Spatial Statistics in Environmental Science

Richard L. Smith !

1 Introduction

Spatial statistics is the natural generalization of signal processing to higher
dimensions. In traditional signal processing, one has a signal X (¢) dependent
on a scalar variable ¢, which may belong to a discrete set or which may be
continuous (e.g. the whole real line). Spatial statistics is concerned with
cases in which ¢ is a multidimensional index of dimension d > 1. In most
practical examples, d = 2, though much of the basic theory and methodology
is the same whatever the dimension. Although the models and methods of
spatial statistics have not developed as rapidly as those for one-dimensional
signal processing, there have nevertheless been substantial new developments
in recent years. Standard references on spatial statistics include the books of
Ripley (1981, 1988) and Cressie (1993).

Applications of spatial statistics cover many areas. Much of the original
impetus for the subject was driven by geostatistics, e.g. given measurements
of the concentration of a mineral at a finite set of positions within a geological
field, the aim was to determine the overall volume of the mineral over the
whole field. It was in this context that the technique of “kriging” — optimal
least squares interpolation over a random spatial field — was originally de-
veloped. In recent years, the applications of spatial statistics have increased
enormously, with particularly rich applications in the environmental and eco-
logical sciences. A typical problem is the sampling of a pollution field, such
as ozone in the atmosphere or toxic chemicals in rivers and lakes. Another
example is the use of meteorological measurements in studies of global climate
change. In these fields, as in geostatistics, the objective may be to interpo-
late spatially between measurements, but there are also other objectives which
may be quite different. For example, in the context of global climate change,
a natural question is to what extent the data support hypotheses of increasing
temperature or rainfall, and how the resulting trends, if they exist, vary over
the earth’s surface. This kind of problem is discussed in section 7. Spatial
statistics has also found applications in such diverse fields as sociology — for
example, social networks theory — and financial economics: an example of
the latter is the term structure of interest rates, where there are two distinct
“time” parameters, one the time at which a loan is taken out, the other the
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term of the loan. However, in the present chapter we shall concentrate on en-
vironmental applications, which is where the most rapid growth has occurred
in recent years.

Sections 2—-6 are a review of various concepts and methods in spatial statis-
tics. Section 7 discusses recent developments in spatial trend estimation, mo-
tivated by the problem of characterizing the spatial pattern of climate change,
but also having applications in a number of other fields.

2 Geostatistics and Kriging

A spatial process will be represented by Z(s), where s varies over a domain
D contained in d-dimensional Euclidean space R? for some d > 1. Typically,
but not necessarily, d = 2. As an example, Z(s) might be the concentration
of atmospheric ozone taken at a specific place s on the earth’s surface (where,
for the purpose of the present discussion, we regard the earth’s surface as
two-dimensional). Suppose also we have a finite number of observations, z; =
Z(s;) for i = 1,...,n, s1,..., s, denoting the positions of the monitoring sites.
Typically in environmental applications (and a contrast with traditional time
series analysis), there is no fixed lattice of measuring sites and we regard the
variable s as varying over a continuous set D.

The classical “kriging” problem is as follows: given z;, ¢ = 1,...,n, predict
20 = Z(s¢) for some new location sy which is not one of the given sites sq, ..., .
Once this problem is solved, it is easily extended to other problems such
as jointly estimating the values of Z(s) at several unmonitored sites s, or
estimating a quantity such as [, Z(s)ds for some set A C D.

Models for z; are traditionally of two types:

Zi = W + iy (1)

% =z} B+, (2)

where in each case {n;} represent some spatially correlated zero-mean “noise”
process. In (1), p is a single (usually unknown) parameter assumed to be
constant at all points on the surface, while in (2), the mean at a specific
point is assumed to depend on a given set of covariates x; through a linear

regression model with unknown parameters 8. Traditionally (1) is described
as the “ordinary kriging” problem and (2) as “universal kriging”.

Covariance assumptions on 7(-) may be represented through

Cov{n(s),n(s")} = C(s,s"), (3)

for some covariance function C(,-).

