27~): Z¢( —27"-1—1—])

j=1

Hence

q . .

m+q—] m+p+q—]
El TTPT| = — _— _ = | .
og|Q + T7PT| j}zljw( . )+j§=jlw( 1) 4ol

Finally, we deduce that when T ~ t(p, ¢; P, @, m), the information in T is

Fy((m+p+q—1)/2)
Ly((m+q—1)/2)

m+p+q—1g m+p+q—j m+q—j
e () ()

i=1

pq p q
I(T):—710g7r+log{ }—Elog\Q\—§10g|P|

(6.14)

We leave it as an exercise to show that one would get exactly the same answer starting
from (2.X12).

6.3 Information- and entropy-based criteria of optimal design
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In this section we outline the development of a theory of optimal design based on
information or entropy criteria, concentrating on the work of Zidek and co-authors.

6.3.1 First formulation: Caselton and Zidek (1984)

Caselton and Zidek (1984) considered the problem of dividing p = u+ g sites into two
subsets, where g sites will be gauged and the rest ungauged. Suppose the p-dimensional
random vector Y represents the values of the random field at all p sites, but this is subdi-
vided into YY) and Y@ corresponding to the ungauged and gauged sites respectively. We
assume that Y has a multivariate normal distribution with mean p and covariance matrix
Y. where i and ¥ are known. Thus, the method takes account of the prediction uncertainty
of YU given Y but not of any additional uncertainty arising from the estimation of p
and ..

In the context of section 6.1, we identify ¢ with Y (1) the variable we are trying to
predict (since this is a Bayesian theory, we do not in any case make any distinction between
parameters and random variables), and X with Y®) the measured data. Then according
to (6.1) or its equivalent form (6.11), the information gained about Y1) as a result of
measuring Y (?) may be written in the form

I(YDy @y — 1(yM) (6.15)

where I(X) denotes the information in a random variable X, i.e. [ f(z)log f(z)dz where
f(x) is the density of X evaluated at x.

The conditional distribution of Y1) given Y2 is normal with variance $;j3 = $11 —
21222_21 Y91, while the unconditional variance of YD ig¥,. T herefore, according to (6.13),

1 1
I(YDy @) - f(y®) = —5 10g [Zaj| + 5 log X,

The optimal design, according to this criterion, is the one which minimizes

log |21|2| — log [¥11] = log |E1_11/221|221_11/2|
= log [£77/% (311 — $1235; %a1) 53,7 (6.16)

=log|I — R|
where R = $7/251,55} 50 81
Another way to write (6.16) is

> log(1—p}), (6.17)
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where p?, p2, ... are the eigenvalues of R or, equivalently, the squared canonical correlations
between U and . Therefore, another way to express the criterion is to choose the subdi-
vision that makes the canonical correlations between U and G large, in the precise sense
of minimizing (6.17).

6.3.2 Second formulation: Caselton, Kan and Zidek (1992)

Caselton, Kan and Zidek (1992) — henceforth CKZ — extended the theory of Caselton
and Zidek (1984) (CZ) to consider the case where p and ¥ are a priori unknown. However,
at the same time they also considered a number of different formulations of the problem,
in particular one which leads to a different selection criterion from CZ.

CKZ formulated the design problem in terms of entropy, where, following Jaynes
(1963), the entropy in a random variable Y with density f(y) is defined as

H(Y)=E {— log %} : (6.18)

where m is an appropriate reference measure taken to be an invariant measure by CKZ. In
the subsequent development the role of the measure m is ignored, though CKZ admitted
that its arbitrariness was a slightly awkward feature of the theory. If we do ignore m, then
the entropy of a random variable is simply the negative of the information as defined in
section 6.1; “entropy” is also commonly equated to “uncertainty”. Note that the theory
of section 6.1 also involves an unspecified additive constant, deriving from B(%) in (6.9),
but since Bernardo’s criterion is based solely on differences of information between two
distributions for the same random variable, the unspecified additive constant does not
affect the conclusions in that case.

Using obvious notation, we write H(U) for the entropy in the ungauged stations U,
H(U|G) for the conditional entropy given G (i.e. the entropy in the conditional distribution
of the measurements in U given the measurements in G), and so on. In this notation, the
CZ criterion is the same as choosing U to minimizie

H(U|G) - H(U). (6.19)

However, CKZ criticized (6.19) as ignoring the information in G: it might be appropriate if
the number of stations in G was negligible in comparison to U but in the specific application
of CKZ — which involved reducing an existing network of 81 stations to some smaller
number — it was important to consider the information in the gauged stations themselves
as well as their role in predicting values at the ungauged stations. Noting that one can
decompose the total entropy as

H(U,G) = HU|G) + H(G), (6.20)

where the left-hand side of (6.20) represent the information in the entire system and is
therefore constant, they proposed the criterion of minimizing H(U|G) or equivalently:

Choose G to maximize H(G). (6.21)
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Note that in the case of a multivariate normal distribution, (6.20) is equivalent to the
decomposition

1 1 1
3 log [X] = 510g Bq)2| + 2 log |92,

which is a well-known identity for the determinant of a partitioned matrix (Mardia, Kent
and Bibby 1979, section A.2.3, page 457). Thus, criterion (6.21), applied to the model of
CZ, would lead one to choose the gauged set G which maximized Yq,.

In fact, CKZ considered a much more complicated problem, in which x4 and ¥ are
initially unknown and estimated through a Bayesian scheme as in section 3.4. For the
development given in that paper, they assumed that previous observations are available
from the entire system, i.e. U and G. In many situations, that would not be a realistic
assumption, though for the specific applied problem considered by CKZ — that of min-
imizing an existing network — it is realistic. They did have complete measurements for
all 81 stations in the network, though as we shall see, they still had difficulties associated
with not having enough data to estimate the model satisfactorily. In any case, we present
CKZ’s mathematical development here because it leads to a very elegant conclusion, which
should surely be used as the basis for more general developments under alternative model
and data assumptions.

Following the Bayesian scheme outlined in section 3.4.2, CKZ assumed the prior dis-

tribution .
Y~ Wp (U, m),

IS ~ N (p°, f7150),

where the matrix ¥, the vector pu° and the scalars m and f are hyperparameters. The
situation is slightly simpler than section 3.4.2 because we are not considering regression
coefficients, but the same theory obviously applies to the present setting.

Suppose we have n complete data vectors 1, ..., ¥, each independently sampled from
Nyp(p, Y), and write Y for the complete data vector. As shown in section 3.4.2, the posterior
distribution given Y is of the form

—1/3 A
Y~ W (Y, m),

o (6.22)
:U'|E ~ NP(IU’O7 f_12)7

where, for instance, m = m + n, f = f+mn and 4° and U are the same as B* and ¥ + H
in the notation of (2.X30).

Now consider a hypothetical future observation y(Q)*, where by the notation we mean
that the future data are observed only on the gauged portion of the network. According
to the H(G) criterion, the objective is to choose G so that the entropy in the predictive
distribution of y®™ is maximized.
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To calculate the entropy in the conditional distribution, we note first that

Saa|Y ~ Wy (Bag, 11 — w),
(2|8, Y ~ Ny(fi3, f~1502), (6.23)
y @7 |1, S ~ Ny(pa, La2),

where the first equation in (6.23) follows from the first equation in (6.22) in analogous
fashion to equation (2.X36) from section 3.4.2. Then, integrating out first with respect to
p2 and then Y55, we deduce,

y P2, Y ~ Ny(a9, (1 + f~H)Sa),

) . . (6.24)
y(2) Y ~t(g,1; ‘112_21, 1+ f tm—u—g+ 1).

The only parameter in (6.24) to be affected by the partitioning is W55, and by (6.14),
the entropy is of the form

1 ~
H(G) = 5 log |Wgs| + constants.

Therefore, the network design problem reduces to choosing G to maximize log ¥ys.

CKZ applied this criterion to the optimal reduction of a set of p = 81 stations in a wet
deposition monitoring network. The data consisted of logged monthly mean sulfate levels
which were treated as independent normal observations, for a total of n = 48 months.
With m degrees of freedom for the prior Wishart distribution, the requirement of a proper
posterior implies m +n > p — 1, or m > 32. This underlines the data adequacy problem
mentioned earlier — even though they did have prior data on the full network, it was not
really sufficient to estimate a full 81 x 81 covariance matrix. In practice, they chose four
values of m arbitrarily (33, 36, 42 and 48), and examined the sensitivity to m in their
subsequent discussion. For the prior value of ¥, they used a simple intraclass correlation
structure as in (2.X46), with 02 and p estimated from the combined data on all stations.
An alternative formulation might be to estimate ¥ by fitting one of the standard spatial
models for the variogram, which would be analogous to the approach of Loader and Switzer
(1992). CKZ argued against this approach as making too strong a prior assumption about
the form of the spatial covariances, but nevertheless, it seems that their own approach
also puts rather strong prior weight on the assumption that X is of intra-class correlation
structure, which is equally if not more unrealistic.

The actual algorithm adopted by CKZ consisted of dropping one station at a time,
where the station to be dropped was selected by the criterion of maximizing Jyy for
the remaining stations. This algorithm does not necessarily produce the optimal G over
the set of all possible subsets of a fixed size g, but a complete solution to that problem
would involve searching over a prohibitively large set. In comparing the different values
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of m, they argued that the influence of m in the selected design was minimal, but they
also showed that the total uncertainty could be decomposed into components representing
prediction error, uncertainty about the model, and so on, and that the influence of m on
these individual components was considerable (for example, m = 33, the smallest value
admitted by their study, implies the greatest uncertainty about the model, and this could
influence the optimal design if one used that as a design criterion).

In a subsequent extension of the methodology, Wu and Zidek (1992) proposed avoiding
the problem created by the high dimensionality of the covariance matrix by dividing the
data points into clusters, where each cluster had fewer than 48 data points, and treating
the design problem as a separate task within each cluster. This way, the degrees of freedom
problem associated with the Wishart prior was avoided, and it was possible to use improper
priors without getting an improper posterior distribution. For the subdivision into clusters,
Wu and Zidek applied the K-means clustering algorithm of Hartigan and Wong (1979), as
adapted by Krzanowski and Lai (1988). Somewhat controversially, the variable to which
they applied the K-means algorithm was not the spatial location of the data point, but the
response variable of interest (they considered a total of 9 measurements for different ions,
and therefore repeated the procedure 9 times, each one producing a different clustering of
the stations). This procedure was in no way guaranteed to produce spatially contiguous
clusters, though in most of their examples, the clusters did correspond to rough spatial
groupings of the stations. They argued in favor of their approach, rather than a more
obvious clustering based on spatial coordinates, on the grounds that by starting with
clusters that are statistically homogeneous, the potential for reducing the network with
minimal loss of information would be much greater.

Returning to the CKZ paper, at the end of their paper they gave further discussion
of the two competing criteria for design. They argued that the total uncertainty in the
system may be decomposed into components due to prediction of the unobserved portion
of the network, learning about the model, and the measurement uncertainty in G. Since
the total uncertainty in the system is a constant, choosing G to maximize the uncertainty
in G is equivalent to minimizing the uncertainty in the other two components — in this
sense, the criterion takes into account the benefits of learning about the model as well as
predicting the unobserved portion of the network.

However, it is not entirely clear how this reasoning would apply in the limiting case
when n, the number of prior observations, tends to infinity. In that case, U converges to
the true covariance matrix Y and there is no model uncertainty at all. However, as already
noted, in that case the CKZ criterion would choose G to maximize Y95, which is still not
the same as the CZ criterion.

Perhaps an even simpler argument, also mentioned in passing by CKZ, is to ignore
the role of U altogether, and simply view the H(G) criterion as placing the monitors where
they will give most information. In an environmental regulatory context, the p candidate
locations for monitors could represent suspected violators of air pollution standards, and
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the network design problem could be interpreted as gaining the maximum amount of
evidence as a prelude to possible legal action.

6.3.8 Incorporating costs: Zidek, Sun and Le (2000)

A more recent paper by Zidek, Sun and Le (2000) — henceforth ZSL — has further
elaborated these criteria and also considered how to incorporate costs of measurement into
the analysis.

Extending an earlier analysis by Le, Sun and Zidek (1997) (recall section 3.4.4 for dis-
cussion of that), they considered a network of 31 stations in Ontario, actually obtained by
combining three earlier networks, and also considered the possibility of extending them by
adding up to 15 additional sites. Four pollutants were measured, nitrogen dioxide (NO3),
sulfur dioxide (SO2), ozone (O3) and sulfates (SO4), but only the last two were consid-
ered in this analysis as they are the two pollutants currently considered most damaging
on human health. Because the decision process includes both the possibility of adding a
new monitor to an existing site and opening up a whole new site, they introduced the
terminology of pseudosites to encompass both possibilities — each “pseudosite” consists of
a specific site-monitor combination. Thus the existing network consists of 62 pseudosites
(31 for O3 and 31 for SO4), not all of which are monitored, and there is also the possibility
for adding up to 30 additional pseudosites. The costs of opening a new pseudosite were
estimated at $3,000 per year (in Canadian dollars at 1997 prices) for adding a new monitor
to an existing site and $8,000 for setting up a monitor at a completely new site (they also
discussed other costs such as operating costs but we shall not refer to that part of the
discussion here). The structure of the model is exactly of the “data missing by design”
form, analyzed in detail by Le, Sun and Zidek (1997).

Following the CKZ theory described earlier, ZSL formulated the network design prob-
lem as choosing the new sites to maximize log |®| where ® is the prior (i.e. based on existing
data) covariance matrix for all the gauged pseudosites after modifying the network. Since
the problem in this instance was where to add new monitors, rather than where to delete
existing ones, they decomposed log|®| into elements representing the existing monitors
and the supposed new monitors. With this decomposition, the design criterion becomes
to maximize

10g |®aqajg| = 108 |Padd — Pada, g Py Py, add|

where the notation reflects the subdivision of stations into existing stations “g” and added
stations “add”.

The actual details of the analysis involved the multivariate extension of the model
defined by Brown, Le and Zidek (1994), as modified by Le, Sun and Zidek (1997) to take
into account data missing by design, and also using the method of Sampson and Guttorp
(1992) to extend the estimated covariance matrix to cover the whole region of interest. We
omit discussion of these steps since they have already been outlined in section 3.4. Instead,
we concentrate on the problem of incorporating costs into the optimal design criterion.
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As noted already, there is a cost associated with a potential monitoring site s, denoted
C(s), which is not the same for all possible sites s. The ZSL theory also leads to an
entropy measure F/(s), which has the intepretation of the uncertainty associated with the
site s. Thus, it seems natural to consider a combined objective of maximizing O(s) =
E(s) — DE C(s) where DE is a cost to entropy conversion factor. When DE = 0 the
problem reduces to that of finding the subset of possible added sites to maximize ®, and
this is one for which an efficient algorithm is now avaiable (Ko et al. 1995). However when
DE > 0 this idea does not work and one is again reduced to an approach based on adding
one pseudosite at a time. ZSL remark that if DE was too large, one would never add any
stations at all, but in practice, stations do get added to networks, so the practical value
of DE cannot be too large. By repeating the analysis for various small values of DE,
including 0, they were able to assess the sensitivity of the selected network to the exact
value of this parameter. In discussing specific numerical results they noted that the order
of selecting pseudosites is not too sensitive to DE, but the cutoff point (i.e. when it is no
longer beneficial to add new stations) is sensitive to the exact value of DFE, as might be
expected.

At the end of their paper, ZSL refer to some additional possibilities —

e ranking potential pseudosites based on the ratio E(s)/C(s) (suggested by Dr.
Lawrence Phillips),

e choosing the additional pseudosites to maximize the entropy of the expanded network
subject to a constraint on total cost.

However they also mention the possibility of applying a new combinatorial optimiza-
tion algorithm of Anstreicher et al. (1996) to refine the current ZSL approach, in partic-
ular, avoiding the one-at-a-time selection algorithm and directly calculating the optimum
G. The possibility of using improved algorithms for maximum entropy sampling was also
mentioned by Bueso et al. (1998), and further illuminated in a discussion by Lee (1998).
Evidently, this is still a developing area of research.

6.3.4 Possibilities for extension to a fully hierarchical model

This subsection is purely speculative since the idea has not been tried in practice, but
nevertheless, it seems worthwhile to outline how the ideas of CKZ and ZSL could, at least
in principle, be extended to a fully hierarchical approach.

The model of section 6.3.2 assumed hyperparameters ¥, u®, f and m. As discussed in
section 3.4.4, a fully Bayesian hierarchical approach would allow all of these to be functions
of a hyperparameter 6, with a prior density 7(f). The model may then be represented

symbolically as

(1, £)10 ~ g(p, X10), (6.25)
0 ~ m(6).
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A Bayesian hierarchical analysis proceeds by alternately sampling (u,Y) from the
conditional density of (u,) given (Y,0), and # from the conditional density of 6 given
(Y, 1, %). In this way, we generate a Monte Carlo sample {6,, 1 < a < A} from the
posterior density 7(0|Y). Let us suppose that this has been done and consider how to
estimate the entropy measure for a subset G generating a future random variable y(z)*.

The full predictive density is

/ / / £ 1 D)g (s 210, Y )7 (0] Y ) dpud Sdb. (6.26)

However, the integral with respect to 4 and ¥ is possible analytically, since it derives from
the (g, 1; U5, 1+ =1, i — u— g+ 1) predictive distribution for " — 49 which we have
already seen — here \ijgg, a9, f and m are the parameters of the normal-Wishart posterior
distribution given . Therefore, we can write down the density directly from (2.X11) and
simplify (6.26) to

Forea (@7 [Y) = / Forea (2710, Y (60]Y)d0 (6.27)

which we would in practice estimate by

A

~ * 1 *

Jorea@@" 1Y) = 2> Forea (s |00, Y). (6.28)
a=1

Note the use of the subscript “pred” here to denote a predictive density. The evaluation
of entropy, however, requires integration with respect to y(?”, and this seems to require
further Monte Carlo sampling. The following procedure is therefore proposed.

1. Generate a random sample 601, ...,0 4 from the posterior distribution of 6 given Y.

2. Fix some reference value é, for example (though not necessarily), the sample mean
of 91, ceey QA.

3. Generate independent samples z1, ...,z from Ny(0,1,) and Sy, ..., Sp from
Wg_l(Ig, 1 — u). Here I, is the g x g identity matrix.

4. For each b € {1, ..., B}, define X99(b) = \il;ész\il;éz (@542 is the matrix square root
of Way), and y@"(b) = 49+ (1 + f~1)1/252/%(b) 2. Thus, Sg2(b) is a random matrix from
W, L({gy, M — u) and y@7(b) is a random vector from the predictive distribution of y(*
given Y and 6 = 6.

5. Defining fpred(y@)*\Y) as in (6.28), the Monte Carlo estimate of the entropy in G
is given by

Afpred (y(2) ' (b)lY)
fpred (y(2) i (b) |07 Y) 7

A

B
A(G) = = 3108 forea ™" (B)IY) -
=1

(6.29)
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where fpred(y(z)*|é, Y) is the analytic predictive density derived from the multivariate ¢
distribution.

Note that a feature of this procedure is the use of the same sequence of random num-
bers in step 3, whatever the design G' being evaluated. This seems desirable, because it
should minimize the influence of the random sequence in comparing different G’s. Never-
theless, it must be admitted that this procedure lacks the simple pristine elegance of the
|Wgs| criterion!

6.4. Optimal design theory and the General Equivalence The-
orem

The major alternative theoretical approach, to the one based on entropy or information
theory outlined in sections 6.1-6.3, is based on the theory of optimal experimental design.
This theory originated in papers of Kiefer and Wolfowitz in the 1950s and has been well
treated in a number of excellent books, e.g. Fedorov (1972), Silvey (1980), Atkinson and
Donev (1992). However, the connection with spatial statistics and prediction was not made
until two fundamental papers of Fedorov and Miiller (1988, 1989). Subsequent work has
see much further development of this approach, including a recent book by Miiller (2000)
which is recommended as the most complete treatment of this whole approach to network
design theory.

This section gives a very brief outline of the main principles of optimal design theory,
focussing on the famous Equivalence Theorem of Kiefer and Wolfowitz. In section 6.5 we
outline the Fedorov-Miiller approach, followed by more recent developments.

The traditional formulation of optimal design theory is for a linear regression problem
in which certain variables x; are chosen by the experimenter and p covariates of interest
are known functions of x;, denoted fi(x;), ..., fp(z;). The ¢’th data point is then

D
Yi = Z fi(@i)Bj + e, (6.30)
j=1

where 3, ..., 8, are unknown coefficients and, as usual in linear regression theory, ¢; are

uncorrelated errors with mean 0 and common variance o2.

Writing
Y1 fi(z1) oo fp(1) b1
Yo=1| | ,Fn= : : : B=1 1, (6.31)
Yn fl (xn) s fp(xn) ﬁp
the optimal estimator of 3 is of course 83, = (F,F,)"1FTY,, with covariance matrix

(FTF,)" o2
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For the purpose of developing optimal design theory, it is helpful to rewrite this well-
known result in a more abstract form. Let X denote the space of all possible values for
the design points z;, and let &, denote the measure on X which puts mass % at each of

the design points z1,...,z,. Then with f(z) = (fi(z) ... fp(z) )7,

FTF Z flz)f / f(@)f(x)Tdén (), (6.32)

where the integral in (6.32) is interpreted as a Stieltjes integral with respect to the discrete
measure &,.

Define
M(€) = / f(2)f ()T de (),

which is defined for any positive measure £, discrete or continuous, subject to the usual
measurability and finiteness conditions. The abstraction referred to above is to generalize
the definition of M ({) from equally weighted discrete measures on n data points to any
finite measure &.

For the linear regression (6.30), with &, defined by (6.32), the covariance matrix of
the best linear unbiased estimator f3,, is given by

2

4,0
Mg T
Thus, choosing a good design means making M (&,,) “large” in some suitably defined sense.

All the standard optimal design criteria are of the form: choose £ to minimize W{M (¢)}
where W{-} is some functional on the space of non-negative definite symmetric p x p
matrices. In areal design problem with n observations, £ is restricted to discrete probability
measures whose weights are multiples of %, but for the purpose of developing a general
theory, we allow £ to be an arbitrary probability measure on X.

Typical optimality criteria include the following:

e D-optimality: W{M (&)} = —log |M (§)|. The original motivation for this was that
the D-optimal design minimizes the volume of a confidence ellipsoid of fixed significance
level for .

o A-optimality: V{M (&)} = tr{M(£)~'}. This minimizes the average variance of the
parameter estimates.

e E-optimality: W{M (&)} is the maximum of aT M (¢)~1a over all vectors a such that
aTa = 1. This is interpretable as minimizing the variance of the least well estimated

contrast subject to a normalizing condition on the contrast.
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o G-optimality: V{M (£)} = max,cx d(z, &) where d(z, &) = f(z)TM (&)1 f(z). Here,
o%d(z, ) is the variance of the estimated response function f(z)? 3 at z, so the G-optimal
design is the one which minimizes this variance over all x.

A side comment about G-optimality is that the mean of d(z, &) over the whole design
is p:
| d@.ds@) = [ a{p(©) @)@ de(z)
= tr{M(&)"'M(€)}
= tr(lp) = p.
Therefore, maxgecx d(x,&) > p for any design &. In particular, if we can find a design &*

for which max,cx d(z,£*) = p, £* must be G-optimal.

D-, A- and E-optimality can all be rewritten in terms of the eigenvalues of M (&), say
A1y .y Ap, as follows:

e D-optimality: minimize [ A%-’
e A-optimality: minimize ) A%-’

. . . . e . L
e E-optimality: minimize max 5

%

These may all be regarded as special cases of the criterion

L 1/k
T(€) = (5 Z)\f) ., 0<k< oo, (6.33)
=1

in which k£ = 1 corresponds to A-optimality and the limits £ — 0, k¥ — oo give D-optimality
and E-optimality respectively. (6.33) shows that there is, at least in theory, a continuum
of optimal design criteria with many intermediate cases apart from the three given so far.

We now turn to the General Equivalence Theorem, originally given by Kiefer and
Wolfowitz (1960) and subsequently much extended. Our treatement follows most closely
the book by Atkinson and Donev (1992); Silvey (1980) presented what is probably the
slickest proof of the result.

To present the General Equivalence Theorem, we must first define what it means by
the derivative of a functional W{M (&)} with respect to . Suppose J, is a unit point mass
at z, and consider modifying & into

& =01-a)+ ad,,

where 0 < a < 1. Then
M) = (1 - a)M(§) + aM(bs).
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The derivative of ¥, in the direction d,, is

B(z,€) = lim ~ [W{(1 — ) M(€) + aM(5,)} — T{M(E)}].

all o

The General Equivalence Theorem asserts that the following three conditions are
equivalent:

(1) &* minimizes W{M (&)},
(2) ¢(z,&*) > 0 for all z,

(3) ¢(x,&*) achieves its minimum at points of the design, i.e. at points z which have
positive point measure under &*.

The rough intuition behind this is that (2) asserts that ¥ is not decreased by adding
an infinitesimal point mass at x, for any z, so in that sense, the design £* is locally optimal.
However, most of the ¥ functions we consider, including D-optimality, are convex functions
of &, so any locally optimal design is also globally optimal. For a full proof, the reader is
referred to any of the books we have cited.

Ezample. Consider W{M(£)} = —log|M(&)|. Consider the case when £ = &,, the
point measure with mass 1 at each of z1,...,z,. Let F,, = (f(z1) ... f(zn) )T as
in (6.31). Assume a new design &, 41 is created by adding a point mass at z, so that
Fayi= (FT f(z))" and

n 1
n Oz-
n + 15 * n+1

Ent1 = (6.34)

We also have
Fg—i—an—i-l = FfrTFn + f(.’L')f(.’L‘)T
Therefore,
P Pl = [EL Fol - [y + (FL Fo) 7 f(2) f ()7
= |F Ful{1 + f(z)" (Fy Fp) ™ f(2)}

where we have used the matrix identity |I,, + BTC| = |I,,, + CB?T| applicable whenever B
and C are both m x n matrices (see, e.g., Mardia, Kent and Bibby (1979), section A.2.3,
page 458).

Since |FT F,| = n?|M(&,)|, we have

f@)" M)~ f (=) } ,

U{M (€ns1)} — plog(n + 1) = W{M(£,)} — plogn — log {1 ; (
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and hence
nll)rglo n[U{M (&ni1)} — V{M (&) }]

1 d
= lim nplogn+ — lim nlog{l-l— (3:,5)}
n— o0 n n—oo n
=Db—- d(l[), gn)

Since, for large n, any design £ may be approximated by one concentrated on n equally
weighted points, we conclude

With this interpretation, condition (2) for the D-optimality of a design £* reduces to

d(z,§) < p for all z, (6.35)

and we have already seen that (6.35) implies G-optimality of the design £. Therefore,
provided we extend the notion of design to allow arbitrary measures &, the General Equiv-
alence Theorem implies that D-optimality and G-optimality are equivalent.

Atkinson and Donev (1992) give a table of ¢(x, ) functions for a variety of design
criteria ¥, including:

e For A-optimality, ¢(z,¢) = tr{M ()} ™' — f(2)"M ()2 f (=),

e For E-optimality, ¢(z,£) = Amin — f(z)TrrT f(2), where Ay is the smallest eigen-
value and r is the corresponding unit eigenvector.

Another consequence of the General Equivalence Theorem is that it implies an algo-
rithm for constructing the optimal design. Suppose we add one design point at a time and,
given the current design measure &, define &,,1 by (6.34) where z is chosen to minimize
¢(x,&,). Then as n — oo, the design measure &, converges to the optimal design £*.
However, this strategy (which amounts to a simple steepest descent algorithm) does not
generally lead to a very fast rate of convergence.

It should be pointed out that neither the General Equivalence Theorem nor the al-
gorithm just described necessarily leads to the optimal design over n data points for any
fixed n — they should be interpreted as limiting results for n — oo. Nevertheless, for
large n it seems reasonable to assume that the design &, created by the algorithm is a
reasonable approximation to the optimal design on n points, and this is the philosophy we
shall adopt subsequently.