Various homogeneity assumptions may be made on the covariance function.
For example, if C is of the form

C(s,s') = Cy(s — 8" (4)
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for some Cj, then the process is described as stationary. It captures the
property (the obvious generalization of stationarity in time series analysis)
that the dependence between two sites s and s’ depends only on the (vector)
distance between the sites, s — s'.

Instead of the covariance function, it is common in spatial statistics to work
instead with the semivariogram function v(-), defined by

Var{n(s) —n(s")} = 2y(s — ¢'). (5)

For somewhat odd historical reasons, the left hand side of (5) is called the var-
iogram, and the function v the semivariogram. One motivation for considering
the (semi)variogram rather than the covariance function is that the assump-
tion (5), also known as intrinsic stationarity, is actually somewhat weaker
than (4), in that there are models for which the variogram exists when the
covariance function does not. For the applications considered in this chapter,
however, it will be good enough to assume that the covariance function ex-
ists, and then it does not really matter whether the covariance function or the
variogram is used to characterize the process.

Denoting the argument of Cj or vy as h, if either Cy(h) or v(h) depends only
on ||h]], i.e. the length of h, usually measured via the usual Euclidean metric,
the process is said to be isotropic. Sometimes the word homogeneous is used
to describe a process which is both stationary and isotropic.

2.1 Kriging
Rewrite the model (2) in the form
Z=XpB+n, (6)

where ZT = (21 23 .. 2,), X is the n x p matrix of covariates,  is a
p-dimensional vector of unknown regression coefficients, and 7 is a vector of
random errors with mean 0 and covariance matrix of the form C' = oV, where
«a > 0 is allowed to be an unknown positive scalar but the matrix V is assumed
known. In most cases, we also assume that 7 has a multivariate normal distri-
bution. As stated, with the regression term X, this is the universal kriging
problem, but ordinary kriging is a special case in which Xj is replaced by
14, 1 being an n-dimensional vector of ones and y a fixed unknown constant.
Suppose we wish to predict a value

2 = x3 B+ o, (7)

in which the covariates xy at a new site are given, and 7y is a random variable
with mean 0, variance g and covariance with 1 given by E{nTn} = cw with
the scalar vy and the vector w both known. Consider a linear predictor of the
form 29 = ATZ where \ satisfies the constraint

X7\ = a0. (8)
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The rationale for the constraint (8) is that it justifies the reduction
Z)— 20 = N (XB +n) — 258 —m0 = X' — 10,

or in other words, the prediction error does not depend on the unknown quan-
tity 8. There are now several ways to go about the solution:

1. Find A to minimize E{(2p — 29)?} subject to the constraint (8). This does
not involve any normality assumption, since the formulation of the problem
depends solely on first- and second-order moments. The most direct solution
is via the method of Lagrange multipliers, leading to

A={(zo— X"V )" (XTV I X)IXT + 0T}V, (9)

with an accompanying (complicated) expression for the variance of %, given
Z. See, for example, Ripley (1981) or Cressie (1993).

2. A Bayesian solution (assuming normality) is to fix the improper prior
distribution 7(83) = 1, calculate the posterior density 7(5|Z), and then

S — / B{20Z, B)}(5|Z)dp.

3. Suppose Z; = AZ is an (n—p)-dimensional vector of linearly independent
contrasts, i.e. linear functions of Z whose distribution does not depend on (.
General vector space theory implies that such a matrix A must exist, though it
may not be so easy to calculate explicitly. Also let § = (XTv-1x)~1xTv-1z
denote the generalized least squares estimator of (. It is easily checked that
the distribution of zy — :L“UTB does not depend on the true value of 3. Then
20 — :EE‘)FB is the conditional expectation of zy — :JcOTB given Z;.

The equivalence of formulations 2 and 3 is an interesting connection between
Bayesian and conditional inference which has been noted in other contexts —
see the discussion of REML estimation in the next subsection.

These approaches to kriging all make full allowance for the fact that the
regression coefficient § are a priori unknown, but they make no allowance at
all for the fact that V is also typically unknown, which arguably, is the more
important problem! So let us now turn to consideration of this feature.

2.2 Estimation of V

The most common estimation approaches assume that the process is stationary
and isotropic. For methods getting away from this assumption, see section 3.

The first step is very often a plot to determine the shape of either the
covariance or the semivariogram function. Assuming the process Z(s) has
common mean, a common estimator for the semivariogram v based on a finite
number of observations s = sy, ..., s, is of the form

20 = g X {20 = Z(s)F, (10)

(8i,85)EN(h)
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where N (h) denotes a collection of (s;, s;) pairs whose Euclidean distance lies
within a given neighborhood of h, and | - | denotes cardinality.

The estimate (10) is sometimes criticized for being overly sensitive to outliers
and there are various “robust” alternatives, for example, the Cressie-Hawkins
estimator (Cressie, 1993)

4
1 1
25(h) = > 1Z(si) — Z(sp)M? ) 11

which is also an approximately unbiased estimator when the data are normally
distributed, but which is less affected by outliers than (10).

The second step in the estimation procedure is to choose from a family of
positive-definite covariance functions (or, equivalently, negative-definite semi-
variogram functions). Simple estimators such as (10) and (11), when viewed
as a function of h, do not have the negative-definiteness property which is
a necessary condition for a legitimate semivariogram function. Therefore, in
most cases, we choose from a parametric family which does have this property.

Formulating the problem in terms of covariances rather than semivari-
ograms, a general condition for a positive-definite covariance in a stationary
process is that it be expressible in the form

Co(h) = / cos(w'h)G(dw), (12)

where G is a non-negative measure on R?. In isotropic cases, where the vector
argument h is replaced by a scalar argument ¢, the formula reduces to

Colt) = /(0 Valw)B(de), 0 <1<, (13)

with ® a non-negative measure on (0,00). In (13), Yy is given (depending on

dimension d) by
NG LAY
Ya(t) = n '\ 5) Ju-2 (t),

['(-) being the usual gamma function and Ji4_3)/2(-) a Bessel function of the
first kind of order (d—2)/2. See, for example, Ripley (1981) or Cressie (1993).

In practice, there are a number of standard families of covariance functions
(or, equivalently, semivariograms) which are consistent with (13). Examples
include:

Spherical model:
0, t=0,
wt) =3 cw+e{dt-1(4)’}, 0<t<R, (14)
Co + Ci, t Z R,
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Ezxponential model:

= 0, t =0, 15
70()_ CU+01(1—6_t/R), t>0, ( )

Gaussian model:

0, t=0,
Matérn model: Best defined in terms of the covariance function Cj as

Co(t) = 2v11r(y) (2\Ift>ylc,, (2\}?) : (17)

where v > 0 is a shape parameter and KC, is the modified Bessel function of
the third kind of order v (Abramowitz and Stegun 1964, Chapter 9). The
special cases v = % and v — oo correspond respectively to the exponential
and Gaussian models, (15) and (16).

In each of (14)—(17), R > 0 is a scale parameter is known as the range, and
n (14)—(16), if ¢y # 0 it is known as the nugget. This reflects the commonly
observed property that, even at very small distances, observed variograms are
non-negligible, which is often interpreted to reflect measurement errors in the
observations rather than real discontinuities in the surface being measured.

Discrimination among parametric models is often carried out by visual as-
sessment based on the sample semivariogram 4(-) or 4(-), but may also be
carried out (after fitting the model) by more formal criteria such as likelihood
ratio tests, AIC, BIC, etc.