6.5 Applications of optimal design theory to the design of spa-
tial networks
6.5.1 The Fedorov-Muiller approach
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Fedorov and Miiller (1988, 1989) made the connection between optimal design theory
and choosing a network to optimize spatial prediction by exhibiting a particular class of
spatial models which could be viewed from either of two points of view, as a regression
model or as a spatial random field model, and showing how two different points of view
led essentially to the same conclusions. In doing this, they opened up the possibility of

applying optimal design theory to more general problems of spatial prediction in random
fields.

The Fedorov-Miiller (FM) model assumes observations of the form

yir = f(xi) 0 + e, 1<i<n, 1<t<T, (6.36)
where y;; denotes the observation at time ¢ at location z;, f(z) is a known vector of
regressors at location x, and ¢;; are uncorrelated random errors with mean 0 and variance
1. Each 6, is a vector of coefficients which, in their model, is different at each time point
t. In fact the model is of simple “random effects” type: for each t, 6; is sampled from a
distribution which has mean 6y and covariance matrix Dg, and 6; at different time points
t are uncorrelated. Thus, combining all the y;; at a single time point ¢ into a vector y;,
and similarly combining the f(z;) vectors into a matrix, F', and the errors ¢;; into a vector
€¢, (6.36) may also be written

Y = FTHt + €t, E{Gt} = 90, Cov{Ht} = Do, (637)

or equivalently
E{y:} =00, Cov{y:} =1+ FTD,F. (6.38)

Note that (6.38) is of the form of a very particular kind of spatial covariance model, which
one could analyze from a “geostatistical” point of view without explicit consideration of
the regression.

Within this model framework, FM considered three cases:
(a) By, Dy known, 60; to be estimated for each ¢,
(b) Do known, 6y and each 6, to be estimated,
(¢) 0o, Do both unknown.

Under assumption (a), the optimal estimator of 6; is

0, = (Dgt +nM)"Y(Dy 00 + Fyy),

where M =n 'FFT =n-1%7" -
i1 f(zi) f(z:)T. In this case,

E{(0: — 0:)(0: — 0)"} = (Dg " + nM) ™" (6.39)
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In case (b), the optimal estimator of ; is just the usual least squares estimator,
0; = (nM) ™' Fy,

and the optimal estimator of 6 is

1 K
b= 0
t=1
The corresponding variances are
E{(H_t — Ot)(ﬁ_t - Ht)T} = n_lM_l, (640)
E{(fo — 00) (0 — 00)T} = T~ (Do + n~*M~1). (6.41)

In case (c), no exact theory for the estimation of 6y and Dy exists, but FM advocated
sample-based estimators, arguing that as T' — oo these would be consistent estimators and
therefore, for large T', the theory would be similar to case (a).

The optimal design problem is based on choosing z1,...,Z, so as to minimize some
suitable functional on one of (6.39), (6.40) or (6.41), and FM considered only the D-
optimality criterion, but with three variants corresponding to each of the three covariance
matrices. They therefore considered

Uy = —log[nM|, VUy=—log|Dyt+nM|, V3=1log|Dy+n "M

Here, U3 would be appropriate if our main objective were to estimate 6y, e.g. for the
purpose of estimating long-term characteristics of the system, whereas ¥; or W5 would be
more appropriate for interpolation at a specific time instance t.

In accordance with the General Equivalence Theorem, observations should be placed
at locations which maximize ¢(z, £), where

for Uy : p(x,€) = f(z)" M (€)™ f (),
for Uy : (2, &) = f(o)T{Dyt +nM (&)} f(z), (6.40)
for Uy : 9(z,€) = ()" M ()" H{Do +n~M(E)1} M (E) " f(a).

Now we turn to the alternative viewpoint of the problem, in which we view y; as a
random field with covariance given by (6.38), and consider optimal prediction at a new
location z. The case 6y known is just the calculation of a conditional distribution in the
multivariate normal distribution, while the case y unknown corresponds to the traditional
formulation of kriging in which the process has unknown constant mean. For the present
discussion, we consider only the case 6y known. FM in fact solve this problem by direct
calculations on the covariance matrix (6.38), but a simpler solution is just to use the
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equivalent random effects representation from which it follows at once that the optimal
predictor at a point z is f(z)70;, with prediction variance 1+ f(z)T(Dg ' + nM)~1 f(x).

However, a rational criterion when adding a point to a network is to add a new monitor
as the location where the prediction variance is greatest — or alternatively, if the objective
is to reduce the size of the network, to remove the point for which the prediction variance
given the other points is smallest. Both of these correspond to designing the network to
include points for which f(z)T(Dy ' +nM)~!f(x) is large, and by the general equivalence
theory, such a strategy is consistent (for large n) with choosing the network to minimize
Uy,

Thus, a formal equivalence between D-optimality theory and a more intuitive crite-
rion, based on choosing monitor sites at places where prediction variance is maximized, is
established.

Despite the elegance of this conclusion, both the model and the result are rather
artificial for a real design problem. The covariance function (6.36) allows for monitors to
be placed quite close to each other, or even at exactly the same location, still without
achieving perfect correlation among the observations. Moreover, most solutions of D-
optimality problems in fact lead to measures concentrated on a fairly small number of
data points, i.e. they will involve multiple replications. But in a real system, there are
no independent replications of the field at a single time instance, and taking repeated
measurements at the same location is a pointless waste of data. FM tried to address
this problem by placing an upper bound on the measure &, thereby forcing points to be
separated, but this is clearly an artificial solution in the context of their model, and leaves
open the question of how to solve the design problem for more realistic spatial models.

6.5.2 Designs for estimating a regression function in a spatially correlated field

This section, which is based on Chapter 5 of Miiller (2000), discusses the problem
of optimal design for estimating a regression function in a spatially correlated field, when
the correlation function is known. The alternative case when the correlation function is
unknown, and whose estimation is one of the objectives of the experiment, is considered
in Chapter 6 of Miiller (2000) and section 6.5.3 here.

There is an extensive literature on design of experiments in cases with correlated er-
rors, for example Sacks and Ylvisaker (1966, 1968, 1970), Sacks et al. (1989), Su and Cam-
banis (1994). However most of the problems for which theoretical solutions are available
are restricted to particular types of covariance functions and one-dimensional problems.
The emphasis here is much more on computational solutions for the kinds of covariance
functions typically found in spatial statistics.

There are two reasons why the theory of section 6.5.1 is unrealistic for a real monitoring
problem: the covariance function (6.38) is implausible for a smooth random field, and
related to that, the problem mentioned at the end of section 6.5.1, i.e. that D-optimality
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typically leads to designs concentrated on a small number of points whereas the present
context clearly requires taking observations at n different (and, typically, widely separated)
data points. To achieve this, we need some alternative formulations of the problem.

The basic model is considered to be of the form

yi = n(zi, B) + €, (6.41)

where 7)(+,-) is a known nonlinear function dependent on an unknown parameter (3, and
Cov{e;, €} = c(x;, z;) is known for all z;, x;. Of course, the case when 7(z, §) reduces
to a linear function of the form f(z)T3 is a special case of this. Write y and n(3) for the
vectors formed by stacking the invidual y; and n(z;) in a column, and C(A) the matrix
formed from all ¢(x;,z;), when A is the set {z1,...,z,}. We also write n as n4 to signify
the number of data points in A. The nonlinear generalized least squares criterion chooses
£ to minimize

S{B,C(A)} = {y —n(B)} C(A)Hy —n(B)}.

The covariance matrix of the estimator B is asymptotically equivalent to M (A)~!, where

M(A) =) > i@)[C(A) e ('), (6.42)

€A z'€A

where 7(x) is the column vector of partial derivatives of n(z,3) with respect to 8. By
analogy with section 6.4 (but using slightly different notation, ® in place of —¥), we
assume the objective is to choose the finite set A to achieve

acipax {M(A)},

where n is the given permitted number of monitors and X is the sampling space from
which the values x; must be selected.

In the case of continuous design measures, for the examples in in section 6.5.1, ¥ was
a convex fuction of £&. With the switch of sign, this means we would like ® to be a concave
or at least differentiable function of £, so that derivative-based methods can again be used
to find the optimum. However, the difficulty is that this is no longer true when M is given
by (6.42) and the design is restricted to those giving equal weight to n different design
points.

Here, we give an outline to one solution of this problem, referring to Miiller (2000) or
Pazman and Miiller (2000) for the full details. Other algorithms for the same or related
problems are discussed by Pazman and Miiller (1998), Miiller and Pazman (1998, 1999)
and also reviewed by Miiller (2000).

Since the use of the exact information matrix (6.42) leads to a nondifferentiable func-
tion, the first step is to introduce a class of approrimate information matrices, defined on
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all measures ¢ with finite support S¢, which are close to the true information matrix but
nevertheless differentiable. One such choice is

MOE) = 3 3 i@IC(Se) + WO LT @), (6.42)

w€S§ T ESg

where ¢ is a small positive constant and W () (¢) is a diagonal matrix with entries

WO, = log { ( f(;)))} ,

and £(¢) = (Zmesg £(z)1/€)¢ is a continuous approximation to &max = max{{(z),x € S¢}.

The idea behind this definition is that M(€)(¢) is very close to M(A) when ¢ is uni-
formly distributed over a finite set A, but for € > 0, gives relatively little weight to data
points z for which £(z) < &max, and therefore, should lead to a optimal design with roughly
equal weights.

However, even with this modification there is still no way to force ng, < n, so we
introduce another modification design to force all £(z) to be at least k when x € S¢. The
idea is that if we take xk = 1/n, we will get a design that indeed gives approximately equal
weight to n design points.

The proposed modification replaces (6.42) with

MO =" Y a@)C(Se) + WO, T (&), (6.43)

:I)ES& T ES&

where W) (&) is a diagonal matrix with entries

WO =toe{ () |

6ela) = (R + () —
b= (w/+ Y €)Y -

wESg

where

Note that &.(z) is a differentiable approximation to the function which takes value &(z) — &
when &(xz) > k and 0 when &(z) < k. When £ = 0, M(e)(.f) is the same as M) (¢).

Moreover, when £ > 0 and &£(z) > & for all z € S¢, lim,_, M (&) = M(¢) (independent
of k), so this really does approximate the original criterion.

For some purposes we need an additional refinement: in (6.43), replace Wi (&) by
pW o) (&) for p > 1. This is explained further below.
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The actual algorithm proposed by Miiller (2000) is as follows:

1. Fix some discrete approximation X to X, and start with a desigh giving positive
weights to all points in X. This could be equally weighted over the whole of X, or alter-
natively, a small perturbation of a previous design & where the points in X — S¢ get very
small but positive weights.

2. At iteration s and with current design &), try to increase M,Ef) (&(s)) by adding
weight to z(,), where z(,) is determined by a method desribed below.

3. Continue until no further increase is possible, resulting in a candidate optimal
design £T. However, as a check against whether ¢ T is a local rather than a global optimum,
repeat the iteration using a larger value of p. If the new iteration converges to the same
£T, stop, because this means a global optimum has been achieved. If the new iteration
produces a different £, increase p again and repeat the process. However, p must not be
made too large, because large values of p tend to produce nonsensical designs.

The steps for determining the next design point z(5), when the current design is {(y),
are as follows. For ease of notation we write £ in place of {(,) and z, or z, in place of ().

(a) Define Uy (§) = [C(X) + pVi(£)] !, where V;(€) is the diagonal matrix with diag-
onal entries log{min(&max, £)/ min(é(x),x)}, z € X.

(b) Define

Z[U )]z,21(2

zEX

9(&2) = a(@)TVe | Y > 0(@)[Us(®)]er 21(2)" | alz).

z'€X zeX

Here V®(A) denotes the gradient of the matrix of the function @, i.e. the matrix with
entries 0®(A)/0a;; where {a;;} are the entries of the matrix A.

(¢) Compute
9(§, z)

= max , 6.44
9=, @)<n &(x) (644)
and let z, denote the = for which (6.44) is achieved.
(d) If £max > K, compute
!/
_ , 2T
T'(é-) —  max {g(&,x) [Zx =P 4 g(g T )] Bg(m)/nt} (645)

z: £(x)>K §(:c) — K

244



and let z, denote the = for which (6.45) is maximized. Here B¢ denotes the set of z for
which £(z) = Zmax and Zp(+) is the indicator of the set B.

(e) Place the next observation at x = z, if ¢(§) < —¢ or if |¢(§)| < € and r(§) > 0;
otherwise, take z,. Here ¢ is a fixed very small constant.

6.5.3 Other design objectives: Estimating the variogram

The algorithm of section 6.5.2 is designed specifically for the problem of estimating
regression coefficients when the spatial covariance function is known. There are at least
two other “design” problems of importance: design for efficient estimation of the variogram
(or spatial covariance function), and design for optimal prediction and interpolation. In
this section, we briefly discuss the second problem before giving more detailed treatment
of the first.

Designs for optimal prediction are considered in section 5.4 of Miiller (2000), who
considers criteria of the form

> w;Var{g(=})}, (6.46)

j=1

where g)(x;‘) denotes the predictor at a point zj and w; is a weight function. Here, z7, ..., 73
are ¢ given locations at which a good predictor is required, not to be confused with the
sampling locations 1, ..., Z,. If ¢ < n we can trivially minimize (6.46) by fixing a sampling

location at each z7, but if ¢ > n the problem is not trivial.

In the case of a regression model with uncorrelated homoscedastic errors, the formula
for Var{g(z})} is
2 «T T —1 _.*
o {1+z;" (X" X) "z}}, (6.47)

and the problem of minimizing the maximum of (6.47) over all z7 is just the problem of G-
optimality, which, as discussed in section 6.4, is asymptotically equivalent to D-optimality.
However, for a general correlated case, the formula (6.47) must be replaced by equation
(2.61) from chapter 2, which gave the variance of the universal kriging procedure. This
is not readily amenable to the standard optimal design techniques for finding the optimal
sampling points, though of course, if viewed simply as a criterion function by which to
evaluate competing designs, the combination of (6.46) and (2.61) is perfectly feasible.

Other approaches to design for optimal interpolation have been given by Pesti et al.
(1994) and Benedetti and Palma (1995). A much earlier reference is Bras and Rodriguez-
Iturbe (1976).

Now let us turn to design to optimize estimation of the variogram or covariance
function.

Warrick and Myers (1987) considered the standard variogram estimator in which there
are n sampling locations and hence n(n — 1)/2 interpoint distances, which are classified
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into N bins By, ..., By, each centered on a particular distance h;. If f; denotes the number
of (z,xy) pairs in bin B;, the traditional estimator of the semivariogram is

1

Y(hi) = o,

> {ylzs) —yler))®.

(mj 7wk)€B1

Alternative estimators, such as the Cressie-Hawkins robust estimator, lead to similar design
considerations and are not treated separately. The bins B; may be defined purely by
Euclidean distances or, in anisotropic cases, may include angles as well.

Warrick and Myers defined five characteristics of a good design:

1. For each distance-angle class, the number of pairs should be as large as possible,
particularly for short distances,

2. The average of the distances in each class should be close to the plotted distance,
3. The variance of the distances in each class should be small,

4. The average of the angles in each class should be close to the plotted angle,

5. The variance of the angles in each class should be small.

The actual criterion they proposed was of the form

N N N
SS:aZwi(fi _fi*)2+bzm1i+czm2ia (648)
=1 =1 =1

where f; are target values for f;, mi; and mg; are respectively the variances of the distances
and angles in bin B;, and the w; and a, b, ¢ are chosen weights. Obviously there is
considerable arbitrariness over the choice of these quantities and for their computational
examples, they concentrated on the case b = ¢ = 0, w; = 1 and all f* the same (though
the latter specification, in particular, is questionable, given extensive more recent theory
which has suggested that the behavior of the variogram at short distances is critical to
efficient spatial prediction, e.g. Stein (1988, 1999)).

The algorithm proposed by Warrick and Myers essentially starts with M arbitrary
locations and then adds a further N — M points at random, adding and deleting points
at random until no practical further reduction is possible. As pointed out by Miiller and
Zimmerman (1999), the criterion (6.48) is essentially a multidimensional scaling criterion,
for which specialized procedures are available (Cox and Cox 1995).

Several subsequent authors extended these ideas to consider not only nonparametric
estimation of the semivariogram but also parametric estimation, in cases where the semi-
variogram function is specified as a function v(-,0) with 6 a finite-dimensional parameter.
Here we concentrate on the paper of Miiller and Zimmerman (1999).
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Miiller and Zimmerman considered the variant of the standard variogram estimator
in which there are N = n(n — 1)/2 bins and every f; = 1, the so-called variogram cloud
esitmator. If the 7’th interdistance pair corresponds to data locations z, and x4, we
define 4; = 1{y(z,) — y(z5)}* as an estimator of the theoretical semivariogram function
v(xr — x5,0). Since in the Gaussian case an analytical expression for the covariance of +;
and «y; is known (recall equations (2.14) and (2.15) in chapter 2), this creates the possibility
of a Generalized Least Squares algorithm of the form

foLs = arg min{?y — YO} STHOT —1(0)}, (6.49)

where 4 and «y(#) are the vectors formed from the individual 4; and v(z, — x4, 0) and ()
is the covariance function derived from (2.14) and (2.15).

Unfortunately, as pointed out by Miiller and Zimmerman, (6.49) as an estimator of
the variogram is inconsistent, and they proposed an alternative iterative scheme which
involves a sequence of estimators 6,,, where 6,11 is chosen to minimize

{7 =@} 0 {5 — v(0)}, (6.50)

and the algorithm is iterated to convergence. This estimator is denoted # and has asymp-
totic covariance given by M (&,0)~!, where

M(&,0) =G (£,0)571(£,0)G(¢,0), (6.51)

where ¢ denotes the design, ¥ is the covariance matrix as in (6.49) and (6.50), and the N xp
matrix G consists of all partial derivatives of the form 0v,/06;, 1 <r <N, 1 <j <p.

The optimal design may then be defined as the design measure ¢ which maximizes
O{M(&,0)} for some functional @, e.g. ®(M) =log |M|. However, in this case there is an
extra complication because M depends on 6 which is unknown, and indeed the purpose
of the experiment is to estimate #. However, this problem also arises in connection with
nonlinear regression (e.g. the books on optimal design by Silvey (1980) and Atkinson and
Donev (1992) both have a chapter on this), and is usually solved by some form of iterative
criterion in which the design is constructed sequentially using the best available estimate
of 6 at each step. The solution discussed by Miiller and Zimmerman (1999) assumed that
some trial value f is available which is taken as the basis for determining the optimal
design.

The key step in the Miiller-Zimmerman development is to show how M changes as
the result of adding a new sampling location z to the existing design £. They are then able
to optimize the selection of x to maximize the increase in ®{M (¢')} when £ is modified
into ¢’ by the additional of a sampling point at z.

If we add a new data point, we add n new interpoint distances and the change in M
is to M*, where M* is of the form

M*=M+TVIT,
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where I is p x n and V is n X n. The new data point is therefore chosen at the location x
which maximizes ®(M*).

If M* has to be evaluated from scratch for each candidate z, this algorithm could be
computationally very tedious, e.g. if ®(M*) = log |M*| then most standard algorithms for
the computation of |M*| require O(N3) = O(n®) calculations. Fortunately, however, we
do not need to repeat this entire calculation for each x, because of the formula

\M*| = |M| V| |V P +TTMT, (6.52)

where only the second and third components have to be re-evaluated for each x, and these
are both O(n?) rather than O(n®) operations.

Miiller and Zimmerman (1999) considered several variants on the basic algorithm,
e.g. adding one point at a time, adding several points together, or alternative addition and
deletion of data points (a procedure suggested by Fedorov), and also included extensive
comparisons with alternative algorithms.

One problem that Miiller and Zimmerman (1999) do not address is how to combine
design criteria for the estimation of the variogram and the regression coefficients in a
spatially correlated regression. See also Miiller (2000), Chapter 6, who also reviews these
developments and proposes weighted averages of different design criteria.

For the remainder of this section, I outline a possible alternative approach which com-
bines estimation of the regression and spatial variance components into a single estimation
procedure which therefore allows the application of standard design criteria such as D-
optimality (though whether an all-purpose criterion such as D-optimality is appropriate in
a context where the different parameters may have very different interpretations and levels
of importance is a question I do not consider). This approach is essentially similar to the
Miiller-Zimmerman method just discussed, but uses maximum likelihood estimation and
the Fisher information matrix.

Suppose the current data are represented by an n-dimensional vector Y with mean
p(0) and covariance matrix V (6), both parametric functions of some p-dimensional 6. Let
M () denote the Fisher information matrix, i.e. the matrix with entries m,s(6), 1 < r <

p, 1<s<p, where
0% log f(Y;6)
m”(e)_E{—aeTaes }

Then it follows that

T
V1 OV V—l) 4 OBy On (6.53)

1
rs 0) =— .
mrs(0) = Str (aerv a0, 20, = 90,
As the result (6.53) may not be entirely well known, a proof is given separately below.
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Suppose now we are considering adding a new observation jy* at a location z. The
joint distribution of (Y7 y*)T is normal with mean (47 v)” and covariance matrix
(:; ;) where v and ¢ are the mean and variance of y* and 7 is the vector of cross-
covariances between Y and y*. Note that v and ¢ depend on the new location x while 7 is
a joint function of the new location x and the existing design &, but we shall not indicate
this explicitly in the notation.

The conditional distribution of y* given Y = y is of the form N (3, ), where g =
v+ 71TV y —p) and a = ¢ — 7TV ~1r. Applying formula (6.53) just to this, the (r,s)
contribution to the information matrix from y*, conditional on Y =y, is

1 Jda Oa L 1 0B 0p
202 00, 00,  « 00, 00,

(6.54)

However, in (6.54), 3 is a function of y, so we need to take a further expectation to evaluate
the unconditional expectation of (6.54).

Defining w = V=17, we have 8 = v + wT (y — u), so

6,8_(8V T6u>+8wT

a0,  \ae, ~ ¥ be, a9, (v =,

so multiplying % % and taking expectations gives the result

ov T Ol ov T ou owl _ Ow
(aer “ aer) <aes “ %0,) T o6, ¥ a0,

Substituting back in (6.54), the change in m,.s(0) as a result of adding the new observation

y* is
1 1
1 da do L1 o T ou ov T ou . ow v Ow (6.55)
202 00, 00s  « | \ 00, 00, ) \ 00 00 20, 00
Collecting the entries of (6.55) into a matrix U(f), we see that the new information
matrix after adding the observation y* is of the form M (0)+ U(6). If the design objective

is to maximize a functional ®{M (6)}, therefore, a reasonable algorithm would be to choose
the new design point z to maximize

D{M(0) + U(0)} — B{M(0)}. (6.56)

As in the Miiller-Zimmerman procedure discussed previously, it is desirable to simplify
the calculation of (6.56) so that ®{M(#) + U(#)} does not have to be re-evaluated from
scratch for each candidate design point z. In the case ®(M) = log |M| (D-optimality),
this is possible, as follows. Looking carefully at the form of (6.55), we see that it is a
sum of three terms each of which is of the form wu,u, for scalar components u, and wus.
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Therefore, it is possible to write U(8) = W (0)W (0)T where W is a n x 3 matrix. But
then, application of the |I + BTC| = |I + CT B| formula (Mardia, Kent and Bibby (1979),
equation (A.2.3n) — of course this also lies behind (6.52) above) leads to

M +U|=M+WW7T| = |M|-|[T+WIMW|, (6.57)
so the only determinant that needs to be re-evaluated for each z is that of a 3 x 3 matrix.

The algorithm suggested here, like the one of Miiller and Zimmerman (1999), is cruder
than the procedures considered in section 6.5.2, because they only allow for adding and
deleting points in the class of designs on n or fewer data points, whereas the algorithm
in section 6.5.2 essentially operates on a far larger class of designs and is therefore much
more likely to find a global optimal design. It remains an open question whether something
like the approximate information matrix idea is applicable in the present context, though
remarks by Miiller and Zimmerman (1999) and Miiller (2000) suggest it will not be easy.

Appendiz: Derivation of (6.53)

Ignoring an irrelevant constant, the negative log likelihood function is
1 1 _
t=glog|VI+ Sy—m"V7Hy - p). (6.58)

We assume y and g have entries y; and p; respectively, V = (v;;) and V=1 = (v¥). So
(A1) can also be written

log V]+ 5 ZZ — ). (6.59)

If V has cofactors V;; then 9|V|/0v;; = 2Vi; = v¥|V]if i # j, and |V |/Ovy; = Vi = v¥| V.
See, e.g., Mardia, Kent and Bibby (1979), equations (A.2.3d), (A.2.3e), (A.9.3). Also,
> 22 vijv* =mn, and it follows that

S S + 5 g -

Hence,
1 9|V|
|V| 00,

. 1 8|V| 8’1)“' 8|V|8’U1

SV ZL: Ovi; 00, +; O 89:
00

:zi:zj:vja%oj

_ _ZZUZJaU'LJ
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Therefore,
—___ZZU'LJ&UJ ZZ(% 14i) M] %
v
+3 ZZ@ ~ 1) (95~ 1) g
0%l 1 Ovy; Ov¥ 92y
90,00, 2 ZZ aej 90, _ZZ Y3 50, 50,
w22 gg 5 >3- m) Oy
i g

00,00,

Bu,j o

8u ovt

_ZZ —H WW_ZZ —H aej a0,
0%v;
t3 ZZ “J)aegé

Hence

0% ov; (9 i 0%v4

E{B } ZZ 0. o ZZ ”39:593
8 i 0 i 0%v¥
+323 5 a/;J '+ Z Z % 5550, (6.60)
i g

1 Ov;; Ov¥ (9,uZ o

__521_:%: aej a0, Zzae 80] ot
The final result in (6.60) is of the form

1 ov ov—1 out _ 0u
“tr<a_9s 20, )+ 20, 90,

However, from VV~! = I, it follows that

V1 OV
ae. ~ ¥ ag.’

so the final formula for (6.60) — the (r, s) entry of the Fisher information matrix — is

1 ov__,0V_ _, ouT _, ou
m”(g)_fr(aeTV a0, )Jraerv 99,

and this is (6.53).
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6.6. Other approaches to network design

Apart from the systematic approaches to network design based on entropy (sections
6.1-6.3) or optimal design theory (sections 6.4 and 6.5), there have been numerous more ad
hoc approaches to network design, some of which have been quite successful at producing
algorithms for practical implementation. We focus on four developments here. Section
6.6.1 presents a relatively straightforward approach due to Haas (1992). In section 6.6.2,
we discuss a series of papers by Oehlert, which are perhaps of as much interest for the
approach they take to spatial-temporal modeling as for the actual application to network
design. In section 6.6.3, we describe two approaches due to Nychka and Saltzman, which are
focussed on efficient computation rather than the achievement of any theoretical optimality
criteria. Section 6.6.4 presents a recent Bayesian approach due to P. Miiller and co-authors,
which makes the link with modern algorithms for Bayesian Monte Carlo sampling.

6.6.1 Haas’s approach

Haas (1992) proposed a procedure for optimally selecting new locations in a moni-
toring network, using the NADP/NTN wet sulfate deposition network as an example. He
considered a subregion approach, i.e. the nation is divided into subregions and a sepa-
rate network optimization performed within each, arguing that this is appropriate both
because subregions are more likely to be homogeneous in terms of physical processes and
ecology, and also recognizing different policy objectives in different parts of the country.
As optimization criteria, he proposed (a) the mean relative error of estimation (estimate
standard error divided by estimate), and (b) the standard deviation of the relative error
estimate at the subregion’s center. The idea was that (a) is a measure of the quality of
the network for spatial prediction, while (b) also takes account the error in estimating the
spatial model, which may lead to quite different designs as already discussed in section
6.5.3.