The third step in the estimation procedure is the estimation of parame-
ters of the assumed covariance (or variogram) model. One relatively simple,
and reasonably efficient, technique for this is Cressie’s weighted least squares
procedure (Cressie, 1993): given a sample variogram 7(h) evaluated at a fi-
nite number of values of h, say hi,ho,..., and a model y(h;#) depending on
unknown parameters #, choose 6 to minimize

MR
S {1 19

The method is not dependent on a particular sample estimator; for example,
4(-) from (10) may be replaced by ¥(:) from (11). This method has the ad-
vantage of being relatively straightforward to calculate, requiring a nonlinear
optimization but no complicated likelihood evaluation. A practical disadvan-
tage is that there is no easy way to obtain standard errors for the estimators,
or tests of hypotheses about the parameters.

Most of the alternatives to this method are based on some form of likelihood
procedure, assuming a Gaussian process:
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e Mazimum likelihood estimation (Kitanidis 1983, Mardia and Marshall
1984). This is more complicated than Cressie’s method because the evalu-
ation of the exact likelihood is appreciably harder than (18), but it is compu-
tationally feasible for reasonably sized problems. If there are n data points,
likelihood evaluation requires storage and inversion of a n X n covariance ma-
trix; the author has successfully applied this for n up to 500, but there would
clearly be problems if n were of the order of several thousand.

e Restricted mazimum likelihood (REML) estimation (Cressie, 1993). This
is an alternative to maximum likelihood, especially well adapted to models of
the form of (6), for which it uses a likelihood function for € based on a set
of contrasts of Z, orthogonal to the design matrix X, whose distribution is
unaffected by §. Although asymptotically equivalent to maximum likelihood,
the method is generally believed to have superior properties in small samples,
especially when the dimension of (3 is large. As shown originally by Harville
(1974), the method is also equivalent to a simple form of Bayesian analysis in
which the parameter 3 is given a uniform prior density, though the treatment
of the 6 parameter is not Bayesian.

e Bayesian methods (Le and Zidek 1992, Handcock and Stein 1993, Brown
et al. 1994), in which all the unknown parameters are given prior distribu-
tions and a joint posterior distribution is calculated, have become much more
popular in recent years, though they are more complicated computationally
than ML or REML estimation.

An example of these estimation methods if shown in Fig. 1. This is based
on the Texas aquifer data set of Cressie (1993), in which the underground
water level was measured at various places in Texas. Cressie’s original anal-
ysis used an intrinsically stationary model without directly adjusting for any
deterministic spatial trend. In the present analysis, a linear trend was incor-
porated through the regression function in (2), and the residuals modeled as
a stationary, isotropic process. The standard (10) and robust (11) variograms
of the residuals are shown, along with an exponential semivariogram model
fitted by each of the weighted least squares, maximum likelihood and REML
methods. The results appear to show good consistency among the different
methods.

The fourth and final step in the estimation procedure is the application to
kriging. In traditional geostatistical applications, once the covariance matrix
V was estimated by any of the methods we have described, this was simply
treated as a known matrix for the calculation of kriging formulae and their
prediction variances. However, as already noted, it is somewhat illogical to
adapt the kriging procedure for the fact that 8 is unknown without making a
similar allowance for the unknown parameters in V. Two possible approaches
are:

e Corrections based on the delta method. These usually use the standard
kriging formulae for point predictions but correct the prediction variances,
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using Taylor expansions to represent the effect of parameter uncertainty. See
Zimmerman and Cressie (1992), Harville and Jeske (1992).

e Fully Bayesian approach. It is straightforward to formulate the problem
from a Bayesian viewpoint, since it treats (3,60, zp) (where 5 are the regres-
sion parameters, # the unknown parameters of the covariance matrix, and
29 = Z(sp) the unknown quantity being predicted) as a random vector, and
calculates the conditional distribution of zy given observed data Z after inte-
grating out the effect of 8 and 6. As already noted, in the special case that 6
is known and (3 has a uniform (improper) prior distribution, this is equivalent
to the standard kriging formulae.

014 {— wLsfit
0.12 o o ML fit )

0.10 1 ---- REMLfit -7

0.08

0.06

Semivariogram

0.04 A

0.02 4

0.0 A

h

Fig. 1. Standard (+) and robust (o) estimates of the sample semivariogram
with fitted exponential semivariogram function by the weighted least squares,
maximum likelihood and restricted maximum likelihood methods.