For the actual spatial methodology, Haas (1992) used the earlier methods of Haas
(1990a, 1990b) which are based on a combination of spatial regression and variogram
estimation on the residuals within moving windows, though the basic concepts of Haas’s
design methodology could be applied in conjunction with any of the standard spatial
prediction techniques. In the absence of any analytic method for assessing criterion (b)
above, Haas used simulation. The problem of adding 10 new sites to an existing network
was essentially formulated as a 20-dimensional nonlinear optimization problem (each new
site is associated with two dimensions, its latitude and longitude) and standard nonlinear
optimization methods applied. This methodology, although computationally intensive, was
apparently successful at finding suitable design locations, but in the practical examples
considered by Haas, the overall reduction of prediction standard error as a result of adding
new stations was slight.

6.6.2 Oehlert’s spatial-temporal model and characterization of designs by predictive
variance
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In a series of papers, Oehlert (1993, 1995, 1996) proposed a novel spatial-temporal
model for sulfate deposition data, and applied it to various aspects of optimal network
design.

Oehlert (1993) developed a model based on an assumption that the observed process
is homogeneous within rectangles which are taken to be of 1 degree latitude and 1.5 degrees
longitude. If y; denotes the complete vector of observations at monitoring station 7, then
the assumed model for y; is of the form

Yi = i) + Byt + L + Ny + 6;, (6.61)

where «; and 3; are overall mean and time-trend parameters for rectangle j, ¢ is a vector
of regressors indicating time of observation (normalized to mean 0), L represents a ran-
dom long-term trend that is assumed common to all stations, /V; is a random short-term
temporal trend that is specific to station 7, and J; denotes a constant term representing
the bias in station i, where by bias we are referring to such things as elevation effects or
proximity to sulfate sources, which could make station ¢ different from the underlying field.

For the long-term random trend L, Oehlert assumed an ARMA(1,1) term with cor-
relation structure py = p1¢*~! for k > 1. For the collection of short-term random series
N;, he assumed a covariance matrix of the structure S ® C where S represents the spatial
correlations and C the temporal correlations. For the temporal component, he assumed an
MA (1) process which leads to a tridiagonal structure for C. For S, he assumed that spa-
tial correlations were estimated either by a kernel smoothing process (though this method
cannot be guaranteed to produce a positive definite covariance) or else the standard expo-
nential spatial covariance structure s;; = o when i = j, o?re=°%i when i # j, where di;
is the distance between stations ¢ and j. The §; were treated as random effects with mean
0 and variance o2.

For the estimation of the model (6.61), Oehlert proposed a two-stage process. First, a
simple ordinary least squares regression was fitted at each site to obtain estimates a; and
b; of the underlying mean and trend parameters ;) and §;;). However, the vectors of
these estimates over all stations have complicated covariance structures, denoted X, and
Y4, which are functions of all the parameters mentioned above.

The second stage of the process involves taking the a; and b; coefficients as the raw
data, and feeding them into an overall network model. It is assumed that the expected
value of b; is of the form f;;) + M, where My is an additional “network bias” indexed
by the network k (the data do come from different networks), and similarly for a;. For
the covariance structure of the «; and 3; parameters, Oehlert took a smoothness prior
approach where these parameters are assumed to have specific forms of prior distributions,
e.g.

B~ N[0, \gAT A], (6.62)

where the matrix A has one column for each rectangle and one row for each pair of adjacent
rectangles, and entries a;; are 0 unless rectangle j is one of the adjacent pair ¢, and in that
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case is valued either 1 or —1. The parameter Ag (and a corresponding A, ) is interpretable
as a smoothness parameter. The monitor biases My are assumed independent with mean
0 and variance \js.

Based on this model, it is then possible to estimate the individual «; and 3;, and
the standard errors of the estimates, essentially by solving the generalized least squares
equations in which the vaues a; and b; are treated as the input data and the covariance
structure combines X, ¥ and the parameters Ay, Ag and Aps. Since this involves quite a
few adjustable parameters, we need some method of determining those parameters. Oehlert
proposed an indirect generalized cross-validation procedure (IGCV) of the form

Ly —Hyy)"S 1 (y — Hgy)

IGCV =
Ltr(I — Hy)

(6.63)

(Altman 1990, Engle et al. 1986) where Hj is the g’th predictor matrix (i.e. the predictors
are of the form g, = Hyy) and ¥ is the assumed covariance matrix for y. The idea is that
g indexes a class of predictors and we choose the g which minimizes (6.63).

Despite the use of the IGCV criterion, it is clear that the selection of suitable hy-
perparameters is a critical aspect of the analysis, and in subsequent work, Oehlert often
compared the results of different analyses assuming different hyperparameters.

Oehlert (1995) used the model of Oehlert (1993) to estimate the detectabilities of re-
gional trend in current and in modified networks, based on hypothesized future trends and
other model parameters. For example, one could ask what is the probability of detecting a
certain trend by a given date (the detectability question), or what is the probability that
an estimated change is within say 20% of its true value (quantifiability). Both of these
questions hinge on determining the standard errors of trend estimates.

The model was fitted both to raw sulfate deposition data and to precipitation-adjusted
data, with much better results in the second case. The procedure for precipitation adjust-
ment was to fit a regression, at each site, of log sulfate deposition on a monthly indicator
variable and the monthly mean of precipitation volume. Each month’s value was then ad-
justed to the overall mean precipitation level, and the adjusted annual values were formed
by taking volume-weighted means of the adjusted monthly values.

As criteria for assessing the performance of a network, Oehlert considered:

(a) the sum of regional variances for five large regions — this is a measure of the
region-wide variability

(b) the sum of the largest 40 individual rectangle variances — this is a measure of
local variability (the number 40 is arbitrary, but represents about one fifth of the available

rectangles)
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Within this framework, he considered the effects of deleting 10 stations sequentially,
i.e. at each step, delete the station which produces the smallest increase in either of the
criteria (a) or (b). In fact, he showed it was possible to delete up to 10 stations with very
little change in the criteria, because there are dense stations in the Midwest/Great Lakes
region and most of the deleted stations come from there.

Conversely, he also considered the effects of adding up to 10 stations, again taking a
sequential approach. As candidate locations for adding stations, he took the center of each
rectangle. He argued that a reduction of 10% to 15% in the variance sums was possible,
mostly by adding stations along the east coast, though in this case, the results are sensitive
to which of the two criteria, (a) or (b), is adopted.

Oehlert (1996) extended this analysis to the case of 100 deleted stations, out of a
current network of 249. Again a sequential approach was adopted, and he showed that
with optimal selection of the stations, the increases in criteria variances ranged between 7%
and 34%, whereas in comparison, if stations were simply deleted at random the increases
in variance were often of the order of a factor of 2. In this case, there are differences in the
design depending on which of criteria (a) or (b) is adopted. Criterion (a) tends to keep
stations in and near small regions, whereas (b) leads to a much more uniform distribution
of stations. Neither method would delete stations from the boundary, however. Sequential
selection using any of the possible criteria is better than random deletion, for all criteria.
Oehlert emphasized that the purpose of the design selection is to optimize the variance of
long-term trend esimation, and the results would not necessarily apply to spatial prediction
on short temporal scales. A possibly controversial feature of his conclusions was that since
they were based on the US network but also used Canadian data, many of the proposed
deletions were near the Canadian border. This seems to assume that while the US is trying
to save costs by reducing the size of its network, the Canadian government is happy to
continue to maintain the same network in its borders!

6.6.3 The computational approach of Nychka and Saltzman

Nychka and Saltzman (1998) studied network design in the context of ozone monitors
in the Midwest United States. Most of the existing ozone monitors were put into place to
monitor the Environmental Protection Agency (EPA) ozone standard, which at the time
of the study was based on exceedances by daily ozone maxima over the standard of 120
ppb (since reduced to a standard of 80 ppb for eight-hour daily averages). The enforce-
ment of the standard is based on readings at the monitors and does not raise any issues
for spatial interpolation. However, for broader purposes there are two reasons why spatial
interpolation is desirable. The first is to compute some measure of the total ozone impact,
for instance as an indicator of the total human health impact. This could be based on
the average ozone over a region, or it could be based on some form of spatially weighted
average (for instance, one weighted according to population density). In order to estimate
such averages, we need a means of interpolating between monitors. The second reason why
spatial modeling is desirable is from the point of view of assessing the agreement between
real ozone data and the output of numerical models such as the EPA’s Regional Oxidant
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Model (ROM — since replaced by a more sophisticated model known as Models-3). Nu-
merical models are important because they are used to assess the possible consequences of
changes in pollution control strategies, something which cannot be assessed from pollution
data. However, it is also important to validate the models on real data. The spatial in-
terpolation problem arises because models typically produce simulations of average ozone
over large grid boxes, and do not necessarily produce reliable predictions at specific sites.
Therefore, it is desirable to interpolate the observed data over large grid boxes to make a
meaningful comparison. Davis et al. (2000) have made a detailed study of ozone data and
ROM output.

One feature observed by Nychka and Saltzman (1998) is that spatial isotropic models
are not appropriate for these data. The solution they adopted was to fit a model of the
form (3.5), which combines a standard (stationary, isotropic) geostatistical model with
additional component from an empirical orthogonal functions decomposition. This model
was fitted to the ROM data, before being used to aid in selecting stations for the real
data observational network — thereby neatly sidestepping the issue of design for efficient
estimation of spatial parameters. Instead, they focussed on two broad obsjectives, (a)
prediction of the overall average ozone level with minimum variance, (b) bounding the
error in spatial prediction at individual locations. They pointed out that these criteria
are, respectively, similar to the A-optimality and G-optimality criteria of optimal design
theory, but beyond that, they did not use any concepts of design theory.

Within this framework they considered three specific problems that had arisen in
practical work with the EPA: to reduce the size of a 20-station urban network in and
around Chicago, to expand a network of rural stations, and to asses the impact of possible
changes in the network in the Great Lakes region.

First approach: regression and variable selection

The first approach they considered was to use a simple regression model to estimate
the overall ozone level based on 20 monitors or some subset thereof. A model with the
structure

Y=a+ X 85 +¢, (6.64)

could in practice perform almost as well as a full spatial prediction model, if the objective
is to predict only a single variable Y. Here, the response Y is taken to be the average of the
20 stations in the full network, X ; is the subset of stations that are retained after reducing
the network, and e is treated as an independent random error at each time point. Nychka
and Saltzman argued that the sums of squares and cross products that are involved in
fitting the model (6.64) are sample estimates of the population variances and covariances
that are involved in kriging, so regression based on (6.64) forms an easily implemented
approximation to the spatial prediction problem.

The problem therefore reduces to a problem in classical regression theory, namely,
to find the best set of predictors of a given size, in the sense of minimizing the residual
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sum of squares. There are a number of algorithms for doing this without evaluating all
possible subsets. One is the leaps and bounds algorithm of Furnival and Wilson (1974),
implemented in the S language as leaps (Becker et al. 1988). Another procedure is
Tibshirani’s (1995) lasso procedure, whose objective is to minimize the residual sum of
squares subject to a constraint of the form ) |B;| < ¢. Although this problem is not
obviously related to the one of regression subset selection, in practice it tends to produce
solutions for which several of the 3; are 0, and the size of the set for which 8; # 0 can
be controlled by reducing the value of t. Nychka and Saltzman suggested scaling the X
variables so that the least squares solution has ) |3;| = 1. The size of the subset can then
be reduced by fixing some ¢ € (0,1).

These algorithms can identify designs that allow for drastic reductions in the number
of observing stations. In their example, Nychka and Saltzman found a subset of 5 stations
for which the residual standard deviation in predicting the overall overage was 2.5 ppb.
This is to be compared with the unconditional variance of the overall average which was
16.1 ppb. In other words, the regression achieves an R? of nearly 98% based on a 75%
reduction in the size of the network.

Second approach: use of space-filling designs

The second approach used by Nychka and Saltzman is more appropriate in the context
of adding stations to an existing network or when the number of candidate sites is too large
to apply something like the leaps or lasso procedures. Their basic philosophy was this:
rather than try to optimize the network with respect to a very specific covariance function
or design objective, try to find a design which fills up the available space (in some suitably
defined sense), thus producing something that could be useful for a variety of purposes.
They argued that such networks would typically produce near-optimal performance for
prediction even when compared with networks designed for specific purposes. It should
be noted, however, that such a philosophy would not be appropriate if estimation of the
spatial model itself was an objective, since in that case, it is desirable to have some small
interpoint distances to produce reliable variogram estimates at short distances (see section
6.5.3 for further discussion on this point).

To define what is meant by a space-filling design, it is necessary to specify some
suitable metrics. Nychka and Saltzman defined

1/p
dy(z, D) = (Z |z — u||p> (6.65)

ueD
as the “distance” between a point x and a set of observing stations D. Here, p can be any
negative number. For p < 0, d,(z, D) tends to 0 as z approaches any point of D, and as
p — —oo, it is simply the distance from x to the closest point of D.

The second metric is of the form

1/q
Cp,q(D) = (Z dp(x,D)q> : (6.66)

zeC
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where ¢ > 0 and the sum is taken over all  in the (assumed discrete) space of possible
locations C. Then the objective is to choose D to minimize C, ,(D). When p — —o0
and ¢ — oo, this becomes the “minimax” distance criterion, i.e. minimize the maximum
distance from any point in C to the nearest point in D C C.

It should perhaps be pointed out that other authors have take some other approaches
to the definition of space-filling designs. For example, Trujillo-Ventura and Ellis (1991)
discuss space-filling as one of several possible objectives of a network, where their definition
of space-filling is to choose the locations z1, ..., xx to maximize

N
> min [a; — 2], (6.67)
=1 ol

It is not clear whether this leads to anything substantially different from (6.65) and (6.66).

To implement this approach, Nychka and Saltzman proposed a simple Monte Carlo
algorithm based on random additions and deletions to D (Royle and Nychka 1998), and
argued that in many cases, such designs perform well from the point of view of spatial
predictions. They even cited theoretical justification for this in Johnson et al. (1990). They
also argued that d,(x, D) can have the rough interpretation of a spatial prediction error
though they also said that some alternative metrics may produce even closer agreement,
for example in this connection they mentioned

d(z,D) =) [Z {1 — exp (—”‘”;f“”) }_1] _1,

ueC LzeD

as a covartance filling criterion based on the exponential covariance function.

In their example, Nychka and Saltzman considered the effect of adding to an existing
set of 163 stations within an overall candidate set of 420 locations. Such sets are too big to
apply the leaps or lasso procedures. By adding only 5 stations to the network, the residual
prediction standard deviation was reduced from 3.9 ppb to 3.0 ppb. Adding 10 stations to
the original set of 163 only results in a marginally bigger decrease, to 2.8 ppb.

In the final part of their paper, they developed these methods further to consider
optimal additions and deletions to a network of 168 stations in the Great Lakes region.
Reducing the size of the network by half increased the median prediction error by only
10%.

Apart from the Monte Carlo algorithms used by Nychka and co-authors, there is a
substantial literature on both random and deterministic arrangements designed to have
space-filling properties. Examples of deterministic designs include Fibonacci sequences and
latin hypercube designs. Bates et al. (1996) and Chapter 4 of Miiller (2000) are among
the authors to have surveyed these methods.
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6.6.4 The Bayesian approach of P. Muller

In a series of papers, e.g. Bielza et al. (1999), Miiller (1999), Sansé and Miiller (1997),
P. Miiller and collaborators have developed an approach to optimal design based on Monte
Carlo simulation over the design space, using modern ideas such as Hastings-Metropolis
sampling to do this in an efficient way. We follow Sansé and Miiller (1997) here, which
used this idea to study the problem of reducing a set of 80 rainfall stations in Venezuela
to one of 40 stations.

The approach is decision-theoretic: it requires a specific utility function to measure
the quality of predictions. Suppose the current set of stations is divided into subsets D of
the stations to be retained and the complement D¢ which is to be discarded. We assume
a variable y; is defined at all locations and let yp denote the observed data, i.e. the values
of y; for i € D. Suppose 9;(yp) is an optimal kriging predictor of y; given yp. The utility
function proposed by Sansé and Miiller is of the form

( CZI‘% yzyD|<5 Zcz+007

i€ D¢c i€D

where ¢ is a specified target for the prediction accuracy, C is interpreted as the payoff for
getting a prediction that is within 0 of the true value, ¢; is the cost of operating station %
and C) is an adjustable constant — for the algorithm to be described, it is necessary that
u(D,y) > 0 for all D and y, and this can be forced by choosing appropriate Cj.

The actual criterion is to choose D to maximize U (D), where U(+) is the risk function
derived from w:

U(D) = E{u(D,y)}.

In their application, y; was taken to be the logarithm of the annual rainfall total and
they assumed a model (for the total rainfall field) of the form

y ~ N[XB,a*V(N)],

where X 3 is a regression component with covariates latitude and longitude, and V() was
taken to be the exponential correlation function, v;; = exp{—Ad;; } where d;; is the distance
between stations 7 and j. A Bayesian analysis proceeds using conjugate priors for 4 and o2
and numerical integration with respect to A, along the same lines as Handcock and Stein
(1993). It turned out that the posterior distribution of A had very small dispersion so in
subsequent analysis, A is fixed at its posterior mean value, which significantly simplifies
the calculations. We let § = (3, 0%) denote those parameters for which significant posterior
variability is assumed.

A naive simulation approach would generate random samples (6,,,9y™), 1 <m < M
from the posterior distribution of § and the resultant predictive distribution of y|6, and

approximate
1 m
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followed by choosing D to maximize (6.68). This is a highly inefficient procedure and
seems unlikely to lead to satisfactory results.

Instead, the idea of Sansé and Miiller was to embed the design selection problem into
an artificial Bayesian inference problem in order to use modern sampling techniques for
Bayesian inference. Consider a probability density h(d,6,y) defined so that

h(D,0,y) o p(0)p(y|0)u(d, 0,y), (6.69)

where the p(f) denotes the posterior density of § given the past data, and p(y|6) is the
conditional distribution of some future observation vector given 6. The idea is to interpret
(6.2) as a joint distribution of 0, y and D itself, and then to create a “posterior distribu-
tion” of D by Monte Carlo sampling. Some reasonable approximation to the mode of the
marginal posterior distribution of D will then be our guess as to the best design.

In more detail, the idea is to perform a Hastings-Metropolis sampler on D (see, e.g.
Tierney (1994) or Gilks et al. (1996)) combined with a more conventional updating sam-
pling from the posterior distribution of . The trial distribution used for the Metropolis
updating step was based on simple switching of one station between D and D¢ — Sansé
and Miiller remarked that this is not really a satisfactory approach because it is unlikely
that such an algorithm would explore a sufficiently large range of the design space, but they
also remarked that this deficiency seems to be shared by most of the other network design
algorithms at the present time, when the number of possible sites is moderately large. A
Monte Carlo sample of values of D was generated, and a cluster analysis performed using
a hierarchical clustering algorithm. The mode was selected from amongst the values in the
largest cluster.

In discussion, they identified two major problems with this procedure, (a) the difficulty
of defining a suitable updating distribution for D, (b) finding the posterior mode among
the resulting sample. As partial solution to the first problem, they also considered a
procedure where up to eight stations were randomly added to or deleted from the network
as a single trial step, arguing that this would produce faster coverage over the space of
possible designs.

6.7. Designs for data assimilation

This section gives a short discussion of a very extensive problem in atmospheric sci-
ence, known as data assimilation. It arises particularly in the context of numerical weather
forecasting, where the problem arises of how best to incorporate real observational data
into a numerical weather model. However, it is also relevant to other applications of envi-
ronmental modeling, such as ozone forecasting using such systems as the EPA’s Models-3
system. The treatement given here essentially follows Berliner, Lu and Snyder (1999),
henceforth BLS, though with some modifications.
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Suppose Xy is some p-dimensional vector representing the state of the weather at time
to. At some time t; > tg, we will take a g-dimensional observation Y whose distribution
will depend on X, the state of the weather at time ¢;. This observation in turn will be
used to forecast the weather X5 at some time t5 > t;. The problem is how to decide which
Y to take, from a set of possible choices, to optimize the prediction of Xs.

This formulation was motivated by the so-called FASTEX study (Fronts and Trop-
ical Storm-Tracks Experiment — Snyder (1996), Joly et al. (1997)), which involved the
prediction of storm conditions in western Europe based on observations taken over the
North Atlantic. At the center of the experiment were two long-range aircraft, which could
fly through the developing storm system and take additional observations, which would
supplement the standard observational network. The problem was to design the flight
path so that the experiment would yield maximum information in the sense of improv-
ing subsequent weather forecasts. In the above formulation, the observations Y should
be understood as including both the aircraft observations and the standard ground-based
observations — only a portion of Y, that collected by the aircraft, is in any way under the
experimenter’s control.

The problem is extremely complicated for a variety of reasons. First, the dimensions
are very high: p ~ 107, ¢ ~ 10°. Standard statistical techniques such as the Kalman filter
are not easily implemented in such high dimensions. Indeed, it seems that the effective
implementation of the ideas to be discussed here will require new developments in numerical
analysis, but we shall ignore that aspect in our discussion.

A second complication is that the observed systems are in reality highly nonlinear,
and indeed chaotic, in the sense that small perturbations in the initial state Xy have the
potential to create much larger perturbations in future observations of the system. This
aspect, however, is also largely ignored in the discussion to follow, though it may imply
that the matrices Ag and A; below are not well conditioned.

A typical evolution equation might be written in the form
X1 = Fy(Xop), (6.70)

where Fj is a nonlinear function, found numerically from a weather forecasting model. If we
represent the current state of knowledge about Xy by a multivariate normal distribution,

Xo ~ Np(p0, Up), (6.71)
then a linear approximation to (6.70) suggests
X1 — Fo(po) = VFo(po) - (Xo — po),
(V Fy denotes the gradient matrix of F) then combined with (6.71) we have, approximately,
X1 ~ Np(Fo(p0), VFo(10)UoV Fo () ), (6.72)
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One could extend (6.72) by allowing for additional system noise, leading to an equation
X1 ~ Np(Fo(o), Vo + VFo(p0)UoVFo (o)), (6.73)

The matrix Vj is not present in the BLS development, but it seems a natural addition,
for two reasons. First, even though the dynamics of the model are deterministic, in practice
we do not know either Fy or VFy analytically, and must estimate them from numerical
experiments. The matrix V can be thought of a representing our uncertainty about the
true dynamics.

Second, we have already mentioned that the dimension p of the numerical model is
very high, possibly too high to permit any realistic statistical analysis. It may be necessary
to reduce p is some way, for example, by grouping the weather system variables into coarser
grid cells than are used in the actual numerical model. However, using coarse grid cells
creates the problem of how to deal with phenomena that are known to exist at a smaller
scale than that of the grid cell. In the numerical modeling literature, this leads to so-
called closure methods or “parameterizations” which can often be thought of as stochastic
adjustments to the model. A famous example in another context is the role of clouds
in climatological models. These models typically are contructed with grid cells too large
to allow for cloud modeling, but it is certain that clouds exert a significant influence on
heat flow through the atmosphere. One way to bring clouds into the model is to develop
a stochastic formulation of the impact of clouds conditional on the boundary conditions
which the model does produce. In the context of (6.73), the covariance matrix Vj could
represent perturbations due to phenomena that are deterministic but which cannot be
adequately represented by the model on the grid scale considered, so for practical purposes
they are stochastic.

After these initial discussions, we now propose a specific model, which is based on
linearizing F' as well as the operations producing Y and X5, to produce:

Xo ~ Nyp(po, Uo),
X1 = AoXo+ €, €0~ Np(0,V),
Y =BX:1+n, n~Ng0,W),
Xz NA1X1+61, €1 NNp(O,Vl),
where €y, €1 and 7 are independent and the matrices Ay, A1, B, Vy, Vi, W are all assumed
known. Since Y is partially under the experimenter’s control, we can assume that B and
W are functions of the design D, and on occasion we will write explicitly B = Bp and

W = Wp to emphasize this dependent. All the other quantities in (6.74)—(6.77), however,
are fixed.

To analyze this model, we first note that X only enters the discussion as providing a
prior distribution for X7, so we can combine (6.74) and (6.75) immediately into

X1 ~ Np(p1,Uh), (6.78)

262



where

p1 = Aopro, Ur = Vo + AgUp AL, (6.79)
analogous to (6.73).

Next, combining (6.79) with (6.76) yields
Y ~ N,(Bu1, W + BU, BT), (6.80)
while combining (6.79) with (6.77) yields
Xy ~ Np(Aypiy, Vi + A ULAT). (6.81)
For the covariance of Y and X5, since 7 and ¢; are independent we have

E{(Y — Bu1)(Xa — A1)} = E{B(X1 — 1) (X1 — p1) T AT}

_ BU,AT. (6.82)
Therefore, combining (6.80)—(6.82), the joint distribution of Y and X7 is
Y By W + BU, BT BU, AT
(Xz) ~ Natp [(Alul) ’ ( AUBT V4 AlUA’{ﬂ '
Hence, the conditional distribution of Xs given Y has mean
E{X,|Y} = Ay + A, ULBT(W + BU,BT)"Y(Y — Bpuy), (6.83)
and covariance matrix
S=V, + AU, AT — A,U,BT(W + BU,BT)"1BU, AT. (6.84)

If we denote the dependence on the design D by writing Sp in place of S, Bp in place
of B amd Wp in place of W, then the design problem becomes to choose D to maximize

®(Sp) = @ {Vi + AU AT — A1ULBL(Wp + BpU1BY,) ' BpUi AT } (6.85)

for some suitably chosen design criterion ®. For example, ®(S) = |S| would be analogous
to D-optimality, ®(S) = tr(S) to A-optimality, and so on.

The derivation of S given here is a little simpler than that of BLS, partly because we
adopted a simpler model — in (6.75) and (6.77) we assumed the functions AgXo and A1 X,
were linear functions of Xy and X respectively, whereas BLS did not assume that initially.
However, to derive their updating equations they were effectively forced to assumed linear
updating equations, and their equation (2.22) is the same as (6.84), except for the system
noise matrix Vi which was not present in their formulation.
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BLS proceeded at this point using the A-optimality criterion, but there are some
additional mathematical properties that might still make it more appropriate to focus on
D-optimality. For example, using (6.84) we can write

S| =|Vi + A UL AT |- |\W + BU, BT |71

6.86
-|W + BULBT — BU, AT (Vy + A,UL AT~ AU, BT). (6.86)

The first factor in (6.86) is the determinant of a p x p matrix, but this is not affected
by the design and can therefore be ignored in design calculations. The second and third
factors in (6.86) are both determinants of ¢ X ¢ matrices, which should be much easier to
calculate. We still have to invert the p x p matrix Vi + A;U1 AT, but this has to be done
only once, not repeated for each candidate design.

In fact, in a typical case we will be able to subdivide Y as (Y{f Y )T where Y7 of
dimension g — d represents the fixed weather observations and only Y5 of dimensions d is
under the experimenter’s control. If we partition W and B correspondingly as

W Wi Wia By
= , B = .
<W’21 W22> (Bz>

Wi + BiUL BT Wy + BlUlBg)

Then

W + BUBT =
e <W21 + BoU BT Wy + BoUy BY

and hence

\W + BUBT| = |Wy1 + B.U, BT

B (6.87)
- |Wag + BoUy By — (Way + BoUy BY ) (Why + B1UL BT )™ (Whe + B1ULBY)|.

The first determinant in (6.87) is not affected by the design D, so for optimization purposes
we only have to take account of the second factor.

A similar simplification is possible for the third factor in (6.86), if we replace the
matrix Uy in (6.87) by
U, — UlA?(Vl + A1U1A’{)_1A1U1

which is also independent of the design D.

With these simplifications, the calculation of a ¢ x ¢ determinant is reduced to one of
d x d. If ¢ = 10%, d ~ 50, this could be quite a saving!

Ezxzample

BLS gave a numerical example of their procedures by re-analyzing a numerical experi-
ment due to Lorenz and Emanuel (1998), henceforth LE. This involved a set of differential

equations
da:i

dt

= —Zi 9Ti1+Ti—1%iy1 —z; + F, (6.88)
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where F' is a forcing constant and z; are assumed to satisfy a periodicity condition

An interpretation is that these are n equally spaced weather readings around a hypothetical
equator. For numerical experiments, BLS, following LE, set n = 40 and F' = 8, at which
the dynamics of the system are fairly chaotic. In their framework, a time period of ¢t = 0.2
is one “day”, and they assumed measurements every six or twelve hours.

In the formulation of LE, sites 1-20 are “ocean” sites and 2140 “land”. The land
sites are routinely measured but the ocean sites are not. However, the possibility exists
to measure one additional ocean site each time, and the question arises of where to take
it to optimize the system’s forecasting capability. LE assumed a current projection or
“analysis” is available of the values of x;, but at the sites where measurements are taken,
x; is replaced by y;, and the whole system projected forwards using the numerical model.
Since the whole exercise was a simulation, they were then able to generate “forecast errors”
for a period up to 10 days ahead, by comparing the hypothetical weather forecasts with
the values obtained using the true x;. They then considered the effect of adding one
ocean observation using two strategies, (a) select the ocean site at random, (b) select the
ocean site to be where the current forecasting error is maximized. Strategy (b) would
not be realizable in practice, because it still uses the simulations to determine where the
forecasting error is largest, but if it could be justified as an appropriate strategy, maybe
other methods such as ensemble forecasting (i.e. rerun the simulation from a selection of
starting values in the neighborhood of the analysis values z;) could be used to identify
the appropriate location. In the event, LE produced a number of numerical results under
strategies (a) and (b), finding that (a) did not greatly reduce the forecast errors (compared
with no ocean sampling), but (b) reduced the forecast errors significantly.

As BLS pointed out, this conclusion could have been anticipated from optimal design
theory, since the criterion of LE was based on looking at forecast errors at individual
times and places, and this is similar to G-optimality. However, we have seen (section 6.4)
that G-optimality is equivalent to D-optimality, and may be achieved in practice by adding
observations to sites of high forecast errors. Hoewever, it is not clear how LE would extend
their strategy to the case of multiple ocean observations.

The experiments by BLS took a similar starting point to those of LE, but used the A-
optimal design found by from their equivalent of (6.84). They also compared their method
with another data assimilation strategy due to Palmer et al. (1998). A one-sentence
summary of their conclusions would be that their strategy was comparable with the others
when used to reconstruct the current state of the system, but generally superior when used
to forecast ahead in time.

6.8. Summary and conclusions
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This chapter has surveyed a variety of approaches to the design optimality problem
which have complementary strengths. The maximum entropy approaches represent the
most sophisticated formulation of the optimal design problem but there are still some
shortcomings in their actual implementation. For example, in general they employ simple
strategies of adding and dropping stations one at a time, which may not lead to the
optimal subset over a large class of candidate monitoring sites. However, in cases when
the maximum entropy criterion reduces to the determinant of a posterior covariance matrix,
there have been recent developments of optimal subset algorithms which may point towards
new approaches. Another weakness of the implementation of maximum entropy ideas is
that although they employ in principle the concepts of Bayesian hierarchical models, in
practice the top-level (hyperparameter) stage of the model is limited to the so-called type II
maximum likelihood or empirical Bayes method, in which the hyperparameters are replaced
by point estimates without further consideration of their variability. This restriction is
probably not too important in the “network reduction” context, in which prior data are
available over all the sampling sites of interest, since in that case, the second or normal-
Wishart stage of the hierarchy surely produces adequate posterior distributions for the
means and covariances of those sites. However, when the normal-Wishart sampling ideas
are extended to include prediction off the network, as originally laid out by Le and Zidek
(1992), it really is a key point that the conditional distributions of the ungauged sites, given
the gauged sites, are not in any way updated by the existing data on gauged sites, in other
words, one is relying on the top level of the hierarchical model to gain any information
about those conditional distributions. From this point of view, it is worth noting that
they nowhere consider the role of the design in estimating hyperparameters, such as the
parameters of a fitted variogram model. As we saw in section 6.5.3, this aspect of the
design problem has been considered in other parts of the literature.

Another question related to the maximum entropy approach is whether a sophisticated
criterion like maximizing the entropy of the joint predictive distribution at all the ungauged
sites is really a better criterion than something much easier to state and to understand,
such as choosing the design to minimize the maximum variance of the prediction error. As
we saw in section 6.6, a number of the ad hoc approaches to network design use that or
similar criteria, and it is hard to argue against such approaches.

In contrast to the maximum entropy idea, the more classical design optimality criteria
use simpler concepts to define optimal designs, but have developed more sophisticated
algorithms for their computation. The original idea which motivated the whole theory of
optimal experimental design was that by generalizing the concept of a design measure to
arbitrary normed positive measures over the design space, it was possible to use functional-
analytic methods of optimization to calculate optimal designs. Optimal design theory was
first applied to the spatial monitoring context by Fedorov and Miiller (1989), but the
main conclusion of that paper — which is that classical D-optimal designs may be directly
applicable in a spatial context — does not hold when more realistic spatial models are
considered. The difficulty is that classical optimality criteria tend to produce designs
which involve replications at a relatively small number of design points, which is fine in
a classical experimental design context that really does involve independent replications,
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but not in a spatial sampling context where there is nothing to be gained by repeated
sampling at the same locations. Instead, recent research has tried to adapt the functional-
analytical algorithms of classical design theory to context of optimal sampling in a random
field. That there is some hope of doing that is shown by the recent papers of Pazman
and W. Miiller as reviewed in the book of Miiller (2000) and section 6.5.2 here, though
the most sophisticated algorithms still only apply to the context of estimating regression
parameters in cases when the covariance function of the spatial field is known. When the
problem is extended to include estimation of covariance or variogram parameters, recent
work reviewed in section 6.5.3 shows that it is possible to apply optimal design criteria
also in this context, though the algorithms at the moment are restricted to one-at-a-time
adding or deleting of points and cannot therefore be guaranteed to find globally optimal
designs. As briefly discussed in this section, it seems possible to apply such methods
directly to the Fisher information matrix for all the unknown parameters including the
regression coefficients, but this idea does not appear to have been tried in practice so far.

Maximum entropy approaches to design of experiments have been gaining increasing
attention in the design literature, e.g. a paper by Shewry and Wynn (1987) showed how
to apply maximum entropy sampling in some simple contexts and this was also used in
the paper by Sacks et al. (1989) on the optimal design of computer experiments. A re-
cent paper by Sebastiani and Wynn (2000) has introduced ideas quite similar to Caselton,
Kan and Zidek (1992) in more general design contexts. The relationship between different
theoretical concepts of design, in particular between design optimality and decision theo-
retic criteria, has been explored from a theoretical point of view by Dawid and Sebastiani
(1999).

Of the other ideas reviewed in section 6.6, the first method due to Nychka and Saltz-
man, based on regression subset selection, seems simple and appealing in cases when it
is applicable, which are, essentially, only for the network reduction problem (because the
method assumes availability of data at all the sampling locations of interest) and only then
when the network is not too large. The second Nychka-Saltzman method is based on the
idea of space-filling designs, which other authors have also proposed as a simple alternative
to more sophisticated design optimality ideas when the objective is optimal spatial predic-
tion — these designs seem less appropropriate for the purpose of estimating the covariance
structure. Of the other recent contributions to the problem, the work of P. Miiller and
his co-authors (e.g. Sansé amd Miiller 1997) makes the connection with modern computa-
tional methods for Bayesian hierarchical models, using the utility function for a particular
design to define a “prior distribution” over designs and sampling the design along with
the model parameters. The idea has some connections with simulated annealing which,
though not mentioned in the present review, is also a standard algorithmic approach to
solving hard combinatorial optimization problems (Brooks and Morgan (1995) have a nice
review of simulated annealing from a statistical point of view).

The possibility of applying any of these ideas in the context of data assimilation, as
discussed in section 6.7, is fairly new at the present time, but it is clear that that problem
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could be generalized to take into account the effect of estimating the model, entropy rather
than design-optimality criteria, and a variety of other aspects of the problem.

Perhaps the most obvious gap on the literature at this point is the paucity of ap-
proaches that go beyind the traditional contexts of multivariate normal distributions and
regression models. The work of P. Miiller could in principle be applied in any context where
it is possible to define a utility function, and some other specialized approaches have been
developed for specific problems, e.g. Schumacher and Zidek (1993) consider optimal de-
signs to maximize the power of an F' test in the context of assessing of some environmental
“intervention” such as drilling a new oil well. However, most of the other methods use nor-
mal theory to formulate a design criterion. In an environmental regulatory context, it may
be more appropriate to focus on issues such as standards enforcement. Current approaches
to sampling environmental fields, such as the EMAP surface waters procedures (Baker et
al. (1997)) use probability sampling methods but make essentially no use of any kind of
“optimal design” concept. However the development of such concepts, suitable for that
context, would surely require much more emphasis on extreme values and the probability
of detecting the violation of an environmental standard than is traditional in the design of
experiments. These are largely unexplored questions, at least from a formal mathematical
point of view, but there is surely much scope for future research.
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CHAPTER 7

Trends in Climatological Time Series

Many climatological time series contain apparent trends. Indeed, the detection of such
trends is often the first step in making statements about climate change. However, it is
obvious that climatological time series are also autocorrelated, and an attempt to identify
trends without taking this into account would be seriously flawed. Of course, the problem
of detecting trends in time series is an old and classical problem of time series analysis,
but a number of recent developments have been stimulated specifically by climatological
applications.

In this chapter, we focus on three approaches. Section 7.1 describes what we might
call classical approaches, in which the residuals from the trend are assumed to follow a
traditional time series model of autoregressive or ARMA (autoregressive-moving average)
structure, though we also include some references in which the model was taken to be a
fractionally differenced ARMA process, which incorporates long-range dependence. The
phenomenon of long-range dependence — in which the autocorrelations of a time series
are assumed to decay to 0 more slowly than is consistent with any ARMA process —
is of importance because many climatological time series appear to show this behavior.
Therefore, Section 7.2 develops the properties of long-range dependent processes in more
detail, using spectral methods. Finally in this chapter, Section 7.3 discusses an alternative
modeling approach applied to bivariate time series, in which the objective is less concerned
with detailed time series modeling and more with the discrimination among a variety
of trend terms representing different combinations of climate forcing signals. The final
conclusion of this analysis is that to provide adequate explanation of observed trends in
northern and southern hemispheric average temperatures, it is necessary to include all of
the three most important forcing factors of current climate research: greenhouse gases,
sulfate aerosols and solar fluctuations.

7.1 Classical time series approaches

7.1.1 The Cochrane-Orcutt model

An early and classical reference to regression with autocorrelated errors was Cochrane
and Orcutt (1949). In modern terminology, their contribution was to advocate the use of
generalized least squares (GLS) estimates over ordinary least squares (OLS) estimate of
the regression parameters in such circumstances. If the model is written in matrix form as

y=Xp+v,
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where v has mean 0 and covariance matrix U, then the GLS estimate chooses 3 to minimize
(- XB'U ™y - XP), (7.1)
in contrast with OLS which omits the U~!. In the case of an AR (1) model,
v = Pri—1 + €,

with |¢| < 1 and ¢ independent with variance o2, Cochrane and Orcutt showed that in
stationarity, assuming a data series of length n,

1 é O
0_2 qﬁz 1 ¢ ... ... ¢":;
S LA
gn gl g2 1
1+¢*> —¢ 0 0
- 14> -9 ... 0
. 1 0 - 1+¢* ... 0
2 I T S
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0 0 0 . —¢ 1492

In fact, one can do more than this: Cochrane and Orcutt simply discussed how to
estimate 3 without also considering the estimation of ¢ and o2, but it is easily verified
that |U| = 02", so that a minor modification of (7.1),

8, 6,0%) = Slogo? + 2 (y— XHTU(y - XB), (72)

is in fact the joint negative log likelihood of all the unknown parameters. Estimation of
the full model proceeds by minimizing (7.2) jointly with respect to (3, ¢, o2).

From a modern point of view, an exact maximum likelihood procedure will implicitly
subsume the Cochrane-Orcutt calculations, since exact MLE includes GLS for the regres-
sion coefficients. In practice, as already discussed in Chapter 1, it is common to use some
approximate form of likelihood, e.g. a conditional likelihood, and such methods are always
asymptotically equivalent to maximum likelihood in large samples, though exact MLE may
be superior in small samples. Brockwell and Davis (1991) is an excellent reference on exact
likelihood for ARMA models. Karl et al. (1996), amongst others, have applied these ideas
to the analysis of meteorological time series.

7.1.2 The Bloomfield and Bloomfield-Nychka approaches
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Turning now to more modern references that have explicitly considered the role of
time series regression in climate change studies, one of the first studies was by Bloomfield
(1992), who considered models of form

Ye = 1+ 24(0) + vy, (7.3)

where y; is the observed mean temperature in year ¢, x;(f) is some signal defined by a
parameter 0, and v; is a stationary time series representing the error. The signal could be
something simple such as a linear trend, x+(f) = 6t, or it could be more complicated, such
as the output of a climate model.

For the noise series 14, Bloomfield considered an AR(p) process

p
Vg = Z GrVi—r + €, (7.4)
r=1

with {€;} i.i.d., and fitted the model (7.3) for various orders p. In an example using the
then-current version of the IPCC (Intergovernmental Panel on Climate Change) temper-
ature series from 1861 to 1989 (Nicholls et al. 1996), fitting a linear trend, he found that
p = 1 was clearly inadequate but the AIC criterion selected p = 4, which seemed a good
fit overall.

An alternative model considered by Bloomfield was the fractional ARIMA process
(Granger and Joyeux 1981, Hosking 1981). The simplest form of this is fractionally differ-

enced noise,
(I - B)v = e, (7.5)

where B is the backshift operator (B*v; = v;_y,), and (I — B)? is interpreted as a binomial

expansion,

d(d—1)
2

The range of stationarity and invertibility is —1 < d < 3,

“long-range dependence”.

d(d —1)(d - 2)

(I-B)Y=1-dB+ B? - B®+ .. (7.6)

with d > 0 interpreted as

The ARIMA (p, d, q) process refers to the case that (I — B)%y; is not white noise but
an ARMA (p, q) process,

(I - z,,: qBTB'") (I-B)vy = (I + 2(1: GSBS> €. (7.7)

In practice, fractional noise and fractional ARIMA processes are usually fitted not directly
from the expansion (7.6), but in terms of their correlation functions or equivalently spectral
densities; the spectral density of fractional noise is

0.2

e 7.8
e e (73)
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Bloomfield selected the ARIMA(0,d, 1) model for the IPCC series, in which he found
d ~ 0.25. Based on this he found an estimated linear trend of 0.37 (95% confidence band:
0.24 t0 0.50). The corresponding results based on an AR(4) model were very little different:
a point estimate of 0.38 and a confidence interval 0.25 to 0.51.

Another well-known global temperature series is the Hansen-Lebedeff (1987, 1988)
series of surface mean temperatures from 1880 to 1987. Repeating the same analyses to
this series, Bloomfield found a linear trend of 0.57 (95% confidence interval, 0.37 to 0.76)
based on the ARIMA(0, d, 1) model. In this case, AIC for an AR(p) model selected p = 8,
for which the estimated trend was 0.58 and confidence interval 0.36 to 0.80. Once again,
there is very little difference for the two time series approaches.

In another analysis, Bloomfield fitted model (7.3) in which z;(f) was taken as the
output of a climate model indexed by “climate sensitivity” 6. The climate sensitivity, usu-
ally denoted ATy, is defined as the rise in the earth’s mean temperature, in equilibrium
conditions, corresponding to a doubling of atmospheric carbon dioxide since pre-industrial
conditions. It plays the role of a variable parameter in most climate models; however,
considerable time and energy has been expended in finding the best value of climate sen-
sitivity based on the agreement between climate model output and real data. Bloomfield
used the climate model of Wigley and Raper (1990) and, by fitting the model (7.3) as a
nonlinear regression model with time series errors, deduced a point estimate of ATy of
1.39°C, with a 95% confidence interval of 0.69 to 2.19. This was in good agreement with
estimates available at the time; the advantage of a formal time series fitting is that the
range of variability can be expressed precisely as a confidence interval, in preference to
more informal assessments of uncertainty. In 2001, it is generally accepted that ATs, lies
within 1.5°C and 4.5°C based on more sophisticated models using finer discretizations and
allowing for other forcing factors.

Bloomfield and Nychka (1992) developed a more comprehensive approach to assessing
the influence of time series dependence on an estimated trend, using spectral densities.

The idea is based on the following calculations. Suppose one has a linear estimator é,
calculated from observations {x;, t = 1,...,T} through a formula of form

where the u; are fixed constants. We deduce

Var{f} = Z Z UsUyY|s—t|- (7.10)

s=1t=1

where {7} denotes the autocovariance function.

One could try to evaluate (7.10) using the sample autocovariances, but this is generally
considered to be a bad idea because the sample autocovariances have rather poor sampling
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properties. A better idea is to substitute the theoretical v4’s based on a fitted model,
for example, the parameters estimated in an AR(p) model fit. An alternative approach,
however, is based on the spectral density. From the formula

= [ RO,

where f()) is the spectral density, we see that

T T T T -
D) DIRTIMESD 3D DR MRt (V2

s=1t=1 s=1t=1 - (7.11)

- / " OO FNdA

—T

where
T 2
U\ = Z uget (7.12)
t=1
For the AR(p) model,
o? P -
_ € irA
f()‘)_%l_ngre ’
r=1
while in the fractional ARIMA case,
o2 |1+Y9_, 0,et> ? N
f()‘) = % 1— p_1¢ PO ) |1 - ez)\‘ 2d7 (713)
r=17*T

from which the integrand in (7.11) is easily evaluated and the integral itself may then be
found by numerical integration. As an example, Fig. 7.1 shows the functions U(A) and
f(X) for a temperature series of 149 years in Amherst, MA (Lund et al. 1995), for which
an AR(2) model has been fitted and the estimator # in (7.9) is just the standard least
squares linear regression estimator. The main point here is that the function U(\) gives
nearly all its weight to a very small region near A = 0; therefore, it is important to estimate
the spectral density well in this region. In contrast, misspecification of f()) far away from
A = 0 is likely to have hardly any influence on the estimated variance of 6.

In an investigation of the possibilities for using (7.11) to assess the errors in a linear
estimator of trend, Bloomfield and Nychka (1992) defined a “catalog of spectra”: they
considered three autoregressive models corresponding to p = 1, 2 and 8; the ARIMA(0,d,0)
process and two theoretical spectral densities derived by Wigley and Raper (1990) for the
dynamics of a simple mechanical model of the earth’s climate. The latter had a larger
concentration of power at low frequencies than the autoregressive models, but were still
bounded spectral densities, whereas (7.13) is unbounded as A — 0.
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Fig. 7.1. Dlustration of (7.11): (a) U(A), (b) f(A), using fitted AR(2) model, for 149
years of annual temperature averages in Amherst, MA.

Plots of the raw spectral densities showed considerable variation from one model to
another at very low frequencies, but the estimated standard errors by (7.11) were fairly
consistent over the range of realistic models. For example, when 6 is the least squares
estimate of linear trend over the IPCC series 1861-1989, Bloomfield and Nychka found a
numerical value of § = 0.367°C, with standard errors according to different types of spectra
as in Table 7.1. The results are fairly consistent across the AR(8), fractional noise, and
the second Wigley-Raper model — the latter being a “multi-box” representation of the
earth’s atmosphere whereas the first Wigley-Raper model was “one box” and therefore less
realistic. In contrast, assuming a low order of time series (white noise, AR(1) or AR(2))
gave much smaller standard errors, but such estimates are presumably not very realistic.

In conclusion, ignoring time series correlation or using unrealistically low-order models
(AR(1) or AR(2)) is likely to lead to serious underestimation of the standard error of the
trend, but among more realistic models, similar results are obtained by several different
methods.

Another paper that took a spectral approach to the problem was by Kuo, Lindberg
and Thomson (1990). They analyzed the Hansen-Lebedeff temperature series alongside a
time series of atmopheric CO,; measurements and in each case fitted a linear trend with
time series errors, where the spectral density of the time series component was estimated
nonparametrically using a multiple-window procedure. They claimed significant upward
trends for both series — in particular, for the Hansen-Lebedeff series, their estimate of
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the overall linear trend was .554 with a standard error of .096 (°C per century). This
is consistent with Bloomfield’s results reported earlier, for which the point estimate was
.07 and the standard error about 0.1. They also examined the coherence — effectively, a
measure of the correlation between two spectral densities — for the temperature and COs
series. For this, they claimed the somewhat surprising result that temperature leads CO5
by about five months.

Spectrum Standard Error
White noise 0.028
AR(1) 0.059
AR(2) 0.059
AR(8) 0.107
Fractional 0.097
Wigley-Raper 1 0.072
Wigley-Raper 2 0.101

Table 7.1. Standard errors of linear trend estimate from IPCC series by various spectral
assumptions; from Bloomfield and Nychka (1992).

As a matter of general methodology, one might consider applying formula (7.11) with
f(X) replaced by a nonparametric estimate of the spectral density. The difficulty is that, for
a time series of length 7" when 6 is the least squares estimate of a linear trend, the greatest
power of U is obtained very near frequency 1/7, which is a region not well estimated
by traditional spectral density techniques. Multi-taper methods such as those considered
by Kuo et al. are a method of improving on simple periodogram-based estimates of the
spectral density, but it is still not clear that they resolve this fundamental difficulty with
using nonparametric spectral estimates in this context.

7.1.3 Other “classical” approaches

Tol and de Vos (1993) attempted a direct regression of temperature on COg, using a
regression equation of the form

Yyt = o+ Pri_r + v, (7.14)

in which y; was the IPCC series, z; was mean CO» level and the lag L was taken to be 20
years. In their first analysis they took v; to be AR(1), though as Bloomfield had already
shown, such an assumption is not adequate for this series. They then repeated the analysis
using an ARMA (2,2) model for v;, both with and without the Sz;_g¢ term, finding that
the model including the CO5 signal fitted much better than the model without, though
the standard error was substantially larger under the ARMA(2,2) model than under the
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AR(1) model (point estimate 8 = .015 under both models; standard errors .002 under
AR(1), .005 under ARMA(2,2)).

In further analysis, Tol and de Vos extended (7.14) to a model of form
Yy = a+ By;_1 + forcing terms + error, (7.15)

where the forcing terms, apart from COs, included sunspot numbers as a measure of solar
variability, a “dust veil index” measuring atmospheric aerosols, a linear trend, and an
ENSO (El Nifio-Southern Oscillation) signal. Based on this they estimated AT, to be
3.12°C with a standard error of 1.26. Further analysis of updated series by Tol (1994)
reduced both the estimate of AT5, and its standard error: 2.8°C with a standard error of
0.8. Tol also applied the same model separately to the northern hemisphere and southern
hemisphere series, though did not try to model them jointly (as we shall a little later).

The papers discussed so far have all broadly supported the hypothesis of a significant
trend in global temperature. A contrary view was expressed by Woodward and Gray (1993,
1995). They considered models of the form (7.3) (with z;(0) = 0t) similarly to Bloomfield
(1992), obtaining similar results, but as an alternative model, they also considered the
ARIMA(p, d, q) model with integer d, as in standard time series texts such as Box, Jenkins
and Reinsel (1994). In particular, they found a good fit to an ARIMA(9,1,0) model,
with no overall positive or negative trend, for both the IPCC and Hansen-Lebedeff data
sets. They pointed out that if such a model were correct, it would not be reasonable to
forecast future temperatures as increasing even though observed temperatures may have
been increasing for some time.

Woodward and Gray (1995) extended this analysis to include a formal test of the “lin-
ear trend plus autoregressive noise” model against an ARIMA alternative. They proposed
a bootstrap test for this and found in simulations that, with parameter values for the two
models similar to those fitted to the observed series, there was a reasonable level of dis-
crimination between the two models. They then applied the bootstrap test several times
to real data series, finding in every case a preference for the ARIMA model. From this,
they concluded that there is no evidence of an anthropogenically induced climate signal.

These ideas are closely related to unit-root testing (Dickey and Fuller 1979, 1981,
Dickey et al. 1986). An example of a unit root process would be

®(B)(VX: — p) = &, (7.16)

where VX, = X;— X; ; and ®(B) is some polynomial function of the lag operator B whose
roots lie outside the unit circle (so that the model ®(B)X; = ¢; would be stationary). In
(7.16), the presence of the term VX; makes it a nonstationary unit root model. As an
extension of their methodology, Woodward and Gray (1995) discussed how to test the
null hypothesis ¢ = 0 in (7.16) against the alternative p # 0 (the previous analyses had
assumed p = 0). For several real data series, they found that this hypothesis was not
rejected, i.e. there is no evidence of a deterministic drift even within a unit root model.
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The difficulty with the Woodward-Gray approach lies in the credibility of the ARIMA
(or unit-root) model for climate series. Such models originated in economics, where there
is generally no bar to a permanent long-term shift in a price or some other economic
indicator. However, when applied to the climate, they imply that (a) there is no such
thing as a “stationary distribution” for a climatic variable such as temperature, (b) over
the course of a very long time period, climatic series will shift arbitrarily far from their
starting values. Neither assumption fits very well with our physical notions of climate.
Moreover, when the ARIMA (p, d, ¢) model is extended to include fractional d, estimates of
d are typically between 0 and % — this is necessary if the series is to be stationary, but most
actual estimation methods do not restrict themselves a priori to this range. Thus, when the
range of models is extended to include long-range dependence, we typically get results that
are consistent with long-range dependence but still within the class of stationary series.
Even this hypothesis is not without its problems — for example, the theoretical spectral
density derived from dynamical considerations by Wigley and Raper (1990) is bounded,
albeit putting high power on low frequencies — but the presence of natural cycles of very
long amplitudes such as the Milankovich cycles suggests that in practice, there will be very
low frequency variation which is indistinguishable from long-range dependence in practice,
but still consistent with an overall stationary system.

7.2 Approaches based on long-range dependence

There are two reasons or trying to extend the analysis of time series with trends
beyond autoregressive or ARMA processes. First, if we are even to consider the possibility
that trends in climatological time series are caused by natural variability, then it is clear
that this variability must be persistent over very long time scales — otherwise, we could
not expect a warming pattern to persist for over a century, as seems to be the case in the
current record. This suggests looking for models which, while consistent with stationary
time series, have correlations that decay very slowly at large lags. A second reason for
looking at models of this form is that the spectral formula for the variance of a trend
estimate implies the need to estimate the spectral density well for frequencies very close to
0, and this suggests looking for estimation methods that focus particularly on that range
of frequencies.

At the present time, there are three main approaches to long-range dependence. The
first, already mentioned, is based on the fractional ARIMA model (7.7), first introduced
independently by Granger and Joyeux (1980) and Hosking (1981), developed further by
Hosking (1984), Haslett and Raftery (1989) and a number of other authors. These models
are parametric and can be estimated by maximum likelihood techniques — Beran (1994)
reviewed them in detail and, as already mentioned, Bloomfield (1992) used them in the
context of climatological trend analysis. Their main disadvantage in this context is that
since, from a spectral point of view, the fractional ARIMA model attempts to model
the whole of the spectral density, if the model is misspecified across the whole range
of frequencies, it may result in biased estimated in the specific region of interest, which
corresponds to very low frequencies. Alternatively, trying to find a model which is correctly
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specified across the whole frequency range may result in relatively large values of the
ARMA orders p and ¢, and an unparsimonious model. This objection hardly applies to
Bloomfield’s model for the IPCC series, for which p = 0, ¢ = 1, but it is a possible
objection to the general use of the fractional ARIMA model.

The second method is based on spectral estimation of long-range dependence, in which
estimation is confined to a narrow window of frequencies near 0. This method was applied
to climatological time series by Smith (1993) and Smith and Chen (1996), and is the main
focus of the discussion to follow.

The third method is more recent and is based on wavelets, cf. McCoy and Walden
(1996), Craigmile et al. (2000). This method may be particularly advantageous when the
residual time series may be nonstationary in addition to having long-range dependence.
We do not pursue this theme in the present discussion.