3 Nonstationary models

The approach described in section 1 is based on an assumption that the spatial
random field is stationary and isotropic. In the original geophysical applica-
tions which motivated the development of the field, this assumption was often
justified by the fact that with sparse data, there was no reasonable alterna-
tive. A further point is that many geostatistical applications involved only one
measurement at each site (or equivalently, only one replication of the random
field) so there was no way of determining the complete spatial covariance func-
tion without some kind of stationarity assumption. In modern environmental
applications, however, there are very often enough monitoring stations to go
beyond such assumptions, and with multiple observations per site, it is also
possible to estimate the covariance between any pair of sites without assuming
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stationarity across the field. Another consideration is that very often, simple
topography makes a stationarity assumption implausible. Therefore, there are
by now many reasons to go beyond a stationary model.

In spite of this obvious need for nonstationary models, however, there is not
as yet a wide variety of approaches to the problem. In the present section we
concentrate on one particular approach, pioneered by Sampson and Guttorp
(1992) and also developed by, among others, Mardia and Goodall (1993),
Guttorp et al. (1994) and Smith (1996).

The idea is a “deformation approach” to nonstationarity: we assume the
observed process is nonstationary, but that it can be deformed into a stationary
(and, in most applications, isotropic) process by some nonlinear map. For a
spatial process Z(s) with constant mean, defined for sites s,¢ within some
domain D, define the dispersion function

D(s,t) = E [{Z(s) — Z(t)}*
for each pair of sites (s,t). We look for models of the form

D(s,t) = 2y (lf(s) = F(#)]]) (19)

where f is some nonlinear function on D and 7 is the semivariogram of a
stationary, isotropic process. In the terminology developed by Sampson and
Guttorp, the original “geographic space”, or G-space, in which the observa-
tions are located, is transformed by the function f into a “dispersion space”,
or D-space, and in that space the process is stationary and isotropic.

To estimate such a model, it is not sufficient to have only one observation
per location, because without any stationarity assumption, it is not possible
to measure the covariance between any pair of points. However, virtually all
the practical applications of this methodology have been in contexts for which
there is no shortage of available data to estimate the covariances required.

Guttorp and Sampson, and their co-authors, have developed a variety of
ingenious but somewhat ad hoc fitting techniques for these models. For exam-
ple, Guttorp et al. (1994) proposed an estimation scheme in which f and
were chosen to minimize

dij — Dij\°
> ( e ’) +MI(FD) + T, (20)
i g E
where f(1) and ) are the two coordinate functions of f: R? — R?, and
N 2 A\ 2 A\ 2
. 9% fl) 92 fl) 92 fl)
1)y =
J(fVY) // ( By +2 900y + o972 drdy.  (21)

Note that we are representing a generic point of R?> by (z,y) rather than s
as previously. In (20) , D;; is the observed dispersion between sites ¢ and
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J as determined empirically from the data, d;; is the model-based dispersion
determined by the functions f and 7y, A > 0 is a smoothing parameter, and
J(f (g )), j=1,2,is a “bending energy” functional whose presence ensures that
the function f is not allowed to become too irregular. This kind of functional
is often used as a penalty function in spline-based approaches to smoothing
and interpolation.

An alternative approach (Mardia and Goodall 1993, Smith 1996) is to choose
f and vy to minimize the profile negative log likelihood function

N N -1 .
L= > log |X| + tr (E*IE) : (22)
where we assume there are N replications of the field, 3 is the sample covari-
ance matrix and ¥ is the model-based covariance matrix.

To make this approach work effectively, we would really like to represent
both vy and f as parametric functions. Parametric models for 7y have already
been discussed, but an alternative approach, motivated by the representation
(13), is to represent the covariance function Cj in the form

C
Co(h) = ¢eo(weh) (23)
c=1

for a fixed C and positive constants ¢1, ..., ¢, wi, ..., wc. The idea underlying
(23) is that it forms a discrete approximation to the integral model (13). Note
that the function Yy in (13) reduces to Jy when d = 2, as we assume throughout
this section.