7.2.1 The spectral approach

Now, we discuss some details of the spectral approach. To begin with some definitions:
suppose {y;, t = 0,£1,+2,...} is a stationary time series with autocovariances v, =
Cov{ys, yt_r} for k > 0. In cases where a spectral density exists, it may be derived from
the autocovariances through the formula

F =5 D e

n=-—oo

oo

% 1

=5 + 7 z:lfyn cos(nA),
n—

which has inverse

Vo = / e F(N)dA

The periodogram may be defined by

T

Z yteit)\

t=1

and is an approximately unbiased estimator of f()) for each A. In practice, the periodogram
is usually calculated only at the Fourier frequencies, \; = 2mwj/T for j = 0,1,2,...,T/2.
In addition, in many applications two modifications are often made to the calculation
of the raw periodogram. Tapering means multiplying a finite data sequence {y;, 1 <
t < T} by a tapering function h(t), such that h(t) — 0 as ¢ — 1 or T. This has the
effect of avoiding problems such as leakage caused by a sharp cutoff at the ends of the
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data, see e.g. Bloomfield (1976) or any modern book on spectral methods. The second
very common modification of the periodogram is smoothing which involves averaging a
periodogram over neighboring Fourier frequencies to obtain a smoother function. In the
present discussion we shall mostly work with the raw periodogram, without applying either
tapering or smoothing, largely because the periodogram is being viewed primarily as an
intermediate step in the estimation of long-range dependence.

Long-range dependence may be defined by either of

k2d—1

Y ~ a , k — oo,

fO) ~ A~ X 0. (7.17)

In principle more general definitions are possible, e.g. by including additional logarithmic
or other so-called slowly-varying functions in either part of (7.17), but in practice this
definition usually suffices. The relation between a and b is

b= 2T (2d) cos(nd), (7.18)
s
which follows from a Fourier series identity (Zygmund 1959, Chapter V, (2.22)).

Suppose (7.17) holds and consider the sample mean based on T observations, Y7 =
T-! Zle Y- An asymptotic argument shows that

_ a _
Va.r(YT) ~ mTZd !
b 2d—1
d(2d + 1)I'(2d) cos(wd)

(7.19)

For the regression coefficient of a normalized linear trend,

o :Zyt( —%)

B (R

(7.20)

a similar argument leads to

~ T
VarlO) ~ S G rod L
T .
d(1+ 2d)(3 + 2d)T'(2d) cos wd

(7.21)

The formulae led Smith (1993) to propose the following procedure. Suppose we esti-
mate a linear trend of the form o + 6{t — (T +1)/2} using OLS estimators & = yr and
O from (7.20), then form residuals

- ~ T+1
et:yt—aT—GT{t—T}.

279



Suppose now we estimate the long-range dependence parameters b and d from the residuals
e;. Then the variance of &7 and 7 may be estimated from (7.19) and (7.21). In particular,
(7.21) may be used to estimate a standard error for 67 and hence to construct confidence
intervals and hypothesis tests for the linear trend.

7.2.2 Estimation of b and d

For the estimation of the long-range dependence parameters b and d, there are by now a
number of spectral-based approaches. Since I () is an approximately unbiased estimator
of f(A) ~ bA~24 for X near 0, a natural approach is to perform an ordinary least squares
regression of logIr(A) on log A for a sequence of Fourier frequencies \;, j = 1,2,...,n.
where n. is some cutoff much smaller than 7'/2; the reason for the last restriction is to
ensure that the estimation really is confined to a small range of frequencies near 0. This
procedure is very nearly the same as that proposed by Geweke and Porter-Hudak (1983)
and was placed on a rigorous mathematical footing, with some modifications, by Robinson
(1995a).

A second procedure has been variously called Gaussian, maximum likelihood or Whit-
tle estimation (because of its similarity to the Whittle method of estimating parametric
time series models from the spectral density) and consists of choosing b and d to minimize

Te

Z{logf()\j;b,d)—i- %} (7.22)

=1

where f();b,d) is approximated by bA~2¢ and we again restrict attention to the first n,
Fourier frequencies. This method was advocated by Kiinsch (1987) and Smith (1993), and
given rigorous mathematical justification by Robinson (1995b). Asymptotic theory shows
that for a fixed n., the variance of the estimator of b is smaller (by a factor 72/6) compared
with the Geweke—Porter-Hudak estimator. From now on, we use only this estimator.

7.2.3 Joint estimation of trend and long-range dependence parameters

The approach discussed so far assumes that the trend and long-range dependence pa-
rameters are estimated separately, with the trend first estimated by ordinary least squares
and substracted from the data to form residuals, which are then analyzed as a stationary
time series to estimate the parameters b and d. There are some possible objections to
that: for example, OLS estimation of the trend is theoretically inferior to generalized least
squares (GLS) estimation, with an asymptotic efficiency (for the case of a linear trend
when 0 < d < 1) between 0.889 and 1 (quoted by Smith (1993), based on theoretical
results due to Yajima (1988, 1991)). There could also be some bias in estimating b and
d from a residual series in which the initial estimation and removal of a linear trend is
ignored, though this source of bias is usually ignored in theoretical studies. The consid-
erations led Smith and Chen (1996) to propose an alternative method in which the trend
and long-range dependence parameters were estimated simultaneously.
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Counsider the model

p
= Bmritwm, 1<t<T, (7.23)
k=1

in which {y;} is an observed time series, {z) ;, 1 < k < p} is a vector of p covariates whose
values at time ¢ are known, f31,...,0p are unknown regression coefficients, and {1} is a
stationary time series. The linear trend model

yr=pP1+Pat +vr, 1<t<T, (7.24)
is a special case of (7.23).
Define the discrete Fourier transform (DFT) of y;,
Dy1(A) =Cyr(A) +iSyr(N), (7.25)

where Cy 7 and S, 7 are the discrete cosine and sine transforms defined by

T
1
Cyr(A) =1\ =—= 1Yt COS AL,
2nT ;
h (7.26)
1
Syr(A) =1/ —= Zyt sin At
2nT —

Note that I, 7(X) = | Dy 7(A)|? = Cyr(N)?+ Sy, 7(M)?. By taking the DFT of each side in
(7.23), we have

=Y BuDay v (V) + Dur (V). (7.27)

The model is therefore of the following structure: if we write the cosine and sine transforms
of y; for the first n. Fourier frequencies as a (2n.)-dimensional vector, and similarly for
each of the covariates zy ¢, (7.27) allows us to write this (2n.)-dimensional response vector
as a linear function of p known covariates (i.e. the DFTs of the original covariates zj, ;) plus
a random error term D, 7 of mean 0 and a covariance function which may be assumed to
be a known function of d and A. This creates the possibility of either maximium likelihood
or REML estimation of the model based on (7.27).

In approximating the covariance matrix in (7.27), note that if 5 = > bgsys and
Yo = Y, beryy are two of the components of D, 7, then we may write

Cov (Y, Je) Zzbksbet/ et =X F(N)dA

= [ BB SO

—T

(7.28)
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where B;(A) =), bjse*® and the asterisk denotes complex conjugate. In calculating the
likelihood function, (7.28) has been evaluated by direct numerical integration based on
1,000 sampling points. Unfortunately, in this setting it is not valid to apply approxima-
tions which effectively assume that the components of D, r are independent; for further
discussion of this point we refer to Smith and Chen (1996).

7.2.4 Application: Central England series

Fig. 7.2(a) gives 342 annual means of the Central England data set, 1659-2000. This
series, originally compiled from three observing stations in the center of England, is one of
the longest continuously collected direct records of temperature; it was originally collected
by Manley (1974) and is today available from the Hadley Center website (http://www.met-
office.gov.uk/research/hadleycentre/CR,_data/Monthly/HadCET_act.txt). For the
present analysis, we do not (initially) subtract any trend but estimate b and d from the
full series — then we test for the significance of a linear trend in several recent sections
of the series. The rationale for this approach is that the null hypothesis is that there is
no trend but simply long-range dependence; therefore we assess the spectral density from
the undetrended series and use that to assess the significance of observed trends. The
following analysis differs in a number of features from the analysis of the same series in
Smith (1993).

Fig. 7.2(b,c) gives the autocorrelation (ACF) and partial autocorrelation function
(PCF) of the full series. Clearly, the ACFs decay slowly but the PCF decay more rapidly
except for a (possibly spurious) significant coefficient at lag 15, so on the basis of this, it
may be acceptable to approximate the process by a low-order autoregressive model, but
we shall continue to pursue this as a long-range dependent series to examine the results
which ensue from such an assumption.

Fig. 7.3(a) shows an example of a (smoothed and tapered) spectral density estimate,
which confirms that most of the power is in low frequencies. Fig. 7.3(b,c) shows the raw
periodogram both on the scale which is usually plotted (log periodogram against frequency)
and an alternative log-log scaling which is shown because this is the scale on which we
would expect a linear relationship according to the long-range dependence model.

Fig. 7.4 shows Fig. 7.3(c) again, with the estimated straight line (logb — 2dlog\)
superimposed for a number of values of n.. Although a few of the lines for very small n,
are clearly different from the rest, overall these fits are very similar, confirming the good
fit of the long-range dependence model. Fig. 7.5 shows estimates of d and associated 95%
confidence intervals for a variety of values of n.. After initial variability up to n. = 20,
the rest of the plot is very stable and shows clear evidence of long-range dependence. For
example, for n. = 40, the estimate d is .44 with a standard error of .10. Although not
shown on the plot, estimates of b and their standard errors are of course also available.
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Fig. 7.2. Central England data set: Raw data, AFC and PACF plots.
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Fig. 7.3. Central England data set: Smoothed spectral density and raw periodogram.
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Fig. 7.5. Central England data set: d and 95% confidence band by Whittle method for
various 7.

m Trend SE Ratio
5 .23 17 1.4
10 .098 .07 1.4
15 077 .046 1.7
20 .054 .034 1.6
25 .042 .027 1.6
30 .029 .022 1.3
35 .025 .019 1.3
40 .026 .016 1.6
45 018 .014 1.3
50 .016 .013 1.2

Table 7.2. Linear trend estimates, standard errors and ¢ ratios for Central England series
over the past m years, for various valus of m.

Table 7.2 shows estimates of the linear trend and associated standard errors (calculated
from (7.21), using the estimates of b and d calculated for n. = 40) over the last m years,
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for various values of m from 5 to 50. The results show that although there have been
some dramatically large trends in recent years, these are not statistically significant. In
fact none of the trends shown in the table is significant, though the most nearly so are for
m in the range 2040 years.

Although this is a negative result, it should be borne in mind that this is only a
single series and most of the series for which significant trends have been claimed are
based on data aggregated from many stations — in particular, this is true of the global
and hemispheric temperature series. From this point of view, the fact that several of
the trends are “nearly significant” on their own (i.e. without combining with information
from other stations) is worthy of note. On the other hand, the standard errors also show
that apparent very large trends in some recent sections of the series (e.g. m = 5,10) are
probably not significant when compared with the correspondingly large standard errors.

7.2.5 Application: global average temperature series

Figs. 7.6-7.9 show a similar analysis for the current (1856-2000) series of global
average temperature available from the University of East Anglia website
(http://www.cru.uea.ac.uk/cru/data/temperature; series tavegl.dat). In this case, since
there appears to be little dispute over the existence of a trend, we subtract a linear trend
(estimated by OLS) at the beginning of the analysis and calculate the time series features
from the detrended series. Fig. 7.6(a) shows the raw series, (b) and (c¢) the ACF and PCF
for the residuals, from which we see that there is again a very slow decay in the ACFs but
much more rapid decay in the PCFs, suggesting that a low-order AR(p) would again be an
adequate fit to the series (recall that Bloomfield (1992) took p = 4 in this context). Plots
of the smoothed and tapered spectral density, and of the raw periodogram, again show
evidence of power concentrated on low frequencies (Fig. 7.7), and the cloud of straight-line
fits on log-log scale suggest a good fit except at very low values of n. (Fig. 7.8). Plots of
d and associated 95% confidence intervals show clear evidence of long-range dependence
(Fig. 7.9). For example, at n. = 30, we have d = .42 with a standard error .10. Some
of the estimates of d are even bigger than % — for example, at n. = 20, we have d = .51
with standard error .12 — suggesting that it is even possible that we are in the region
of nonstationarity (see e.g. Hurvich and Ray (1995) for discussion of estimating d in this
case). A table of trend estimates and associated standard errors, for various time lengths
m including m — 145, the full series, is shown in Table 7.3.
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Fig. 7.6. IPCC data set: Raw data, AFC and PACF plots.
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Fig. 7.9. IPCC data set: d and 95% confidence band by Whittle method for various n.

m Trend SE Ratio
10 .022 017 1.3
20 .017 .0087 2.0
30 .018 .0056 3.2
40 .013 .0044 3.0
50 .009 .0035 2.8
145 .0043 .0012 3.6

Table 7.3. Linear trend estimates, standard errors and ¢ ratios for global temperature
series over the past m years, for various valus of m.

Finally, the procedure of Smith and Chen (1996) has been applied to the full (145-
year) series, using n. = 20 for the number of spectral ordinates. Using the maximum
likelihood fits to model (7.27), we find d = .46 (standard error .12) and 6 = .0046 (.0010).
The corresponding REML estimates are d = .50 (.12) and 6 = .0047 (.0011). The fact
that these estimates based on the joint estimation of d and 6 are little different from the
earlier estimates, based on OLS trend estimation and time series analysis of the residuals,
is some confirmation of the robustness of the methodology, in the sense that different ways
of estimating the model seem to lead to similar conclusions. However we look at it, the
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conclusion seems to be that there is both clear evidence of a trend and clear evidence of
long-range dependence in this series.

7.3 Bivariate time series

This section reviews a recent paper by Smith, Wigley and Santer (2001), in which trend
effects associated with a variety of climate models are fitted to bivariate temperature series
correponding to northern hemisphere (NH) and southern hemisphere (SH) averages. For
preliminary discussion, we refer back to section 1.2; in particular, Fig. 1.1 plots the data.

An earlier analysis of hemispheric data by Kaufmann and Stern (1997) was based on
models of the form

k P1 q
Ny = a1 + Z,Bljﬂ»‘tj + Z’Ylet—j + Z 01St—j + €1¢,
1=1 j=1 j=1
(7.29)
k P2 q2
S = ag + Z Bajyes + Z Y25 Nt—j + Z 025S¢—j + €2t

J=1 j=1 j=1

where N; and S; are observed NH and SH temperature averages in year ¢, and {z;, ytj, 1 <
j < k} are covariates which may either represent simple linear time trends or more complex
covariates such as greenhouse gases. The coefficients ;;, d;; on various lagged NH and SH
terms represent serial correlation both within and between the two hemispheres, while €14
and eg; are error terms which are assumed normally distributed with mean 0, independent
from one value of ¢ to another and with variances o3, o2 say. We may allow Corr(ey4, €5¢) =
p, where p may be any number between —1 and 1, though Kaufmann and Stern implicitly

assumed p = 0.

An alternative form of the model is

k

Ny =1+ Y Bz + W,
i=1

k
Se=aa+ Y Bajyuj + Zu,

=t (7.30)
D1 q1
Wy = Z'Ylet—j + Z 01jZ1—j + €xt,
D2 q2
Zy = Z'Y2th—j + Z 095 Zt—j + €at,

which differs from (7.29) by first forming detrended series, W; and Z;, by subtracting the
deterministic trend terms from N; and S; respectively, and then modeling (W;, Z;) as a
stationary bivariate autoregressive series.
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It is possible to fit either form of model (7.29) or (7.30) to data including alternative
lags and trend terms, and to compare the results by direct comparisons of fitted likelihoods
or through automatic model selection criteria such as AIC or BIC.

Initial analysis of the data by Smith et al. (2001) led to the following conclusions:

1. In models which included a linear trend term (x4 = y; = t) and a component
representing the El Nino—Southern Oscillation effect (the so-called Southern Oscillation
Index or SOI; http://www.cru.uea.ac.uk/cru/data/soi.htm) both the latter terms were
found to be significant. The SOI term was lagged six months, i.e. the value taken as a
covariate for year ¢ was based on the average of the last six months for year ¢ — 1 and the
first six months for year t.

2. Model (7.30) was a better fit than model (7.29).

3. In comparisons of various orders for the autoregressive terms in (7.30), it was
found that an adequate representation was obtained with p; = g2 = 1, po = ¢1 = 0, i.e.
simple AR(1) models with no cross-correlation terms. This contrasted with the results
of Kaufmann and Stern (1997) who found, for a model based on (7.29) and with no
SOI component, that an appropriate model required fourth-order autoregressive terms
including a south-to-north dependence (i.e. p; = ¢1 = ¢2 = 4; only p2 was 0).

The conclusion of simple AR(1) models when SOI is included as a covariate might raise
speculation that the SOI term entirely explains the long-range dependence, this rendering
the detailed discussion of Section 7.2 unnecessary. The paper by Smith et al. (2001) did not
examine this aspect of the problem, but for direct comparison with the results of Section
7.2, the residuals from the model just discussed have been computed, together with their
periodograms, separately for the NH and SH series, and fitted to a long-range dependence
model using the same methods as Section 7.2. Fig. 7.10 shows resulting Whittle estimates
of the parameter d with 95% confidence limits, analogous to Figs. 7.5 and 7.9 for the
Central England and IPCC data. As can be seen, there is similar evidence that d lies
between 0.3 and 0.5, suggesting a need to consider long-range dependence in this series as
well. At the time of writing, no such bivariate analysis involving long-range dependence
has been carried out.

The actual analysis by Smith et al. (2001) henceforth assumed a bivariate AR(1)
model with p; = ¢2 = 1, po = ¢ = 0, and including SOI as a covariate, but instead of
a simple linear trend, substituted trends generated by a variety of climate models of a
form due to Wigley and Raper (1992) and modified by Raper et al. (1996). A total of 24
model-generated trends was included, based on six different combinations of forcing factors
and 4 values of the climate sensitivity AT5y; recall that the latter parameter represents
the nominal change in the earth’s mean temperature corresponding to a doubling of COs
from pre-industrial times.
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Fig. 7.10. d and 95% confidence band by Whittle method for various n,, for (a) NH
data, (b) SH data.
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Forcing case GHGs and Sulfate Solar Optimum

case biomass aerosols aerosols ATy
A: GHGs yes no no 1.36
B: Anthropogenic yes high no 11.93
C: Low SOq4 yes low no 3.19
D: Anth. + Sun yes high yes 4.16
E: Low SO4 + Sun yes low yes 2.32
F: Solar alone no no yes 15.44

Table 7.4. Summary of models used for trend comparison. The “low” and “high” values
of sulfate forcing correspond to two different scenarios described by Kattenberg et al.
(1996). The optimal values given for ATsy use similar methodology (though a different
time period) to Wigley et al. (1998).

The six climate models are listed in Table 7.4. The four values of AT5, were taken as
(1) 1.5, (2) 3.0 and (3) 4.5 °C to correspond to the currently accepted range of reasonable
values of this parameter, and (4) an “optimum” value calculated separately for each model,
on the basis of previous fits of the model output to observational data (so ATy should
itself be regarded as an unknown parameter, but since the estimation of that is not taken
as part of the current regression procedure, we are treating model runs corresponding to
different AT, as distinct models to be compared by our likelihood-based procedures).

As a means of making comparisons among a large class of models, we use Bayes factors
in the manner described by Kass and Raftery (1995). Suppose we have M different models
to choose from, and the m’th model (1 < m < M) defines a probability density function
fm(y;0.,) for observed data y in terms of model parameter 6,,. If the prior probability
that model m is correct is II(m), and conditional on model m being correct, the prior
density of 6., is 7, (0.,), then the posterior probability that model m is correct, given the
data vy, is

_ 1) [ fin(y; 0m) T (O ) O
I(m | y) = - _ . (7.31)
Zm' H(m ) f fm’(ya em’)ﬂ'm’ (em’)dem’

An alternative formulation is to rewrite (7.31) in the form

Oim |y)  Om) [ fm(y; 0m)Tm (Om)dOm

T [y) ~ TU) T Foe (03 O e (O A0 (7.32)

for the comparison of two given models m and m’. The advantage of this approach is that
(7.32) separates out the influence of the prior probabilities of the models (the IT factors in
the right hand side) from the likelihood components (the ratio of integrals). If we ignore
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the II components in (7.32), the ratio of integrals, which we shall denote by B(m;m’), is
called the Bayes factor of model m relative to model m’ and represents the relative “weight
of evidence” of the two models. This therefore represents a direct means of comparing two
models without any prior assumption that one of them must be correct.

Bayes factors were first popularized in the classical treatise of Jeffreys (1961), who
gave the interpretation in Table 7.5, as slightly modified by Kass and Raftery (1995).

Value of Value of Strength of evidence
B(m;m') log,o B(m;m') against model m/

1to 3.2 0 to 0.5 Barely worth a mention
3.2 to 10 0.5to1 Substantial

10 to 100 1to2 Strong

Greater than 100 > 2 Decisive

Table 7.5. Jeffreys’ table of interpretation of Bayes factors, adapted from Kass and
Raftery (1995).

In practice, we have assumed the prior densities 7, (#,,) to be constant, and have
evaluated the integrals in (7.32) using Laplace’s integral approximation (Kass and Raftery
1995),

/ Fon (55 01) s B ) i 2 (2072 (Vi |2 o (3 o) (7.33)

where ém is the MLE under model m, p,, is the dimension of the model, and V,,, is the
inverse observed information matrix under model m.

Raw comparisons based on negative log likelihood suggest that model D4 (i.e. row D
of Table 7.4 and AT, = 4.16°C corresponding to the optimum value for this model) is
the best-fitting model to the data, and using this as a reference model, the Bayes factor
for model D4 relative to each of the other models is plotted in Fig. 7.11. In this model,
we are assuming the regression coefficients ;7 and (31, corresponding to the model trend
terms in (7.30), are both 1, since this is the case when the model exactly corresponds to
the data. For comparison among different time series models, Fig. 7.11 shows the Bayes
factors both for the cases py = g2 = 1 (i.e. the joint AR(1) model we have described) and
for an alternative model with p; = g2 = 4. The Bayes factors for the AR(4) models are
always below those for AR(1), indicating less strong discrimination among models, but the
overall conclusions from the two sets of Bayes factors are comparable. In both cases, model
D4 is the best with model D3 very close behind, and most of the other models “decisively
worse” according to the Jeffreys criterion.

One particular comparison of interest is model F, which has solar forcing only. For
climate sensitivities of 1.5, 3.0 and 4.5, this model is clearly much worse than model D.
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Fig. 7.11. Approximate logio Bayes factors computed for 24 combinations of climate
model and climate sensitivity (same as in Fig. 2), all computed relative to model D4 (for
which the logio Bayes factor is fixed at 0). All fits are for model (2) including SOI, with
p2 = q1 = 0 and 17 = B21 = 0. Dashed lines: p; = ¢2 = 4. Solid lines: p; = g2 = 1. The
horizontal dashed lines represent Bayes factor 10 (above which there is strong evidence
against the alternative model, compared with D4, according to the Jeffreys interpretion)
and Bayes factor 100 (the lower bound for decisive evidence against). Based on Smith et
al. (2001).

On the other hand, Wigley et al. (1998) argued that for the optimal climate sensitivity,
a solar-forcing-only model could achieve almost as good results as one involving greenhouse
gases; by their argument, the principal objection to this model was the unrealistic climate
sensitivity that was required to achieve such agreement. In fact, as shown in Fig. 7.11,
even model F4 is clearly a worse fit than model D4 (Bayes factor around 100), while the
climate sensitivity required to achieve it, of 15.4 °C, is completely unrealistic according to
current theories of climate change.

Fig. 7.12 shows a number of diagnostic plots related to the model fits, plots (a) and
(b) showing the raw data plotted on the same graph as the signals, where the latter include
the SOI component, and the remaining plots showing various forms of residual plot. These
generally confirm the good fit of the model to the data. Fig. 7.13 tests the assumption of
a six-month lag in SOI by computing log likelihoods for the full model assuming various
lags in SOI — as can be seen, the fit for lags of between 4 and 7 months are virtually
indistinguishable, while lags outside that range are clearly inferior.
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Fig. 7.12. Diagnostic plots. (a,b) Raw data with best-fitting straight-line and model-
based trends. (c,d) Residuals (from regression on anthropogenic+solar model) vs. fitted
values. (e,f) Residuals vs. time. (g,h) QQ plots of residuals. Based on Smith et al. (2001).
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Fig. 7.13. NLLH values for model with various lags of SOI, versus the lag in months.
Results are for model (2) with p; = g2 = 1, p2 = g1 = 0, based on model D4 for the forcing
component. Based on Smith et al. (2001).

The conclusion is therefore that the best model fit, among the range of models consid-
ered, is achieved when all three of the most commonly adopted forcing factors — greenhouse
gases, sulfate aerosols and solar fluctuations — are included in the model, and with a cli-
mate sensitivity of between 4 and 4.5°C. However, apart from the possibility of including
other climatic effects (such as volcanoes) in the model, the analysis still leaves open the
question of whether a bivariate AR(1) model is an adequate representation of the time
series effects, given that Fig. 7.10 implies there is still evidence to support long-range
dependence.
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CHAPTER 8

Extreme Value Statistics in
Meteorology and the Environment

In this chapter, we present an overview of extreme value statistics, with particular
attention to applications in meteorology. The extreme value distributions are reviewed,
both in their conventional form (Fisher-Tippett, Gumbel, etc.) and in the more modern
“threshold” form based on the generalized Pareto distribution. After some initial discussion
of graphical techniques and simple summary statistics, an overview is given of the two
principal methods used to fit statistical models: the method of maximum likelihood, and
Bayesian statistics. This is followed by a number of examples. The latter part of the
chapter is concerned with diagnostics for extreme value models, and some extensions to
spatial data which mirror some of the spatial techniques discussed in earlier chapters.

8.1. Introduction
Much of conventional statistics is concerned with problems of the following types:

(a) Finding the probability distribution most appropriate to describe a set of data
— for example, whether the positive values from a rainfall series should be modelled by
a two-parameter gamma distribution, which is the most common choice, or some other
distribution such as lognormal or Weibull.

(b) Estimating, or testing hypotheses about, key parameters — for example, the
warming or cooling trend in a set of temperature data.

(c) Studying the relationships among two or more variables — for example, one might
want to study the relationship between temperature at a single station or a group of
stations, and a circulation index such as SOI.

(d) Time series methods, in which the evolution of some quantity over time is studied,
taking into account correlations among successive time points.

Most statistical methods are concerned primarily with what goes on in the center of a
statistical distribution, and do not pay particular attention to the tails of a distribution, or
in other words, the most extreme values at either the high or low end. Indeed, the whole
philosophy of one highly studied area of statistics, that concerned with robust methods
(Hampel et al. 1986), is that it is a bad thing for statistical methods to be too much
affected by extreme values.
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There are some situations, however, in which the extreme values are the most impor-
tant part of the problem. Hydrologists often want to compute the N-year return level !,
where, for instance, N = 100, of a variable such as river height or sea level. In the literature
on atmospheric pollution, interest is often focussed on trends in the level of some pollutant,
but the estimated trend may be different at the more extreme levels of the process than in
the center of the distribution. 2 And in climatological studies, much recent attention has
been given to whether global climate change can be observed in the more extreme values
of observational series. For example, Karl et al. (1996) defined a climate extremes index
(CEI) based on a combination of variables concerning extreme high or low temperatures,
high rainfall amounts, and droughts, and concluded that “the climate of the United States
has become more extreme in recent decades”. Easterling et al. (1997) concluded that the
observed warming in global temperatures is due primarily to a decrease in the diurnal tem-
perature range (DTR), a statement which though not directly connected with long-term
extremes of temperatures, nevertheless raises many questions along the lines “is it true
that the frequency of very cold days is decreasing?”.

As a more concrete example of the problems we shall be discussing, see Fig. 8.1.
This plot shows all daily peak gusts over 40 knots over a 20-year period at three stations
in North Carolina, Charlotte, Greensboro and Raleigh, indexed C, G and R respectively.
This raises a number of questions for consideration:

1 What kind of distribution is appropriate for these data?

2 Should a separate distribution be fitted to hurricane or near-hurricane conditions
(greater than 65 knots say), or can these be subsumed within the overall distribution?

3 Is there any tendency for the frequency of extreme winds to increase or decrease during
this period?

4 What about dependence between the stations, e.g. is there a tendency for extreme
values to occur simultaneously at two or more of the stations?

1 There is no universally agreed definition of this quantity, but one definition is that it
is the level exceeded in any one year with probability 1/N. The less precise definition as
the level which is exceeded “once in N years” leaves open all sorts of questions about what
this means if there is some trend in the data.

2 This phenomenon has, for instance, been observed in studies of U.S. tropospheric
ozone data (Smith 1989, Huang and Smith 1997), in which there is often no trend at all
in the middle of the distribution, but a clear downward trend at the more extreme levels,
at the levels which EPA regulations specifically try to control.
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Fig. 8.1. Windspeeds over 40 knots plotted against day of occurrence for Charlotte (C),
Greensboro (G) and Raleigh (R).
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The purpose of this chapter is to describe a body of methods specifically designed to
answer questions of this nature. The cornerstone of the theory is the “three types theorem”
first stated by Fisher and Tippett (1928), and given rigorous mathematical justification
by Gnedenko (1943), to the effect that there are only three “types” of distributions which
can arise as limiting distributions of extremes in random samples. The precise meanings
of these statements will be given in section 8.2. This theory led Gumbel, in a long series
of papers culminating with his book (Gumbel 1958), to propose a statistical methodology
for extreme values based on fitting the extreme value distributions to data consisting of
maxima or minima of some random process over a fixed time intervals. For instance, in
hydrology Gumbel’s methods were often applied to the annual maxima of a series of river
flows. From a more modern computer-aided perspective, such methods lead to fitting
annual maxima or minima with the generalized extreme value distribution, which combines
the three types of Fisher-Tippett and Gnedenko into a single three-parameter distribution
(Jenkinson 1955, NERC 1975, Prescott and Walden 1980, Smith 1985, Hosking et al 1985).

In recent years, however, the emphasis of the methodology has changed towards meth-
ods based on exceedances over thresholds rather than annual maxima. There is an analog
of the “three types theorem” in this context, but it leads to a different distribution, the
generalized Pareto distribution. This is described in section 8.3.

Threshold methods are more flexible than annual maximum methods, for a number
of reasons. First, by taking all exceedances over a suitably high threshold into account,
they use the data more efficiently. Second, they are easily extended to situations where
one wants to study how the extreme levels of a variable Y depend on some other variable
X —for instance, Y may be the level of tropospheric ozone on a particular day and X
a vector of meteorological variables for that day (Smith and Shively 1995). This kind of
problem is almost impossible to handle through the annual maximum method.

Because of their greater scope and flexibility, the main emphasis in the present review
is given to threshold methods, though the annual maximum approach is also covered, more
briefly. There is an intermediate approach, the r-largest order statistics method, in which
an appropriate joint distribution is fitted to the largest r order statistics in each year.
Here, » = 1 is the usual annual maximum method, but by allowing r > 1 it is possible to
take other large values of the series into account, so permitting more efficient estimation.
However, as an all-purpose statistical strategy, this method is nowhere near as general and
flexible as the threshold method.

Practical implementation of these methods requires methods for estimating their pa-
rameters. “Estimating” here means not just finding point estimators for the unknown
parameters, but also providing interval estimates or standard errors so that their accuracy
may be assessed, and testing hypotheses. There are two “general purpose” methods for
estimating parameters of arbitrary distributions:

(1) Maximum likelihood,
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(2) Bayesian methods.

Both of these require numerical computation, and one disadvantage is that that the
computations are not easily performed with standard statistical packages. There are some
programs available which are specifically tailored to extreme values, and a brief review of
these is given at the end of this section. Rather than concentrate on packages, my intention
in this chapter is to describe the kind of computations that are required at a level of de-
tail that an experienced programmer could write suitable code for him/herself. The main
requirement for maximum likelihood estimation is a good subroutine for unconstrained
nonlinear optimization. This is something in virtually every package of mathematical sub-
routines — for example, many of the examples here have been derived using the DFPMIN
subroutine of Press et al. (1986), which also has implementations in Pascal and C —
but readers who already have their own favorite subroutine should have little difficulty
adapting it for the purpose in hand. Bayesian methods are rather more complicated, since
the main computational technique required is numerical integration, which in most cases,
but especially in high dimensions, is a significantly more difficult problem than numeri-
cal optimization. In recent years, however, Bayesian methods have been transformed by
the use of simulation techniques known as Markov chain Monte Carlo (MCMC) methods,
which are so easy to apply that the beginner can easily try them out with very little prior
experience. A number of recent books have described these methods, including Gilks et
al. (1996) and Carlin and Louis (1996). It needs to be pointed out, however, that these
are not “automatic” methods and that it takes some experience to apply them efficiently
and correctly, especially in high-dimensional problems.

The present chapter concentrates on maximum likelihood methods as a principal tool
of statistical inference (section 8.5). However, I also cover the subject of Bayesian methods
(section 8.6) since these are becoming so popular and because many of the more advanced
problems are more satisfactorily solved using Bayesian rather than maximum likelihood
methods.

It is not my intention here to dwell on philosophical differences between maximum like-
lihood (frequentist) and Bayesian approaches, any more than their mathematical founda-
tions, since my main purpose is to focus on practicalities of their implementation. Readers
interested in a general discussion of statistical methods and of differences between frequen-
tist and Bayesian approaches are referred to such books as Cox and Hinkley (1974), Berger
(1985) and Bernardo and Smith (1994).

Software

Although extreme value methods have yet to be incorporated into standard packages
such as S-Plus and SAS, a number of specific packages have been produced.

A package written by Stuart Coles and Mark Dixon is available together with accom-
panying lecture notes (Coles 1996) from Stuart Coles’ home page. Many of the features
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described in the present chapter are in this package, which also produces extensive graphi-
cal output. The package is written in the statistical programing language SPlus. The web
address is http://www.maths.lancs.ac.uk/ “coless/.

A second package which has many similar features, but which is more geared towards
insurance and financial applications, is the EVIS package written by Alexander McNeil of
ETH (Ziirich). It is also written in SPlus, and available from http://www.math.ethz.ch/
“mcneil /software.html.

Another reference is the book by Reiss and Thomas (1997), which comes together
with its own CD of computer programs, forming the Xtremes package. This has excellent
graphics and display features.

Other literature on extremes

Gumbel’s (1958) book is still regarded as a classic, though since the techniques de-
scribed belong to the pre-computer age, nobody uses Gumbel’s actual methods any more
(except the Gumbel plot — see section 8.9.1).

Books concentrating primarily on the probabilistic theory of extremes are Galambos
(1987), Leadbetter et al. (1983) and Resnick (1987). Galambos’s book covers a wide range
but not in the same depth as the other two. Resnick is particularly strong on multivariate
extreme value theory. Leadbetter et al. give an excellent introduction to the whole subject
and are particularly strong on extreme values in stationary stochastic procesess.

A recent addition to this literature is Embrechts et al. (1997), which is particularly
strong on applications in insurance and finance.

A more applied book is Castillo (1988), with particular focus on engineering applica-
tions.

Two very good collections of edited chapters, both resulting from major conferences
in extreme value theory, are by Tiago de Oliveira (1984) and Galambos et al. (1994).

Finally there are a number of review articles, including one of mine (Smith 1990). A
number of the following examples are taken from this.

8.2. The extreme value distributions

The extreme value distributions formally arise as limiting distributions for maxima or
minima of a sequence of random variables. Throughout the chapter we shall concentrate
on maxima rather than minima, though the results are easily translated from one to the
other by replacing random variables X, Xs, ..., by their negatives —X;, —Xj, ...
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A formal definition is as follows. Suppose X1, Xo, ... are independent random variables
with a common distribution function F'; in other words

F(z) =Pr{X; <z} (8.1)

for each j and z. The distribution function of the maximum M, = max{Xy,..., X,} is
given by the n’th power of F"

Pr{M, <z} =Pr{X; <z,Xo<z,..,X, <z}
= Pr{X; <z} Pr{X; <z}..Pr{X, <z} (8.2)
= F"(z).

However for each z within the range of the distribution, 0 < F(z) < 1 and so F™(z) — 0
as n — oo; this, although (8.2) states precisely what is the distribution of the maximum, it
does not tell us anything interesting or worthwhile about what happens in large samples,
in other words, as n — oo.

It turns out that we can get interesting results if we renormalize: define scaling con-
stants a,, > 0 and b,, so that

Pr{u < LIT} = Pr{Mn < angc+bn}
Gn

= F"(anz + by) (8:3)
— H(z) asn— oo

where H is nondegenerate; in other words, a probability distribution function which is not
always either 0 or 1.

For our present purposes we are much less interested in the constants a,, and b,, than
the form of the limiting distribution H; it turns out that there are only three types 3 of
limiting distribution and these are given by

o Gumbel type:

H(z) = exp{—exp(—z)}, —o0o<z < 00, (8.4)
e Fréchet type:
0 if <0,
H(z) = {exp(—:c—a) if 0 < z < o0, (8.5)

3 Two distribution functions H; and H, are said to be of the same type if one can be
transformed into the other through an equation of the form H;(z) = H2(Ax + B) where
A > 0 and B are fixed constants. If (8.3) holds for some H, then it also holds for any other
H of the same type, by redefining the constants a,, and b,,. Therefore, in talking about
which limits H can arise, all distribution functions of the same type must be treated as
equivalent.
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o Weibull type:

o = (o) e 5

In both (8.5) and (8.6), @ > 0 is some fixed constant.

The three types theorem and the related domain of attraction problem — in other
words, which distribution functions F' converge to H through an operation of the form
(8.3) for suitable a,, and b,, — are classical problems of the mathematical theory of extreme
values, but I shall not attempt to treat them in any detail here. There are a number of
excellent textbook treatments, for example Leadbetter et al. (1983). A brief summary of
the main results is

e Any F whose tail is of power law form,
1-F(z)~ecx™®, z— 00 (8.7)

for constants ¢ > 0 and « > 0, is in the domain of attraction of the Fréchet type (with the
same «). Examples include the Pareto and ¢ distributions.

e Any F with a finite endpoint wg, such that F(wr) = 1 but F(z) < 1 for any z < wp,
but with power law behavior as x 1T wg, so that

1—F(wr—y) ~cy®, yl0, (8-8)

with constants ¢ > 0 and « > 0, is in the domain of attraction of the Weibull type. In
most textbook treatments, this is applied to minima rather than maxima, and in situations
where it is obvious that there is a finite lower bound, e.g. strength of materials, for which
there is the natural lower bound 0. Indeed this was the context of Weibull’s original
derivation of this distribution. In meteorological contexts, the Weibull type may arise in
situations where we have good reason to believe that there is that there is a practical upper
bound on the random variable being considered, such as temperature. However, the reader
should be cautioned against the assumption that the Weibull type automatically arises in
this context; we still need the polynomial tail assumption (8.8).

e The most common type of distribution in the domain of attraction of the Gumbel
type is one for which the endpoint wg is infinite but the tail distribution 1 — F(z) decays
faster than the polynomial case (8.7). A more precise condition is von Mises’ condition: if
F(x) is the distribution function and f(z) = dF(z)/dx is the density, and if

d [1-F(2)
il 76

then there exist constants a, > 0 and b,, for which (8.3) holds, with H given by (8.4).
Examples of F' include many common distribution functions, e.g. normal, lognormal,

} —0 asz— wp, (8.9)
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exponential, Weibull, gamma, etc. All of these have endpoint wrp = oo though (8.9) is
valid for both finite and infinite wg.

The three types of extreme value distribution may be combined into a single family
known as the generalized extreme value distribution (abbreviated to GEV) given by

oo\ Ve
H(z: 1,1, €) = exp {— (1 +57) } (8.10)

defined on the region for which 1 + &(z — p)/¢p > 0 — elsewhere, H is either 0 or 1.
In (8.10), p is a location parameter, 1) a scale parameter and £ the all-important shape
parameter which determines the nature of the tail of the distribution. The case & > 0 is
the Fréchet type with a = 1/¢, the case £ < 0 is of Weibull type with « = —1/&, while the
case £ = 0 depends on the elementary calculus result that

gli_l%H(a:;u,zp,f):exp{—exp (—%)}, (8.11)

in other words, the Gumbel distribution with arbitrary location and scale parameters.
Here are a few basic properties of the GEV distribution. The mean exists if £ < 1

and the variance if £ < %; more generally, the k£’th moment exists of £ < % The mean and
variance are given by

i=E(X) =p+ Pra-9-1} (€<

) , (8.12)
pz = B{(X — )} = a1 —-2) -PA-9) (€<3)
where I'(-) is the Gamma function. In the limiting case £ — 0, these reduce to
2,2
p1 = p+ 07, uz=w6 : (8.13)

where v = .5772... is Euler’s constant.

In most applications to environmental processes, the extreme value distributions are
used as approximations to the annual maxima of a process (or maxima over some other
time period) without detailed consideration of how they are derived. It is usually implicitly
assumed that since the annual maximum can be represented as the maximum of a very large
number of daily or hourly values, the approximation represented by (8.3) is reasonable.
One objection to this is that environmental processes rarely produce observations that
are independent and identically distributed (IID). However, there is an extensive theory
of extreme value theory for non-1ID processes and it is known that the classical extreme
value distributions very often arise in this context as well. One particularly rich theory
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along these lines is that of extreme values in stationary processes (Leadbetter et al. 1983).
A second objection is that sometimes it is argued that alternative distributional families fit
the data better — for example, in the 1970s there was a lengthy debate among hydrologists
over the use of extreme value distributions as compared with those of log Pearson type
ITII. There is no universal solution to this kind of debate. It is quite possible that, for
any particular data set, the log Pearson type III or some other family will be found to fit
better than the GEV. However, there are also dangers in making the analysis over-adaptive:
simple models with small numbers of parameters generally have better statistical properties
than those with more parameters. My own advice is to use the extreme value distributions
as the basis for any analysis, but also to examine carefully the goodness of fit of the model,
and to be ready to consider alternative forms of model specification, such as including
a trend, or the dependence on some other covariate besides time, as an alternative to
assuming that the GEV parameters are constant for the whole process.

8.3. Threshold exceedances and the Poisson-GPD model

We now turn to the main alternative approach to extreme value statistics, based on
exceedances over high thresholds.

The basic idea is to pick a high threshold v — how exactly this is to be chosen is
the subject of considerable discussion later on — and to study all the exceedances of w.
This means two things: how many exceedances there are over a given time period, and the
ercess values, in other words, the amounts by which the threshold is exceeded. For the
latter, we use the generalized Pareto distribution (GPD), which is the analog for threshold
exceedances of the GEV distribution for annual maxima.

More precisely, suppose X is a random variable whose distribution function is F, and
let Y = X — u conditioned on X > u. Then

Pr{Y <y} = P{X < u+y|X > u} = Fuly) = - (“1+_y;?(‘u§? W (g14)

The interest here is as u approaches the (finite or infinite) upper endpoint wp. In that
case we have an approximation of the form

Fu(y) = G(y; 04, ) (8.15)

where G is the generalized Pareto distribution (GPD) given by

—1/¢

G(y;0,6) =1- (1 + 53) (8.16)

The meaning of (8.15) is that for sufficiently high thresholds u, there is some o, (which
depends on u) and some ¢ (which does not) for which the GPD is a very good approximation
to the excess distribution function F,. The connection was made precise by Pickands
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(1975), who showed that (8.15) is valid as an approximation whenever (8.3) holds, and
that in this case, the ¢ that arises in (8.15) is the same as in the GEV representation of H
in (8.3).

With the GPD, like the GEV, there are three different cases depending on the sign of

1. If £ > 0, then (8.16) is valid on 0 < z < oo and the tail distribution function
satisfies 1 — G(y; 0,€) ~ cy=/¢ with ¢ > 0; this is a traditional “Pareto tail”.

2. If £ < 0, the G has an upper endpoint at wg = o/|£|, similar to the Weibull type
of classical extreme value theory.

3. If £ = 0, then in similar fashion to (8.11), we have

G(y;0,0) =1 —exp (—g> , (8.17)
o
the exponential distribution with mean o.

For some further basic properties, see Davison and Smith (1990). As with the GEV
distribution, the mean exists if & < 1, and the variance if £ < %, being given by

E(Y) = fj,Var(Y) = £)Z(1 Tk (8.18)

Another property which comes in useful later (section 8.9.3) is

o+ &w
1-¢7

EY —wly >w)= (8.19)

valid for any w > 0, provided & < 1.

We next consider how to combine the information on excess values with that on
the exceedance times of a fixed threshold u. The simplest case to consider is when the
underlying process consists of IID random variables. In that case, the Poisson property
of exceedances (Leadbetter et al. 1983) suggests the following model which we call the
Poisson—GPD model:

1. The number, N, of exceedances of the level u in any one year has a Poisson
distribution with mean A,

2. Conditionally on N > 1, the excess values Y7, ..., Yy are IID from the GPD (8.16).
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This model is closely related to the GEV distribution for annual maxima, as follows.
Suppose £ > u. The probability that the annual maximum of the process just described
is less than x is

Pr{lrsnias)ile <z}=Pr{N=0}+ Z Pr{N=n, Y1 <z, .. Y, <z}

n=1

X yn,—A _ -1/ "
:e_>‘+z)\§| .{1—<1+§$0”> } (8.20)

n=1

_ —1/¢
:exp{—A(l—}—ﬁxau) }

This expression is the same as (8.10) if

o\ "¢
oc=¢v+&(u—p), A= <1+£u7) . (8.21)

Thus the GEV and GPD models are entirely consistent with one another above the GPD
threshold, and moreover, (8.21) shows exactly how the Poisson—-GPD parameters o and A
vary with wu.

The Poisson-GPD model applies, in its most literal form, only if the underlying process
is IID. For dependent processes, a variant long in use among hydrologists is the peaks
over threshold (POT) method (also known as the partial duration series method), see
e.g. NERC (1975), North (1980). The idea behind the method is that high exceedances
occur in clusters — in a meteorological context, one cluster might represent a single storm
or depression. By separating out the peaks within clusters, these will be approximately
independent and therefore amenable to the Poisson-GPD model. From a mathematical
point of view this is consistent with the modern view of extremes in stationary processes,
which shows that under very general conditions, exceedances over high thresholds occur in
clusters while the clusters approximately follow a Poisson process (Leadbetter et al. 1983,
Hsing et al. 1988). However in the early hydrological literature, the excess distribution
was nearly always assumed to be exponential. This is of course the special case & = 0 of
the GPD, but the GPD allows for a much richer variety of tail behavior. For statistical
aspects and examples, see Davison and Smith (1990). The question of how best to define
clusters was considered in more detail by Smith and Weissman (1994), and an alternative
approach based on modeling dependence directly has been given by Smith et al. (1997),
but the direct approach, of picking out peaks and then applying the Poisson—-GPD model,
is certainly easier to handle.

Another way in which the ITD assumption may be violated is when the distribution
function F' is not constant, an elementary example being if the process is seasonal. Ap-
proaches to this problem (Davison and Smith 1990) include
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(a) Remove seasonal trend from the data before applying the threshold approach.
This is the simplest method, but it assumes that the process may be simply decomposed
as signal4+noise, which may not be valid.

(b) The “separate seasons” approach: subdivide the year into homogeneous seasons
and apply the Poisson—-GPD model separately within each.

(c) Expand the Poisson—-GPD model to include covariates. This is the most flexible
approach, and is considered further in section 8.9.

8.3.1. Examples of extreme value distributions

This subsection illustrates the extreme value limit distributions and threshold ex-
ceedances via a number of specific examples of the limiting operations. This is more
mathematically advanced than the previous material and can be omitted without loss of
continuity.

Ezxzample 1: The exponential distribution.

Suppose F(z) =1—e *. Let a, =1, b, = logn. Then

F"(anaf + bn) = (1 _ e—a:—logn)n
e \"
(-5
n

— exp (—e_””)

using the well-known limit (1+ 2)™ — e* as n — oo, which is valid for any real or complex
z. Thus in the case of the exponential distribution, the appropriate limiting form for
sample maxima is the Gumbel distribution.

For the threshold version of the result, set o, = 1. Then

F(u+ou2) — F(u)

Fulow?) = =70
B el — g U2
-
=1—e"%

so in this case the exponential distribution is the exact distribution for exceedances over a
threshold, and therefore is automatically the limiting distribution as u — oo. Of course,
the exponential distribution is a special case of the GPD with £ = 0.

Ezxample 2: Pareto-type tail
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Suppose 1 — F(z) ~ cz~® as x — 0o, with ¢ and « both positive. This form covers the
Pareto distribution and also some well-known distributions such as ¢ and F' distributions.
Let b, =0, a, = (nc)*/®. Then for z > 0,

n
F™(an7) ~ {1 — c(anx)_a}
—x n
(-5
n
— exp (—z7%).
So in this case the limiting distribution is Fréchet.

For the threshold form of this result, let o, = ub where b > 0 is to be determined.

Then
F(u+ oyz) — F(u)

Fulow?) = =50
_cu”® —c(u+ubz)™@
- cu—«
=1—(1+4bz)"“.

If we now let & = é and set b = &, the limit distribution is exactly as given by (8).
Ezxzample 3: Finite upper endpoint
Suppose now wr = w < oo and
1-F(w—y)~cy® (8.22)

as y | 0 for positive ¢ and . Many, though not all, distributions with finite endpoints are
of this form. For example, consider the Beta distribution, with density

F(a’ + b) (1,—1
ONON

1-—2)1 o0<z<l.

flz) =

Then w =1 and for y | 0,

Ila+b) /1 —1 b—1
1-F(1 -y 7 (1—=x dz
S YOO S
F(a +0b) y_b
F(a)F(b) b
which is of the form (8.22) with a = b and
I'(a+0b)

T T(@T(b+1)
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For a distribution satisfying (8.22), now, set b, = w, a, = (nc)'/*. Then for z < 0,

F*(anx + by) = F™(w + apx)
~ {1 - c(~an2)"}"

n
n
— exp{—(—z)“}.
The corresponding limit when x > 0 is obviously 1. Therefore, this is a case of convergence

to the Weibull type.

For the threshold version of this result, let u be very close to w and consider o, =
b(w — u) for b > 0 to be determined. Then for 0 < z < ¢,

F(u+ou2) — F(u)
1 — F(u)
c(w—u)* —clw—u—oy2)

Fy(ouz2) =

«

Q

c(w—u)e
= (1-—b2)*.
This is of GPD form if we set { = —X and b= 1.

«

Ezxzample 4: Normal Extremes

Let ®(z) = ﬁffm e™¥"/2dy denote the standard normal distribution function.

There is a well-known asymptotic approximation to the tail of ® (Feller 1968, page 193),

which gives
1

V2T
Using (8.23), we can establish the result
1—-9 -1 1 2 1
lim (U +.T,'/U) = lim (1 —+ %) exp {_5 (u+ f) + _u2}
u

u—»00 1-— CI)(u) U—>00 u

1—®(z) ~ e /% asz — 0. (8.23)

=e 7.

This result is used in two ways. First, defining o, = 1/u, we see that

D(u+ oy2) — D(u)

—1—e? asu— oo,
1—®(u)

showing that in this case the limiting distribution of exceedances over thresholds is expo-
nential.
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The second use of (8.24) is for the classical extreme value distribution. Suppose we

define b,, by the property
1
&(b,) =1-— o (8.25)

Let a, = 1/b,,. Then (8.24) shows that
1—®(anz+ by)

n{l—®(apx+by)} = =3 (0,) e T

and hence
—X

en )” — exp (—e7), (8.26)

D" (apx + by) & (1 —

establishing the classical form of extreme value convergence with Gumbel limiting distri-
bution.

We conclude by noting two refinements of this result. First, although (8.25) is not an
explicit formula for b,,, for practical purposes b,, is easily calculated numerically. Never-
theless, some people like to see an explicit formula, and one such which has been proposed
is

1
b, = (2logn)/? — 5(2 logn)~Y/?{loglogn + log(4m)} (8.27)

It is left as an exercise for the reader to show, using (8.23), that with b,, defined by (8.27),
both (8.25) and (8.26) are still valid asymptotically. However, Hall (1979) showed that a
superior rate of convergence is obtained by using (8.25) directly.

The second refinement is more subtle, but goes back to the original paper by Fisher
and Tippett (1928). Although the Gumbel distribution is the correct limiting distribution,
one can obtain a better approximation, for any finite value of n, by using a three-parameter
Generalized Extreme Value distribution. This is known as the penultimate approximation
and leads to results which are accurate at a rate of O(1/log®n), as opposed to O(1/logn)
for (8.26). A rigorous proof of this was given by Cohen (1982a). The practical conclusion
is that it is better to use the Generalized Extreme Value type in many cases even when the
Gumbel distribution is the true limit — this result holds not just for the normal distribution
but for a wide class of alternatives (Cohen 1982b). However, we do not attempt to prove
those results here.

A connection with wavelet thresholding

A relatively easy consequence of the preceding results is that if X;, Xa, ..., are inde-
pendent N(0,1) random variables and M,, = max{X,,..., X, }, then

M,

P
1 8.28
(2logn)1/2 o (8:28)

where % denotes convergence in probability.
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To see (8.28), first note that it is equivalent to the statement

My, 1 ife>1
Pri——t_<ct—{ ) 8.29

r{(210gn)1/2 _c} 0 ife<1. (8:29)
To see (8.29), note that the statement

M, <
—" - <c
(2logn)t/2 —

is equivalent to

M, — by, < c(2logn)'/? — by,

(8.30)

(4273 (4273

However, the right hand side of (8.30) is asymptotic to

1
(21logn)'/? [(c —1)(2logn)'/? + 5 (21logn)~Y2{loglogn + log(4m)}

_){-I-oo %fc>1 .
- ifexl1

Hence if ¢ > 1, for any K > 0, for n sufficiently large the right hand side of (8.30) is greater
than K, and so the limiting probability in (8.29) is greater than exp(—e~%), which may be
made arbitrarily close to 1 by taking K sufficiently large. Hence the limiting probability
in (8.29) is 1 when ¢ > 1. A similar argument applies when ¢ < 0 by taking K < 0. This
proves (8.29), and hence (8.28).

The connection with wavelet thresholding is that Xy, ..., X,, are a set of coeflicients
resulting from a wavelet transform, which are standardized so that they are asymptotically
independent and normally distributed with variance 1, a typical form of either hard or soft
thresholding is to delete all coefficients less than (2logn)'/2, on the grounds that nearly
all variables which are not associated with an underlying signal (meaning that the mean
of the corresponding X; is 0) will be eliminated by this procedure. The full justification
for this is a little more complicated than (8.28), but nevertheless, (8.28) provides a good
intuitive justification of why it works. Full details are in Donoho and Johnstone (1994).

8.4. Alternative probability models
Two other models are discussed here more briefly.

8.4.1 The r largest order statistics model

This is an extension of the GEV model to encompass the r largest order statistics
from each year, r = 1 being the usual GEV approach.
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The theory is based on the fact that for an IID sequence, the joint distribution of the
r largest order statistics may be characterized in similar fashion to the GEV itself, see e.g.
Leadbetter et al. (1983), section 2.3. The key formula is: if Y;, 1 > Y, 2 > ... > Y}, , denote
the r largest order statistics of a sample of size n, and if a,, and b,, are the normalizing
constants defined in section 8.3, such that (Y, 1 — b,)/a, converges in distribution to the

GEV family (8.10), then
(Yn,l - bn Yn,r - bn)

) ey
an a

converges in distribution to a limiting random vector (X7, ..., X,.), whose density is

_ )\ Ve r _
h(z1,...,xy) =9 "exp — <1+§xr¢ M) — (1 + %) Zlog (1+§$3¢ M)
j=1

Statistical applications were developed by Smith (1986), Tawn (1988a) and more recently
in a novel application by Robinson and Tawn (1995) and Smith (1997a) (see section 8.6).