The other issue involved in parametrizing the model is to obtain a finite-
parameter representation for f. Assuming again that we are working in di-
mension d = 2, f can be represented as (f(1), f@)), where f(1) and f® are
scalar functions of location s = (x,y). There are by now many approaches
to non-linear function reconstruction that use an expansion in terms of ba-
sis functions: for example, thin-plate splines, radial basis functions (RBFs)
and wavelets all use representations of this form. In dimension 2, the thin-
plate spline and RBF approaches coincide, and lead to f() and f( being
represented as linear combinations of basis functions of the form

ni(z,y) =r’logr,

where r = {(z — 2;)? + (y — yi)2}1/2, the distance between the current loca-
tion (x,y) and the i’th “center” (z;,y;). The model is completely determined

once we specify the number and positions of the centers. We then write

I
FOz,y) =Y 6 mi(e,y), G =12
i=1
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where I is the number of centers and {51@, i=1,...1, j = 1,2} are coefficients
to be determined.

Wisconsin Lake

Michigan

Michigan

lllinois

Indiana

Fig. 2. Map of ozone stations: G-space.

Fig. 3. Map of ozone stations: D-space.

As an example of this approach (taken from Smith, 1996), Fig. 2 shows
a map of ozone stations in the neighborhood of Chicago in the original “G-
space”. The bulk of the stations shown are in the city of Chicago or surburban
[llinois, but the three lower right stations are near the city of Gary, Indiana, a
heavily industrialized region. Sample correlations among ozone measurements
show that these three stations have much lower correlations (with each other,
as well as with the remaining stations in the figure) than the rest of the
stations, so we would not expect a stationary model to hold. Throughout the
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examples in this section, we work with spatial correlations rather than spatial
covariances to avoid having to deal with the fact that the variances may also
vary from site to site. Fig. 3 indeed shows that (one reconstruction of) the
“D-space” in this example is highly distorted, with the three outlying stations
drawn out into positions very distant from the remainder.

As an example of the effect of the transformation on the sample dispersion,
Fig. 4 shows the dispersions in the original G-space, with dispersions involving
one of the three outlying stations distinguished by a separate plotting symbol.
It is evident that the plot cannot easily be represented by a smooth curve.
The transformed picture (Fig. 5), together with the fitted Matérn variogram
function, is much cleaner.

1.0 A + + +
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+ ++ + +++ +++++ + +
+* + +
0.8 - + ¥ + . + o+
+ + v F + Toe T
+ ¥ "
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0.6 - + o o ©
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04 1 o5 0® 0850 %0 0, e
T ® 8% G P gwo 0
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02 { o 000%%?5’0@ P00
0 09 %0 Q00
(¢5)¢]

0.2 0.4 0.6 0.8 1.0 12

Fig. 4. Dispersion plots in G-space for the ozone example. For each pair
of stations, the distance between the stations is plotted along the horizontal
axis and the dispersion is plotted along the vertical axis. For any dispersion
calculation involving one of the three outlying stations, the plotted point is +;
for the remainder, it is o.

A second example is based on temperature averages for stations in a subset
of the United States “Historical Climatological Network”. The top plot in
Fig. 6 shows the locations of the stations superimposed on a map of the
country. The bottom plot shows the transformed D-space. In this example,
the striking feature of the plot is that stations in the southwestern states
(California, Nevada, Arizona) have been pulled far away from the rest of the
plot, while stations in the northwest (Washington, Oregon) are drawn closer
to the rest of the country. However, the corresponding “before and after”
variogram plots (Fig. 7) so not have nearly so clear-cut an interpretation as
Fig. 5. In this case, the fitted Matérn curve in D-space still does not come
close to fitting the whole dispersion function, and one is led to suspect that the
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transformed model still does not fit the data very well. Further investigation
based on the covariance function (23) improves the fit (Smith 1996), but still
without adequately fitting the whole of the data.

1.0
0.8 1
0.6 1
0.4

0.2 A

0.0

0.0 0.1 0.2 0.3 0.4

Fig. 5. Figure 4 redrawn in D-space, with fitted Matérn variogram curve.

3.1 Alternative approaches to nonstationary covariances

Although the deformation approach to nonstationary spatial processes is the
one which has been most extensively developed, it is far from being the only
approach to this problem. One fairly straightforward approach is the “moving
window” method due to Haas (1990, 1995). According to this, kriging at a
particular location is based only on a subset of the monitoring stations within
a given distance of the location for which a prediction is needed. In a space-
time context, the window is defined in time as well as space, thus allowing
for temporal nonstationarity as well. The actual size of the window is chosen
by some form of cross-validation scheme. This approach is relatively easy
to apply, in part because it avoids the complications inherent is specifying a
full model for the nonstationary case. On the other hand, the lack of a fully
specified model is a disadvantage in some contexts.

Another approach is the orthogonal expansion approach, discussed by Ny-
chka and Saltzman (1998), Holland et al. (1999). This is based on

C(s,t) = o(s)o(t) |pe IR L3 " Nah () (1) | (24)

v=1

where o(-) is a spatially varying standard deviation, 0 < p < 1, A, is a non-
negative weight, and 1, is the vth eigenfunction in some orthogonal function
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Fig. 6. G-space and D-space for climatological example

expansion. As Nychka and Saltzman point out, the representation (24) is
equivalent to a representation of the random field as

Z(s) = o(s) {pZo(S) +> %/\11/2%(8)} : (25)
v=1

where Zj is a stationary isotropic random field and a1, ..., a,, are independent
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Fig. 7. Top plot: sample dispersion function for climatological data in G-
space. Bottom plot: same in D-space, with fitted Matérn curve.

(of each other and of Zj) standard normal random variables. This is there-
fore a hybrid between the geostatistical approach based on stationary random
fields, and an approach known as empirical orthogonal functions, which is pop-
ular in atmospheric sciences. Presumably, the approach is not restricted to the
exponential covariance function in (24) but other forms of stationary isotropic
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covariance function could also be used. At the present time, the whole ap-
proach based on expansions of the form of (24) has not been developed very
extensively.

4 Models defined by conditional probabilities

An entirely different approach to modeling spatial fields is through families of
conditional distributions for the observation at a site given its neighbors. Such
models are most naturally defined for a discrete set of locations, though they
are often applied in situations where the underlying random field is defined
continuously in space. The whole approach stems from Besag (1974), though
there have been many extensions and variations on the approach in recent
years. A small sample of recent papers are Besag et al. (1995), Waller et
al. (1997), Best et al. (1998), Diggle et al. (1998), Wolpert and Ickstadt
(1998), Besag and Higdon (1999). In the present discussion, we do not attempt
anything like a complete survey of recent developments, but will concentrate
on outlining the fundamental ideas, stemming from Besag (1974).

(a) (b) (c)

Fig. 8. Examples of regular lattices. The vertices of the graph represent
spatial locations, and two vertices are said to be neighbors if there is edge of
the graph joining them.

The starting point is that one considers data defined on a discrete lattice
with an underlying neighborhood structure. The lattice may have some regular
shape as in Fig. 8, though often a lattice is defined simply as a graph with no
regular structure. Where the true field is distributed continuously in space,
the spatial locations are usually aggregated into discrete cells so that such a
model can be applied.

A model is defined by specifying the conditional distribution at a particular
site given its neighbors. For example, in the autologistic model, each site value
X; is either 0 or 1, and satisfies

PI‘{XZZI |X]’:£Ej, ]752} = PI‘{XZZI | X]'ZLE]', ]ENl}
exp (ai + ZjENi ﬁijxj>
= (26)
1+exp (ai + ZjENi 5ij$j>




486 Smith

where N; is the set of neighbors of the site i, «; is a coefficient for each site,
and (3;; is an interaction coefficient between neighboring sites ¢ and j.