In general, this is a less flexible method than the threshold approach. The method
is only appropriate in this form if the r largest order statistics are essentially indepen-
dent events, so for a dependent process it is necessary to make a similar restriction to
cluster peaks as we have already seen in the case of the threshold method (Tawn 1988a).
Extensions of the model to incorporate dependence within clusters as part of the joint
distribution may be considered, for example as an application of the formulae in Hsing et
al. (1988), but these are likely to be too complicated for applications in meteorology and
other environmental sciences.

8.4.2 The point process approach

An alternative technique which combines features of both the GEV and threshold
models is based on viewing the exceedance times and excess values as part of a two-
dimensional point process. Suppose we plot all exceedances of a threshold w in a time
period (0,7) on a graph with time as the z-axis and location as the y-axis (Fig. 8.2).
Suppose the expected number of excess values within the box A = (¢1,t2) X (y, 00) is given
by

A(A) = (ta — t1) Y (y; 1,9, €) (8.31)

where

y—p\
U(y; p, 9, €) = (1 +£7> (8.32)
valid so long as 1+&(y—p) /¢ > 0. We view the function A given by (8.31) as the intensity
function of a nonhomogeneous Poisson process, which means amongst other things that the
numbers of excess values within disjoint boxes A, Ao, ..., are independent Poisson random
variables with means A(A;), A(Az), ...
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Fig. 8.2. Illustration of point process approach. All exceedances of the process above a
level u are noted. The set A consists of all points within the time interval (¢1, ¢2) for which
the level of the process is above y. The expected number of points in A is given by (8.31).

The motivation for this is based on the fact that the nonhomogeneous Poisson process
just described arises in an appropriate limiting sense for exceedances from an IID process,
and from a stationary process provided attention is limited to cluster peaks (Leadbetter
et al. 1983). A corresponding statistical theory was developed by Smith (1989).

The main attraction of this approach is that it allows the GEV and GPD methods
to be combined into a single model. The annual maxima of the process indeed follow the
GEV distribution (8.10) (with the same parameters p, 1 and £ as in (8.32)), while the
exceedances over a threshold u can be shown to follow a GPD with scale parameter o and
exceedance rate A given by (8.21).

Example. Apart from its conceptual value in defining a stochastic process of ex-
ceedances, the point process “picture” can also be used to visualize real data. Fig. 8.3 is
based on the analysis of a data set by Davison and Smith (1990), of high flow rates from
the River Nidd in England. Plot (a) shows all exceedances over the level of 65 cumecs,
plotted against the day within the year (1-366). The result shows a clear seasonality in the
times of high exceedances, with many fewer exceedances during the summer months. This
therefore suggests the need to fit a seasonal model to the data (though for many purposes,
where it is only important to consider the total number of exceedances of a threshold rather
than the times within the year at which they occur, this feature is actually unimportant
for the analysis). Plot (b) shows high exceedances plotted against the total time (number
of days) from the start of the series, which was at January 1, 1934. In this case there is
some suggestion of an increasing trend in the data, with several high exceedances during
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Fig. 8.3. Plots of exceedances of River Nidd, (a) against day within year, (b) against
total days from January 1, 1934. Adapted from Davison and Smith (1990).
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the last period of the data, though further analysis by Davison and Smith suggested that
this did not represent a real increasing trend.

8.5. Statistical methods: maximum likelihood

All the models described so far can be fitted by the method of maximum likelihood
(Cox and Hinkley 1974). In this section we give a very brief overview of the main principles
behind this approach, with a view towards the GEV and Poisson—-GPD models.

Suppose we have data Y whose density is defined by some p-dimensional parametric
model with parameter 6 = (64, ...,60,). Write the density evaluated at Y = y in the form

f(y;0). (8.33)

The likelihood function for 0 based on data Y is just f(Y;0) interpreted as a function of
0. Usually we work with the log likelihood

ty (0) = log £(Y30). (8.34)

The mazimum likelihood estimator (MLE) @ is the value of § which maximizes £y (6).
Usually we assume fy is differentiable with a unique interior maximum, so the MLE is
given by solving the likelihood equations

oly
— =0, i=1,...,p. 8.35
90, J p (8.35)
The second-derivative or Hessian matrix of —/y, evaluated at é, is called the observed
information matriz
B 0%ty (
00,00;

This is closely related, and asymptotically equivalent, to the Fisher information matriz,
given by substituting the true value 6 for the MLE 6 and taking expectations:

J = [ 0), i,j= 1,...,p]. (8.36)

7= |Ey _&(9) ij=1,.,p|. (8.37)
89180_7 ’ ’ 3000y

Note. If Y consists of n IID observations then (8.37) is exactly proportional to n,
and could therefore be written Z,, = nZ; where Z; is the Fisher information based on
one observation. In many statistics text books, Z; is taken as the definition of Fisher
information. For the purposes of the present review, it is more convenient to ignore the
dependence on n and work directly with (8.37).

The importance of Z or J rests largely on the following fact: if the sample size n is
large, then the distribution of # is approximately multivariate normal with mean 6 and
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covariance matrix given by either Z=! or J~!. In particular, the square roots of the
diagonal entries of Z~! or J~! are approximately the standard deviations of 61, ..., 6, and
are therefore known as the standard errors of the parameter estimates, abbreviated SE(6;)
for j=1,...,p.

Regarding the choice between Z and J, in most cases J is easier to use, requiring only
numerical evaluation of the Hessian matrix, and not computation of an expected value as
in (8.37). Moreover, J usually leads to more accurate SE estimates than Z. Therefore in
most practical applications, the “information matrix” and standard errors will be assumed
to be calculated from J.

Suppose we want to test a hypopthesis 6; = 9? for some given index j and a particular
value 9?, often 0. A test may be based on the t-statistics

~

6; — 69
= —— (8.38)
SE(6;)

and the hypothesis rejected if |¢;] is too large. For example, a common criterion is to reject
the hypothesis if |¢;| > 2, which corresponds to a significance level of about .05.

A more sophisticated test is the likelihood ratio test: suppose we are comparing two
models My and M7, where M is nested in M7, and the difference in dimensionality of
the two models is q. This means, in effect, that M, is obtained from M; by imposing ¢
constraints on the parameters of M;. For instance, maybe M; has p parameters and My
corresponds to the hypothesis 6,441, ...,0, = 0. Let 59)(0), Zg,l)(H) be the log likelihoods
under the models My, M7 and suppose the respective MLEs are 9”(0)7 6. Then

T =2{6 () — £ (6™)} (8.39)

is called the (log) likelihood ratio statistic (LRS). It is also known as the deviance. If M
is true then, approximately,
2
T ~ xg» (8.40)

the chi-squared distribution with ¢ degrees of freedom. Thus we reject hypothesis M, at
significance level « if T' is bigger than the upper-a point of the X?I distribution.

Ezample. Suppose we want to test the null hypothesis of a Gumbel distribution (8.11)
against the GEV alternative (8.10). Since the Gumbel arises from the GEV through the
single constraint ¢ = 0, the distribution of T in this case is x2. We would reject the
Gumbel distribution at 5% significance level if T' > 3.84. For a discussion of the LRS and
some alternatives in this specific context, see Hosking (1984).

Some discussion needs to be given, both of how to put these methods into practice,
and of the validity of the various approximations which have been mentioned.
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For the GEV, the density h(z; u, 1, £) is obtained by differentiating (8.10) with respect
to z. The likelihood based on observations Y7, ..., Yy is

N

17 1,9, €) (8.41)

=1

and so the log likelihood is given by

- . —1/¢
Ly (py 10, &) = —Nlogy— (% + 1) Zlog (1 +£YZ¢ N) —Z (1 +£YZ¢ M) (8.42)

provided 1+ &(Y; — u)/v > 0 for each i; otherwise (8.42) is undefined (in effect, —o0).

For the Poisson—-GPD model, the likelihood function must be written in two parts,
one corresponding to the Poisson component and the other to the GPD. If we observed N
exceedances Y7, ..., Yy over a T-year period, then the Poisson mean of N is AT, and the
joint density of N and Y7,..., Yy is

AT )N e—AT N
A [T o(viser0 (5.43)
) =1

where ¢ is obtained from G by differentiating with respect to y in (8.16). Ignoring con-
stants, we find

N
Iny (A 0,) =NlogA — AT — Nlogo — (1 + %) Zlog (1 + 5%) (8.44)
i=1

provided 1+ £Y;/o > 0 for all <. Note that (8.44) can be separated into two components,
one depending just on A (with maximum at A = N/T) and the other just on (o, €), so the
maximization can be performed separately for each component. Note, however, that such a
separation may not be possible if A\, ¢ and & are written as functions of some covariates, or
if the likelihood is rewritten in terms of the GEV parameters (u, 1, §) through the formula
(8.21). This is the reason for stating (8.44) in the form given.

For the maximization of /y (f) for a general model indexed by 6, as mentioned in
section 8.1 this may be performed using a packaged nonlinear optimization subroutine, of
which several excellent versions are available. A few practical points follow:

1 Although the maximization is unconstrained, there are some practical constraints.
For example, (8.42) requires ¢ > 0 as well as 1 + £(Y; — p)/¢ > 0 for each i. It is
advisable to test explicitly for such violations, and to set —£y (6) equal to some very
large value such as 10'° if the conditions are indeed violated.
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2 Efficient use of nonlinear optimization routines requires that the problem be reason-
ably well scaled: roughly speaking, for each j both éj and its standard error should be
of the same order of magnitude as 1. In practice, using double precision arithmetic,
there is usually little problem if the values are of the order 10%3, but if the range is
of order 10%°, or worse, there is a problem.

3 Many nonlinear optimization routines require that first-order derivatives be supplied,
as well as the values of the function itself. For some maximum likelihood estimation
problems, analytic derivatives are easily computed, but for most, this is a computa-
tional challenge in itself. However if the problem is reasonably well scaled, it is nearly
always possible to get by with approximations of the form

oty N éy(e + eej) - éy(e)
00; € ’

(8.45)

where for example € = 1076, Here e; is the unit vector in the direction of 6;.

4 Quasi-Newton routines do not use the Hessian matrix directly, but an approximation
which is itself updated as the algorithm proceeds. In such cases it is usually adequate
to use this approximate Hessian matrix rather than directly evaluate second-order
partial derivatives in (8.36). It may be desirable to rerun the algorithm from different
starting points to check up on the adequacy of this approximation.

5 All Newton-type routines require the user to supply starting values, but the impor-
tance of “good” starting values can be overemphasized. Simple guesses usually suffice,
e.g. in (8.42), one might set u and v equal to the sample mean and sample standard
deviation respectively, with & equal to some crude guess value such as 0.1. However it
1s important to check that the initial conditions are feasible and this can sometimes
not be so easy to achieve!

6 In cases of doubt about whether a true maximum has been found, the algorithm
may be re-run from different starting values. If the results are highly sensitive to
starting values, this is indicative that the problem may have multiple local maxima,
or alternatively that a mistake has been made in programming.

A few further comments are necessary regarding the specific application of numerical
maximum likelihood estimation to the GEV and Poisson—GPD families. There is a sin-
gularity in the likelihood for £ < 0, as g — Yiax in (8.42) or as 0 — —&Yiax in (8.44).
Here Yiax = max(Yq, ..., Yx) and the effect is that £y (#) — oo. However in most practi-
cal cases, there is a local maximum of £y (6) some distance from the singularity, and the
presence of the singularity does not interfere with the convergence of the nonlinear opti-
mization algorithm to the local maximum. In this case, the correct procedure is to ignore
the singularity and use the local maximum. However, it is possible that no local maximum
exists and the singularity dominates. In this case, maximum likelihood estimation fails
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and some other method must be sought (Smith 1985). However, this very rarely happens
with environmental data.

Another theoretical possibility is that there may be multiple local maxima. In the
case of (8.42) or (8.44), such phenomena are certainly extremely rare, and it has been
conjectured that they cannot occur at all. However in more complicated problems with
many covariates, the possibility of multiple local maxima is real. In this case any quoted
“maximum likelihood estimators” need to be treated with extreme caution.

Finally, we should say something about the theoretical status of the approximations
involved. The asymptotic theory of maximum likelihood estimation for either the GEV
or GPD models is valid provided ¢ > —3 (Smith 1985). Cases with ¢ < —3 correspond
to an extremely short upper tail and hardly ever occur in environmental applications. A
more serious problem is that even when & > —%, the asymptotic theory may give rather
poor results with small sample sizes; as an example, see the simulations in Hosking et al.
(1985). In these situations the rule has to be “caveat emptor”: few users will have the
time or energy to run their own simulations for every estimation problem they encounter,
but they should be aware that asymptotic approximations always need to be treated with

caution and especially when the sample sizes are small.

In summary: it is possible that MLEs will fail either numerically or in terms of their
asymptotic properties, especially if sample sizes are small. The user should be aware of
these possible difficulties but should not be deterred from using these extremely powerful
and general methods.

FEzxzample. Let us return to the River Nidd example discussed briefly at the end of
section 8.4. Ignoring both trend and seasonal factors, Davison and Smith (1990) fitted
the Poisson-GPD model to all exceedances over threshold 100. The resulting parameters
(standard errors in parentheses) were A = 1.11 (.18), 6 = 51 (14), € = 0.00 (.21). Suppose
we wish to find the N-year return level for the process. For known A, o, &, this is defined
as the solution y of the equation A\(1 — £y/o)~'/¢ = 1/N. When X, o, ¢ are unknown,
we may proceed as follows. For each candidate value of y, maximize the likelihood under
the constraint A\(1 — y/o)~Y¢ = 1/N. The resulting expression is called the profile
likelihood for y. By plotting the resulting expression against y, we can derive both a
maximum likelihood estimate and a confidence interval for the return level. These curves
for N = 25, 50 and 100 years are shown in Fig. 8.4. The dotted line here marks the level
1.92 below the maximum log likelihood. The value 1.92 is chosen because it corresponds
to a likelihood ratio statistic of 2 x 1.92 = 3.84, which is the 5% upper tail point of the x?
distribution. Thus, all values for which the profile log likelihood is above the dotted line are
within a 95% confidence interval for the N-year return level. For N = 100, for instance,
this shows a maximum likelihood estimate at y = 340, with a 95% confidence interval
of (260,925). The extreme asymmetry of this confidence interval reflects the inherent
uncertainty of estimation about such extreme quantiles even when the Poisson/GPD model
is assumed to hold exactly.
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Fig. 8.4. Profile likelihood plots for the N-year return value for the Nidd data, for three
values of N. Adapted from Davison and Smith (1990).

8.6. Bayesian methods

Bayesian methods also take the likelihood function as their starting point, but they
also require the specification of a prior density 7w(0) which, according to different inter-
pretations, is supposed either to correspond to the user’s subjectively determined initial
information about 6, or else be chosen to minimize the amount of implicit information
which it imparts. However the prior is specified, the posterior density is computed using

the formula
m(0)f(Y;0)
(@) f(Y;0)do"

T(0]Y) = (8.46)

Very often, we are interested in the posterior mean of a scalar quantity g(0)); for example,
g(0) = 0; for some j; in this case we write

E{g(0)|V} = / 9(0)r(0]Y)do

_ J9O)m(0)f(Y;0)do
S m(0)f(Y;6)do

(8.47)

The principal obstacle to evaluating (8.46) or (8.47) is the need to calculate the integrals
involved numerically. For many years, the practical application of Bayesian methods was
hindered by the absence of powerful general-purpose algorithms for this, but in recent years
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this situation has been transformed by the use of Markov chain Monte Carlo (MCMC)
methods. The idea of such methods is to generate a random sample of values of 6, say
o), ..., 00 whose distribution approximates (8.46). Evaluation of posterior expectations,
as in (8.47), is then easily carried out by summation.

There are a number of specific examples of MCMC algorithms, the two most important
being

e Gibbs sampling: given the current value (™) = (0§’”), s Qém)), generate a new value
9§m+1) from the conditional posterior distribution of 8,, given 0, = Hém), ey Oy = ngm).
Then generate a new value 0§m+1) given 6, = 9§m+1), 05 = 0§m), ey O = 01(,7"), and so on
up to 91(,m+1). This defines a new vector §(™+1) = (0§m+1), vy 0§,m+1)) and completes one

iteration of the algorithm. The algorithm is iterated many times until the Markov chain
{Q(m), m =1,2,...., } has apprently converged to its stationary distribution.

e The Hastings-Metropolis algorithm: Given §(™) | generate a trial value §* from some
transition density ¢(6*|0™). Then perform a second randomization, whereby 0* is “ac-

cepted” with probability
: m(6*Y)q(6™ |6%)
1, ; 8.48
min {1, 9 (5:45)

otherwise, 0* is “rejected”. If 6* is accepted then we set §("*1) = *  otherwise 9(™m+1) =
6(™). Either way, the algorithm is continued from the new §("+1),

In practice, a very common method is to combine the Gibbs sampler and the Hastings-
Metropolis algorithm: update one component at a time, as in the Gibbs sampler, but to
perform this updating, take one Hastings-Metropolis step. The latter is often taken to be
of “random walk” form: for each component j, 67 — 0§m) are taken IID from some density
fj, which may itself be taken normal with mean and standard deviation s;. The principal
question then is how to choose s;; it is usually not bad if this value is of the same order
of magnitude as the posterior standard deviation of 6;, which may be chosen by trial and
error or updated as the algorithm proceeds.

Space does not permit us to give more than a brief outline of these methods, but they
are becoming increasing widely used in statistical practice, especially for high-dimensional
parameter spaces, where they may help to overcome some of the difficulties in applying
maximum likelihood estimation in high-dimensional situations.

Another situation where Bayesian methods are particularly powerful is in connection
with predictive inference. Suppose our real interest is not in estimating or testing a hy-
pothesis about a parameter 0, but in predicting a future observation that depends on 6.
For example, we may want to ask the question “what is the probability that the city of
Miami will experience a wind speed of greater than 90 MPH in the next 10 years?”. Such
a question may be formulated in terms of the distribution of Z = max(Y1, ..., Y1p) where
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Y1, Ys, ..., are annual maxima, whose distribution may be taken as GEV with parameters
esitmated from past data. The required probability is then

_ -1/
Pr{Z > z;p,,€} =1 — exp {—10 (1 + £z7> } (8.49)

with z = 90. However 6 = (u,%,£) is unknown and simply substituting the MLE 0 is
not considered a good thing to do because it ignores the uncertainty in estimating 6. A
Bayesian solution is based on the posterior predictive distribution

Br{Z > 2} = / Pr{Z > 2 i, , €}, 0, €]V ) dudipde (8.50)

where 7(...]Y) denotes the posterior density given past data Y’; this may be evaluated
similarly to (8.47), by summing over a MCMC sample.

The Bayesian predictive approach has been examined in a number of recent papers,
e.g. Coles and Powell (1996), Coles and Tawn (1996a), Smith (1997a). In particular,
Coles and Tawn (1996a) gave an elegant discussion of eliciting a prior based on expert
judgement in this context. Despite a number of attractive features of this approach, the
theoretical properties of such procedures still leave a number of questions to be answered

(Smith 1997b).

Example. Fig. 8.5 shows the five best running times by different athletes in the
women’s 3000 metre track event for each year from 1972 to 1992. Also shown on the plot
is the remarkable new world record achieved by the Chinese athlete Wang Junxia in 1993,
some 16 seconds faster than the previous record. Many questions were raised about this,
including the possibility that Wang might have been taking illegal drugs.

Robinson and Tawn (1995) proposed a statistical test for this, based on fitting an
extreme value distribution to the r = 5 smallest observations in each year, using the
probability model outlined in section 8.4.1 but in the form appropriate for minima rather
than maxima. They defined a parameter z,;;, in effect the long-term lower boundary point
of the distribution, to represent the best possible performance, and obtained confidence
intervals for x,;:, based on all data up to 1992, using a number of different models. As an
example, if we were using the GEV distribution and talking about upper instead of lower
extremes, z,;; would be given by p — ¢/€ if £ < 0 and 400 if £ > 0, though for this kind
of data set it is clear that £ < 0 and so z,;; is indeed finite.

To calculate these confidence intervals, Robinson and Tawn used a likelihood ratio
testing procedure. Suppose we want to test the hypothesis x,; = x*, for some given
x*, against the alternative x,;; # z*. This can be carried out using a likelihood ratio
testing procedure, as described in section 8.5. A 95% confidence interval for z,;; consists
of all values of z* for which this test leads to acceptance of the hypothesis x,; = z* at
significance level .05. The procedures considered by Robinson and Tawn took account of
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Fig. 8.5. Five best performances per year for the women’s 3000 metre event, together
with Wang Junxia’s performance from 1993.

the trend in the data in various ways, but Smith (1997a) performed this procedure for a
simplified model in which the trend is ignored but so are all data prior to 1980. When
constructed in this way, Smith’s 95% confidence interval for x,;; was (481.9, 502.43). This
is to be compared with the existing record which stood at 502.62 in 1992. Fig. 8.6
shows a deviance for z,;; (similar to Fig. 8.4), together with a corresponding plot for
the women’s 1500 metre performances (Smith 1997a). Wang’s new record was 486.11 and
therefore inside this confidence interval. The same is true for the other confidence intervals
contructed by Robinson and Tawn. Thus although the analysis strengthens the conclusion
that Wang’s record was indeed very unusual and perhaps suspicious, it does not provide
conclusive evidence that the record was inconsistent with previous data.

Smith (1997a) argued that a superior approach was based on the predictive distribution
of Z, here defined to be the best performance for 1993, given all observations up to the
end of 1992. This may be computed in similar fashion to (8.50). In effect, computing a
confidence interval is asking the question “what will be the best performace ever achieved?”
(in the indefinite future) while computing a prediction interval is focussing on the much
more realistic question of what might happen in a specific year.

The result of this calculation is dramatic. Calculating the Bayesian predictive distri-
bution based on an uninformative prior distribution and using data from 1980 to 1992,
the predictive conditional probability of achieving Wang’s record given that a new record
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is set — in symbols, Pr{Z < 486.11|Z < 502.62} — is about .0006. The fact that this
estimated probability is so small creates clear doubts about the authenticity of the record.
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Fig. 8.6. Deviance plot for the “best possible performance” z,;;, based on 1972-1992
data. (a) Women’s 3000 metre data. (b) Women’s 1500 metre data.

8.7. Other methods of estimation

Other estimation techniques have been proposed, and at times strongly advocated,
but none has the power and generality of either maximum likelihood or Bayesian methods.

An example is the theory of probability weighted moments (PWMs — Hosking et
al. 1985) and its subsequent development into the theory of L-moments (Hosking 1990).
These methods are supported by simulations which show, for example, that under certain
circumstances, with small sample sizes, the PWM approach to the generalized extreme
value distribution produces more efficient estimates of return levels, as measured by mean
squared error, than the maximum likelihood approach. I do not dispute the correctness
of their simulations, but as a contribution to the development of statistical methods for
meteorological and hydrological data, I believe the whole debate over PWM and L-moment
methods has been a distraction from far more important issues. Some specific points are

e Often it is not the mean squared error of point estimates which is most relevant
to the practical user, but how well the approximate coverage probability of an interval
estimate, or nominal P-value of a test, approximates the true coverage probability or P-
value. Simulations have shown that likelihood ratio methods (section 8.5) perform very
well when assessed from this point of view, in spite of certain theoretical difficulties.
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e The PWM methods require certain restrictions on the parameter values which are
not present for the method of maximum likelihood. When the maximum likelihood meth-

ods are re-evaluated so as to incorporate similar restrictions, the comparative advantage
of the PWM method disappears (Coles and Dixon 1997).

e The real potential for improving on standard extreme value techniques comes not in
finding estimates which improve slightly on existing ones, but in generalizing the methods
to handle richer sources of data. Examples include taking suitable covariates into account,
combining data from different series, and incorporating physical information such as that
generated by atmospheric and ocean circulation models. Maximum likelihood and Bayesian
methods are very general techniques which may often be applied in a routine way to such
problems, whereas specialized techniques such as PWMs are limited to the context for
which they have been derived.

8.8. Regression models

A key theme of modern statistics is building regression models to show how the variable
of interest may depend on other measured covariates. In the present section we illustrate,
with examples, two possible ways of bringing such ideas into extreme value analysis.

8.8.1. Ozone exceedances

The (U.S.) Clear Air Act of 1970 required the Environmental Protection Agency
(EPA) to establish and periodically revise air quality standards which are “requisite to
protect the public health (with) an adequate margin of safety”. Ground-level ozone, unlike
that in the upper atmosphere, is a human health hazard and has always been one of the
pollutants regulated, through the National Ambient Air Quality Standard (NAAQS). The
current standard is based on the number of exceedances of daily maximum ozone over the
level of 12 parts per hundred million (pphm) .

As part of the process of enforcing and reporting on air pollution standards, the na-
tional EPA and various state environmental agencies track trends in the levels of pollutants
through a rich network of monitors. Since the standard is enforced in terms of exceedances
over a threshold, it is natural to ask questions about trends in air pollution levels in the

4 The revised standard introduced in 1997 reduced the standard level to 8 pphm, but
based on the maximum 8-hour average over the course of any 24-hour period, rather
than the maximum 1-hour level as in the pre-1997 standard. There were also changes
in determining how many exceedances of that level were permitted before the standard
is considered to be in violation. At the time of writing, a Court of Appeals ruling has
set aside this standard because of various legal and constitutional challenges. Although
it seems likely that some form of standard based on 8-hour averages will eventually be
approved, the statistical issues discussed in this section are equally valid with the new
standard as with the old.
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same terms. In other words, are exceedances of the threshold becoming more frequent, or
(as we hope) less frequent? This naturally brings us within the realm of extreme value
theory.

However, there is more to this than simply counting exceedances of a threshold. Ozone
is formed in the atmosphere through a complex sequence of photochemical processes which
begin with emissions from vehicle exhausts and from power plants, but which are also
strongly affected by meteorology, being most prevalent in hot, still weather in the middle
of summer. Changes in the frequency of ozone exceedances could be due to patterns of
unusually hot or cool summers as much as to real changes in emissions of ozone-forming
chemicals. Although the ozone standard itself takes no account of meteorological condi-
tions, in judging the success of ozone-reduction programs, it is important to take meteoro-
logical influences into account. This suggests forming regression models for the frequency
of high-level ozone exceedances in which both time and meteorology are regressors.

Smith and Shively (1995) constructed such a model for data from a monitoring station
in Houston, Texas, over the period 1983-1992. The analysis generalized earlier analyses
due to Smith (1989), who considered trends in 0zone exceedances but without taking mete-
orology into account, and Shively (1991), who modeled the point processes of exceedances
of a single level as a function of time and meteorology, but without taking the actual levels
of the process into account — in other words, just recording a binary processes according
to whether the standard was exceeded or not without taking into account the amount by
which the standard was exceeded.

The analysis of Smith and Shively was based on the following key ingredients:

1. The probability of an exceedance of a given level u on day ¢ was represented as
e®(®)  where

alt) = ap + a1s(t) + Z ajw;(t), (8.51)

where s(t) is the calendar year in which day ¢ falls and {w;(t), j =2, ...,p} are the values
of p — 1 weather variables on day t.

2. Given that there is an exceedance of the level u on day ¢, the probability that it
exceeds the level u + x, where x > 0, is represented by the equation

{1+¢B(1)} 5,
where

B(t) = Bo + Prs(t) + Zﬁjwj(t). (8.52)

Thus the excess values are represent by a GPD, with 3(t) the reciprocal of the usual GPD
scale parameter. (Alternative formulations would allow either 1/5(¢) or log 5(t) to be a
linear function of covariates, but the form (8.52) appeared to work well in this instance.)
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The meteorological variables considered in this analysis were as follows:
TMAX. Maximum hourly temperature between 6am and 6pm.

TRANGE. Difference between maximum and minimum temperature between 6am
and 6pm. This is considered to be a proxy for the amount of sunlight.

WSAV@G. Average wind speed from 6am to 6pm. Higher windspeeds lead to lower
ozone levels because of more rapid dispersion of ozone precursors.

WSRANGE. Difference between maximum and minimum hourly windspeeds between
6am and 6pm.

NW/NE. Percentage of time between 6am and 6pm that the wind direction was be-
tween NW and NE.

NE/ESE. Percentage of time between 6am and 6pm that the wind direction was
between NE and ESE.

ESE/SSW. Percentage of time between 6am and 6pm that the wind direction was
between ESE and SSW.

SSW/NW. Percentage of time between 6am and 6pm that the wind direction was
between SSW and NW.

The wind directions are important for Houston because they determine the level of
industrial pollution — for instance, there is a lot of industry to the south of Houston, and
ozone levels tend to be higher when the wind direction is in the ESE/SSW sector.

In most analyses, the variable SSW/NW was omitted because of the obvious collinear-
ity with the other wind directions.

Standard variable selection procedures were used to determine which variables to
include. Note that although the notation in (8.51) and (8.52) implicitly assumes that
the same meteorogical variables are included, in practice a separate variable selection is
performed for the two equations.

Variable Coefficient Standard Error
s(t) —-0.149 0.034
TRANGE 0.072 0.016
WSAVG -0.926 0.080
WSRANGE 0.223 0.051
NW/NE —0.850 0.408
NE/ESE 1.432 0.398

Table 8.1. Coefficient and standard errors for «(t).
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Variable Coeflicient Standard Error

s(t) 0.035 0.011
TRANGE -0.016 0.005
WSAVG 0.102 0.019
NW/NE 0.400 0.018

Table 8.2. Coefficient and standard errors for §(t).

Results of these analyses are shown in Tables 8.1 and 8.2. The model for 3(t) was
based on § = 0, i.e. the exponential distribution for excess values, but when the same model
was repeated assuming £ # 0, the result was not statistically significant (£ = —0.054 with
an standard error of 0.063). Note that where the same variable occurs in both equations,
the coefficients are of opposite signs, meaning that those variables which tend to increase
a(t) (meaning an increase in the frequency of crossing the threshold) also tend to decrease
B(t) (which means an increase in the mean excess). In particular, the coefficient of s(t) is
negative in «(t) and positive in B(¢), meaning an overall downward trend with time in the
frequency of ozone exceedances and in the mean excess.

As a comparison, Smith and Shively also fitted the same model for trend for trend
alone, ignoring meteorological covariates. In this case, the estimated coefficients of s(t)
were —0.069 (standard error 0.030) in «(t) and 0.018 (standard error 0.011) in SB(¢). The
coefficients are thus much smaller in magnitude if the model is fitted without any meteo-
rology. This confirms the significance of the meteorological component and shows how the
failure to take it into account might obscure the real trend.

8.8.2. Wind speeds in North Carolina

An alternative approach is to assume that the model is represented in terms of the
GEV parameters (u, 1, £), either through the point process representation of section 8.4.2,
or directly using (8.21) to relate the Poisson-GPD parameters to the equivalent GEV

parameters.

We can now extend this as follows: Rewrite (u,,&) as (ue, 9+, &) to emphasize the
dependence on time ¢t. A typical model is of the form

q q q
pe =Y Bizje, logth=> vz, &= 0z, (8.53)
=0 =0 =0

in terms of covariates {z;, j =0, ...,q} where we usually assume zq; = 1.
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In practice we would probably not adopt the full model (8.53). For example, one
simplification is to assume that p; varies in the manner described, with ¢, = ¢, & = €
constants.

The likelihood for this model may essentially be obtained by rewriting (8.44) as a sum
over t. Suppose A, o; are derived from (ug, 1, &) using (8.21). Then the log likelihood

becomes \ ) v
Z {nt log A\s — == — my log oy — my (1 + —) log (1 + Et—t> } (8.54)
- Ty &t o

where
1 = 1 if there is an exceedance on day t, 0 otherwise,

Ty is a time scaling constant. For example, if the unit of time ¢ is one day and “annual
maxima” are defined in the usual way, then Ty = 365.25.

Y; is the excess over the threshold on day ¢ assuming there is an exceedance (if , = 0
it does not matter how Y is defined)

The derivation of (8.54) follows from the point process theory of extreme values, and
is given in detail by Smith (1989) and Smith and Shively (1995). In the remainder of this
section we present another example, based on the windspeed data from section 8.1.

Consider the data for Raleigh. For a reason to be explained later (section 8.9.3), a
threshold 39.5 was chosen for this data set. Fitting the model with no trend produces the
parameter estimates and standard errors in Table 8.3.

Parameter Estimate Standard Error
7 42.4 0.9

log v 1.49 0.16

¢ -0.19 0.19

Table 8.3. Parameter estimates and standard errors for Raleigh data set over threshold
39.5; homogeneous model with no covariates.

Perhaps the most important conclusion from these estimates is that although the
value of £ comes out negative, indicating a short-tailed distribution, the standard error
shows that the difference with £ = 0 is not statistically significant, so we can’t be sure the
distribution is short-tailed! The data set does not extend as far as October 1996, when
Hurricane Fran produced a maximum wind speed of 79 mph in Raleigh.
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The above estimates were produced by maximizing the likelihood function. If we
define the neg log likelihood NLLH=-log L, where L is the maximized likelihood, then
NLLH=114.833.

If we insert a linear trend in u;, for example by writing u; = a + Bt, then NLLH
changes only very slightly, to 114.486. Twice the difference in NLLH is the likelihood ratio
statistic and has an approximate x? distribution under the null hypothesis that the simpler
model is correct, where k is the difference in the number of parameters between the two
models. In this case £ = 1 and the deviance is only 0.69, which is certainly not significant
as a x? random variable.

On the other hand, where we can definitely expect to see a significant effect is in
looking for seasonal variation. This was modelled by adding terms in cos(27t/365) and
sin(27t/365) to p, with the results in Table 8.4.

Parameter Estimate Standard Error
7 40.9 0.9

51 0.90 1.07

B2 5.29 1.39

log ¥ 1.43 0.13

13 -0.12 0.10

Table 8.4. Parameter estimates and standard errors for Raleigh data set over threshold
39.5; model including sinusoidal seasonal term in p.

Here, 81 and B, are the additional coefficients. In this case NLLH=103.106, for a
deviance of 23.6 against the model with no trend, and this is certainly significant as a x32
variable. Note also a slight, though not statistically significant, change in the value of &.

City Model & S.E. NLLH

Greensboro 0 .29 .20 132.448
Greensboro 1 .32 .19 127.200
Greensboro 2 .32 .19 126.922
Charlotte 0 .16 A2 162.190
Charlotte 1 18 11 152.775
Charlotte 2 .14 .10 149.340

Table 8.5. Comparison of models for Greensboro and Charlotte.
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Table 8.5 shows corresponding results for Greensboro and Charlotte. In this case
“Model 0” refers to the model with no seasonal component, while Models 1 and 2 add,
respectively, a twelve-month and six-month sinusoidal cycle to p;. Since our greatest
interest may well be in &, the values of this parameter and its standard error are tabulated
for each model, as well as the NLLH. Some other models were tried, such as adding seasonal
variation to log v instead of u, but these did not produce significant effects.

In both cases the seasonal effect is significant as measured by the deviance between
models 0 and 1. For Greensboro, as for Raleigh, there is no significant improvement in
passing to model 2. In the case of Charlotte there is an improvement — the LRS is 6.87
with two degrees of freedom, corresponding to a P-value of 0.03 based on the chi-squared
test.

Fig. 8.7 shows QQ plots of the residuals. These are based on taking all exceedances
above the threshold, transforming to an exponential distribution based on the fitted model,
and then plotting the order statistics against their expected values under the assumption
that the exponential distribution is the correct model. If this plot stays close to the straight
line through the origin with unit slope, then we can conclude that the GPD is a good fit
to the data.

The first three plots are all based on Model 1, and show a very good agreement
between the observed and expected values. As a comparison, the bottom right hand
plot is computed for Charlotte under the original model (Model 0). In this case there is
some evidence that the two largest observations are outliers, in the sense that both are
substantially above the fitted straight line, reinforcing what we already saw in the mean
excess plot. However, the effect almost disappears under Model 1. This neither proves nor
disproves the notion that the two largest values are outliers, but it does show that there
is at least the possibility of accommodating hurricanes with the rest of the data.

8.9. Testing the fit

An important component of any model identification and estimation procedure is to
test whether the resulting model fits the data. Techniques available for this range from
simple graphical methods to sophisticated goodness of fit testing. This section consists of
a brief review of the methods available, concentrating on those which have been developed
specifically for the GEV and GPD models.
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Fig. 8.7. QQ plots of residuals for each of the Raleigh (RDU), Greensboro (GSO) and
Charlotte (CHT) data sets. Each is based on Model 1 of the text, which includes seasonal
variation. Plot (d) is for Charlotte using Model 0, which is non-seasonal. The largest two
residuals do not fit so well in this instance.
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8.9.1 Gumbel plots

Suppose Y7, ..., Yy represent a sample of size N from the Gumbel distribution (8.11),
ordered as Yi.ny < ... < Yn.ny. The Gumbel probability plot consists of plotting Y;.n
against the reduced value x;.)y, defined as

pi:n being the ¢’'th plotting position, usually taken to be (i — 1)/N.
If the plot looks close to a straight line, then the Gumbel distribution may be presumed
a good fit, and in the days before more sophisticated methods such as maximum likelihood

became widely available, the intercept and slope of that line were used to define estimates
of 1 and 1.

If the plot is not a straight line, for example is there appears to be a systematic cur-
vature up or down, this is often taken as an indication that the data need to be fitted
by a three-parameter GEV distribution, with & # 0, rather than the Gumbel distribution.
However the plot can also be used to detect other features, such as gross outliers which
cannot easily be fitted by any distribution. The appealing thing about this plot is that it
can be drawn right away with the raw data, without any preliminary estimation of param-
eters. However, for the GEV distribution and the GPD, not to mention more complicated
situations such as those with covariates, such a simple plotting technique is usually not
available.

Ezample. Fig. 8.8 shows Gumbel plots for two data sets considered by Smith (1990).
Plot (a) is based on 35 annual maxima for the River Nidd series discussed in section 8.5.
The plot is straight as far as can be seen by eye, suggesting that the Gumbel distribution
might be a reasonable fit. Plot (b) is based on annual maximum temperatures at Ivigtut,
in Iceland. A characteristic feature of this plot is the influence of the largest order statistic,
which seems to be an outlier compared with the other annual maxima. However, when this
observation is ignored, the remainder of the plot is clearly curving downwards, suggesting
a short-tailed distribution with £ < 0.

8.9.2 QQ plots of residuals

A second type of probability plot is drawn after fitting the model, and this is a general
technique, not restricted to particular models as is the case with the Gumbel plot. Suppose
Y1, ..., Yy are IID observations whose common distribution function is G(y; 0) depending
on parameter vector . Suppose 6 has been estimated by é, and let G~1(p;6) denote the
inverse distribution function of G, written as a function of . A QQ (quantile-quantile)
plot consists of first ordering the observations Yi1.nx < ... < Yn.n, and then plotting Y;.n
against the reduced value A

TiN = G_l(pi;N; 9), (8.56)

where p;.y may be taken as (i — 1)/N as in section 8.9.1. If the model is a good fit, the
plot should be roughly a straight line of unit slope through the origin.
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Fig. 8.8. Illustration of Gumbel plots. (a) Based on annual maxima for River Nidd flow
series. (b) Based on annual maximum temperatures in Ivigtut, Iceland. Based on Smith

(1990).
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For example, if G(y, ) is the same as H (y; u, 1, €) as in (8.10), then the inverse H !
is obtained by solving the equation H(y;u,,£) = p as a function of y for fixed p; the
solution is

y=H"(p; u,@b,€)=u+%{(—logp)‘§ — 1} (8.57)

Thus the probability plot consists of plotting Y;.n against H _l(pi; N; [y &,é) with ﬂ,z/;,é
the maximum likelihood estimators.

Similar calculations are easily made for the GPD; Davison and Smith (1990) have
several examples.

Residual plotting is best regarded as an informal guide to the fit of the model, rather
than a definitive test. Nevertheless such plots form a valuable check on whether the model
being fitted is sensible.

Ezxzample

Fig. 8.9 shows residual from a GEV model fitted to the Ivigtut data of Fig. 8.8(b).
Plot (a) shows the plot done directly. The influence of the outlier is still very clear. Plot
(b) was computed as follows: the GEV model was fitted with the outlier removed, but
the outlier was included for the purpose of fitting the plot. In other words, the distinction
between (a) and (b) is not in the observed values plotted, but in the GEV parameters which
define the expected values. The plot in (b) follows a straight line very closely except for the
outlier. This shows that if the outlier is deleted, the GEV fits the remaining observations
very well, whereas if it is not deleted, it clearly distorts the model fit.

Fig. 8.10 is a similar kind of plot shown after fitting a GPD to high-level exceedances
of the River Nidd. Plot (a) is based on threshold u = 70, and shows a clear discrepancy in
the values of the largest two order statistics. Plot (b) is based on u = 100, and shows no
such discrepancy. The interpretation is that the model fits better to a threshold u = 70
than it does to u = 100.

Fig. 8.11 shows in more dramatic fashion the possibilities of a QQ plot to detect
outliers. Plot (a) is the time plot of insurance claims incurred by a large company over a
15-year period. Noting that costs are plotted on a logarithmic scale, it can be seen that
the data series is dominated by a small number of very large claims, and in fact GPD fits
to the data result in estimated & values very close to 1 — in other words, an extremely
long-tailed distribution. However the QQ plot in (b) shows nothing out of the ordinary —
it appears that the very large claims are consistent with the overall data set. In constrast,
plots (c) and (d) show a true outlier arising from an analysis of costs of large oil spill. The
largest cost arises from the Exxon Valdez disaster of 1989. It is clear that this value is not
consistent with an extreme value model.
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Fig. 8.9. QQ plots of residuals based on GEV model fitted to Ivigtut annual maxima.
(a) Based on GEV model fitted to the whole data set. (b) Based on GEV model fitted to
data with largest value removed, but the largest value is included in the plot.
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Fig. 8.10. QQ plots for GPD model fitted to high-level exceedances of River Nidd data.
(a) Based on threshold w = 70. (b) Based on threshold u = 100.
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Fig. 8.11. (a) Time plot of large insurance claims incurred by a major company over a 15-
year period. (b) QQ plot after fitting a GPD model to exceedances over a high threshold.
(c) Plot of costs of major oil spills against size of spill. (d) QQ plot after fitting GPD
regression model to exceedances over a high threshold, including spill size as a regressor.
The obvious outlier corresponds to the Exxon Valdez spill of 1989. Data supplied by BP
Insurance Limited.
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8.9.3 The mean-excess plot

A different method was developed for the GPD by Davison and Smith (1990); this
can be helpful in deciding on an appropriate threshold for exceedance-based methods.

The idea is based on equation (8.19): if the excesses over a threshold u indeed follow
a GPD with parameters (o,&), then the mean ercess over any level w > wu should vary
with w according to a straight line of slope &/(1 — &). The mean excess is also called the
mean residual life in survival data studies, so another name for the plot is mean residual
life plot.

A plot is calculated as follows. Given an initial threshold u, for each w > u, the actual
mean of all excesses over w is calculated. This is then plotted against w. This plot has a
discontinuity whenever w crosses an observation of the process, and the discontinuities get
larger as w increases. Therefore the plot tends to have rather jagged features. However if
the GPD is a good fit, the plot should stay reasonably close to the straight line obtained
by substituting the fitted GPD parameters into (8.19).

The judgement may be aided by the following Monte Carlo technique. One hundred
simulated samples are generated from the GPD fitted to the threshold u. For each sample,
the GPD parameters are re-estimated and, for each w > wu, the difference between the
observed mean excess and the theoretical value obtained from (8.19) is computed. These
are then placed in order: the top and bottom 5% points of the Monte Carlo values define
the boundaries of a Monte Carlo 90% confidence interval, separately for each w.

Fig. 8.12 shows a mean excess plot, with confidence bands, for the River Nidd data.
The confidence bands are based on the fitted GPD for a given threshold level: in (a) these
are calculated with respect to threshold 70, and in (b) with respect to threshold 100. In
the case of (a), the plot clearly varies outside the confidence bands. The interpretation
of this is that the whole of the data over threshold 70 cannot be considered consistent
with a single GPD. However, there is no such problem about threshold 100. This further
reinforces our earlier decision to use threshold 100 as the basis for the GPD analysis.

Fig. 8.13 shows corresponding plots for the windspeed example from section 8.1. In
the case of Raleigh with u = 20, the plot shows a jump at around w = 30, and the
confidence bands show clearly that this is a statistically significant jump. In other words,
u = 20 is too low a threshold for the GPD to form a good fit. However when the plot is
recomputed for v = 39.5, there is no such problem. Corresponding plots for Greensboro
and Charlotte, also based on u = 39.5, also show no problem with the GPD fit.

8.9.4. Plots based on the Z and W statistics.

A somewhat more general set of plots was introduced by Smith and Shively (1995)
and appears to be of general utility in assessing the fit of extreme value models.
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Fig. 8.12. Mean excess over threshold plots for Nidd data, with Monte Carlo confidence
bands, relative to threshold 70 (a) and 100 (b).

Consider first the point process of exceedance times of a fixed threshold u. Suppose
this is a nonhomogeneous Poisson process with intensity (as a function of time ¢) given by
Ay (t). The model (8.51) is precisely of this form, with Ay, (t) = {1 + & (u — ) /2b;) } /&
(recall equation (8.21)). Suppose we start observing the process at a time Tj, and observe
subsequent exceedances at times 77,75, ... For k > 1, define

T
@:/ A (5)ds. (8.58)
Tr_1

According to standard theory of the nonhomogeneous Poisson process, if the model is
indeed nonhomogeneous Poisson with intensity A,(-), the random variables Zj are inde-
pendent, exponentially distributed with mean 1.

In practice, most processes are observed in discrete time rather than continuous time
(e.g. daily ozone levels), but in that case it is usually adequate to approximate (8.58) with
the obvious discrete approximation to the integral.

A second statistic is denoted Wy, and is defined as follows. Suppose the model is given
by (8.53) and the kth exceedance occurs at time Ty. Suppose also that the corresponding
excess value, i.e. the amount by which the process exceeds the threshold at time T}, is Y.

Then define ) Y,
Wy =—logl1l+ Tk } 8.59
k ng 8 { lek + STk (U - /’I’Tk) ( )
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Fig. 8.13. Mean excess plots (with Monte Carlo confidence bands) for windspeed data

sets.

(a) Raleigh data with threshold 20.

(b) Raleigh data with threshold 39.5. (c)

Greensboro data with threshold 39.5. (d) Charlotte data with threshold 39.5.
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Then, if the assumed model is correct, Wy, W, ..., are also independent exponentially
distributed random variables with mean 1. A derivation of this is as follows. First note
that, if we define oy = 9y + & (u— p¢) then, given an exceedance at time ¢, the excess value
follows a GPD with parameters o; and &;: this is just (8.21) with suffices ¢ inserted to allow
for the time-inhomogeneity of the process. However, in that case, (8.59) is equivalent to

1 Y
Wk——log<1+§Tk—k>

B ng oTy,

and this is just a probability integral transformation of the GPD to an exponential distri-
bution with mean 1.

Smith and Shively (1995) constructed QQ plots based on the order statistics of Zj and
Wy, showing, in both cases, that for their example there was excellent fit to the assumed
distribution. However, there are other plots that one can draw based on the Z; and Wy
statistics —

(i) A plot of either Z; or Wy against time T}, serves as a check against the presence
of residual trends,

(ii) A plot of the autocorrelation of either Z; or Wy, serves as a check on serial depen-
dence.

As an example, Fig. 8.14 shows all six plots for the Charlotte windspeed data from
section 8.8. All the plots indicate reasonable agreement with the underlying assumptions.

8.10. Rainfall data over the United States

The following discussion is based on the preprint Smith (1999), and shows how the
methods of this chapter may be combined with some of the techniques of earlier chapters
to assess spatial patterns in trends in extreme rainfall levels.

The data source is daily rainfall series from 187 stations in the Historical Climato-
logical Network, which covers the continental U.S.A., and are archived by the National
Climatic Data Center (www.ncdc.noaa.gov).

The background to this work is a number of papers in the climatological literature,
which have examined “indicators of climate change” — in other words, which ones among
a large number of climatic variables represent the clearest indication of a possibly anthro-
pogenic climate change. Karl et al. (1996) performed time series analysis on a number of
climatic series and concluded that those based on the spatial intensity of extreme rainfall
events showed a particularly strong temporal trend. A detailed follow-up study by Karl
and Knight (1998) classified rainfall data into frequency of occurrence with 20 equiprobable
intervals, and demonstrated that the highest interval, representing the top 5% of rainfall
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Fig. 8.14. Diagnostic plots based on Z and W statistics for Charlotte seasonal model 1.
(a) and (d): plots against time with fitted LOESS curve. (b) and (e): QQ plots. (c) and
(f): Autocorrelation plots with approximate 95% confidence bands under the null model

of no autocorrelation.

348



days, displayed the strongest evidence of an increasing trend. The data they used, however,
were based on rough spatial aggregations of daily rainfall series, and gave little indication
of what was happening in any one such series. Also, their methods did not use any of the
techniques of extreme value theory which we have reviewed in this chapter, and therefore
missed the opportunity to obtain detailed distributional results.

50 4 ‘e,
o> 40 |
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[%)] .
2 .
g 30 A
= .-
8 °
B 20 T 'o.'..-..........
o
10 b .'...oo.o000--.0..’0000.-ou.oooo..o'..’........
O _
1920 1940 1960 1980
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Fig. 8.15. Percentage of missing data for each year.

In the paper Smith (1999), an analysis was pursued based on fitting models of the
point process type (section 8.4) to the individual series, followed by spatial aggregation of
the results, using the same techniques as in chapter 2 of this book. The data nominally
cover the period 1910-1996 for 187 stations, though there are substantial missing data.
Fig. 8.15 shows a plot of the total missing data in each year, expressed as a percentage of
all possible data points if all stations were open for the entire year. Only after about 1950
is there a consistent level of coverage with around 10% missing data.

The models adopted for the individual stations are similar to those earlier in this
chapter. In particular, the main model fitted is similar to (8.53), but written in a different
way: with parameters p;, 9, & as the time-dependent local parameters of the extreme
value point process, we write

pe = poe’, Yy =toe™, & = &o, (8.60)
where pg, %9, &o are constants and

P

vy = Pt + Z {Ba2p cos(wp) + Bapt1sin(wp)}, (8.61)

p=1
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which represents a linear trend, with coefficient 3;, and P sinusoidal terms representing
periodic (seasonal) components — in practice, the analysis used P = 2 after a selection
process similar to the windspeed examples in section 8.8.2. The motivation for the specific
form of model given by (8.60) and (8.61) was primarily ease of interpretation: under this
model, the overall rate of increase of the most extreme quantiles of the process is 51 per
year. For example, if 8; = .001 (which turns out to be close to the actual value), this
corresponds to an increase in the most extreme quantiles of about 0.1% per year. In
practice we multiply values of 3; by 100 so that they have the interpretation of percent
increase per year.

Diagnostics

Several of the diagnostic procedures described in section 8.9 were used to inform the
choice of models for these data sets. As examples, we apply them to four specific stations,
denoted stations 1-4, corresponding to stations in the mountains of North Carolina, west-
ern Colorado, the southern California coast and the Atlantic coast of Florida, respectively.
The units for daily rainfall are hundredths of an inch, and the scales on Fig. 8.16 highlights
the very sharp differences of overall rainfall levels among these four stations.

Fig. 8.16 shows mean excess plots, with Monte Carlo confidence bands. Recall that
a linear plot would indicate good fit to the GPD. In stations 1, 3 and 4 there are sharp
changes in the slope of the plot near the upper end, but only in station 1 does this appear
significant as judged by the Monte Carlo confidence bands.

Figs. 8.17 and 8.18 show probability plots of the Z and W statistics for the same four
stations, based on the model (8.60)—(8.61), where the threshold is set at the 98th percentile
of the distribution of daily rainfall values, separately for each station. Only the W plot
for station 4 shows a really noticeable discrepancy, somewhat contradicting the impression
created by Fig. 8.16 (which suggested that the problem lay with station 1, not station 4).
However it should be pointed out that Fig. 8.18 is plotted after fitting the seasonal model,
and therefore takes account of seasonal variation in the rainfall events, whereas Fig. 8.16
does not take this into account. Therefore, where the two plots give conflicting signals,
Fig. 8.18 is probably the more reliable.

Threshold  98% 98% 99% 99% 99.5% 99.5%

A £ S 3 A £
t>2 25 74 22 45 18 34
t>1 73 134 58 114 61 81
t>0 125 162 118 155 109 134
t<0 59 22 66 29 75 50
t< -1 21 5 23 8 24 14
t< =2 10 1 5 0 5 2

Table 8.6. Summary table of ¢ statistics (estimate divided by standard error) for extreme
value model applied to 187 stations and three rules for determining the threshold (top 2%,
top 1% and top 0.5%).

350



Despite these and other discrepancies, the results overall do not show great sensitivity
to the choice of threshold. As an example, Table 8.6 classifies the 87 and £ parameters
according to their ¢ statistics — the parameters divided by their standard errors — using
three different thresholds defined by the 98th, 99th and 99.5th percentiles for each station.
We are particularly interested to see the number of stations for which 8; > 0 (indicating
an increasing trend) or for which £ > 0 (indicating a heavier-than-exponential tail). As
a side comment, for rainfall data it is very common to assume a gamma distribution
(Stern and Coe 1984, Smith 1994b), which in terms of the asmyptotic theory of sections
8.2 and 8.3, implies limiting extreme value distributions with ¢ = 0; therefore, a clear
indication that & > 0 in the majority of stations would contradict conventional wisdom
about the distribution of rainfall values (though we should point out that other authors
have remarked that the gamma distribution does not necessarily fit well in the upper tail
of the daily rainfall distribution).

Table 8.6 shows that for each of the three thresholds considered, there is a clear
majority of stations for which both 8; > 0 and & > 0. We therefore see confirming evidence
of both an increasing trend and a long-tailed distribution. However, the individual values
of Bl and é for single stations show huge variability, and consequently are difficult to
interpret.

Spatial modeling

We therefore attempt a spatial smoothing, similar to the hierarchical models in chapter
2. The observed (;(s) parameters (where s indexes the station) are treated as noisy
observations of an underlying smooth random field 3 (s), where the standard errors of the
noise variables are equated to the standard errors of Bl(s) in the single-station extreme
values analyses. The random field for B;(s) is assumed, after some trial and error, to
be of Matérn type with no deterministic spatial trend. Shape parameters of the Matérn
field are typically in the range 0-0.3, depending on the precise set of coefficients to which
the model is fitted. Such small Matérn shape parameters suggest a field with many local
irregularities. After fitting the Matérn model, kriging was used to reconstruct the ((s)
surface. Recall that the values of 5; have been multiplied by 100 so that they represent
annual percentage changes in the extreme rainfall levels.

A first attempt to apply this method resulted in Fig. 8.19, based on a 98% threshold
at each station and the whole time period. This shows a highly irregular field and is hard
to interpret. A second plot, in Fig. 8.20, is based on the same spatial model fitted to
coefficients from an extreme value analysis applied to 95% thresholds, using data from
only 1951 onwards. The idea was that by applying the model to a lower threshold, and by
restricting the analysis to a time period for which there were relatively few missing values
(recall Fig. 8.15), we should obtain more stable estimates. This is confirmed by the plot,
though Fig. 8.20 is still hard to interpret in view of the many local irregularities.

From another point of view, however, Fig. 8.20 is easy to interpret. There is very
little large-scale spatial variation — all the observed variability is very localized, and the
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plot does not deviate from an overall value which represents an increasing trend of about
0.09% per year. In Smith (1999), this interpretation was confirmed by computing regional
average estimates of 31(s) for a number of regions. There was little variation between the
regions, in sharp contrast to similar analyses based on temperature trends in chapter 2.

The implication of this conclusion for climate modeling is that they imply some spe-
cific, testable, hypotheses for the response of the climate system to external forcing such as
greenhouse gases. It would be of very great interest to see to what extent the conclusions
given here could be replicated in numerical climate models under scenarios of increasing
greenhouse gases.
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