A corresponding model for normally distributed systems is the autonormal
model, defined as follows: the conditional distribution of X; given Xj;, j # i
is normal with variance o? and mean

i + Z Bii (X
JEN;
Thus p; is the mean at site 7 and ;; is again a pairwise interaction component
defined for neighboring sites ¢z and j.
It should be noted that the autonormal model just defined is not the same
as
=i+ Z Bij (X ) + e, € ~ N(0,0%) (independent),
JEN;
which is called the simultaneous equation model and corresponds to a quite
different joint distribution of the {X;}. Besag (1974) discussed this distinction
in detail.

A key question with models of this form is whether the family of conditional
probabilities is consistent with some set of joint probabilities on all the random
variables. If it is not, then clearly the model is not well defined. Both the
autologistic and autonormal models are examples of a Markov random field
(MRF), and the question of whether they are well-defined models is answered
through a very general result for MRFs known as the Hammersley-Clifford
theorem (Besag 1974, Clifford 1990). For pairwise interaction models such
as logistic and autonormal, the answer essentially reduces to the statement
that both the neighborhood structure and the interaction coefficients must be
symmetric: j € N; if and only if ¢+ € Nj, and 3;; = ;. For example, in the
autologistic case, the joint density of X = {X;}, evaluated at x = {x;}, is of
the form

) o exp Zakxk—i- Z Z ﬂ]k:EJIk , (27)
J keN;

while in the autonormal case, the corresponding joint density is

px) = (2m0") 2 B 2 exp d - — QZZ Joji(ak — ) {1 (28)

1 ifj=k
bjr = { —Bjr if j € Nj,
0 otherwise.
It is readily checked that (27) implies (26) , and that (28) implies the autonor-
mal model. Note that (28) is equivalent to the statement that the {X;} are
multivariate normally distributed with covariance matrix ¥ = B~
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4.1 Estimation of MRF models

(i) Ezact MLE

Exact maximum likelihood is usually feasible only for Gaussian processes.
To see why, note that p(x) in (27) is defined only up to an unknown constant
of proportionality, and direct maximum likelihood is not possible without eval-
uating that constant. However, exact calculation of the constant can only be
performed by summing (27) over all possible states of the system, which is
impossible unless the system is extremely small. On the other hand, in (28) ,
we are able to evaluate the constant analytically, so in this case it is possible
to calculate the likelihood function exactly. Virtually all non-Gaussian cases
are like (27) , in that the model is specified up to an unknown constant of
proportionality, but there is no direct method of evaluating the constant.

(ii) Mazimum pseudo-likelihood

Besag (1975) proposed estimating the unknown parameters of the model, 6
say, by maximizing the quantity

PL(f) = Hp(Xz- | Xj, j € N3 0), (29)

2

which he called the pseudo-likelihood. This has the advantage of being easy
to calculate, and behaving in many respects like a likelihood function, though
it is not equivalent to the likelihood function, even asymptotically, and in
some contexts the maximum pseudo-likelihood estimates are much less efficient
than the maximum likelihood estimates. In Gaussian cases, it is possible to
compare the two methods directly (Besag and Moran 1975, Besag 1977). The
method has fallen under something of a cloud in recent years, partly because
of the growing popularity of simulation-based estimation methods such as the
Gibbs sampler, though it remains of interest as a theoretical technique (see
e.g. Comets, 1992).

(iii) Simulated mazimum likelihood estimators

The idea behind this was proposed by Penttinen (1984), and extended by
Geyer and Thompson (1992). Suppose we have a model of the form

p(x;0) = C(0)F(x;0),

where F(x;60) is a specified function of data x and unknown parameter 6,
and C(0) is a normalizing constant, in principle computable by summing or
integrating over all possible values of x, but in practice not computable. Our
objective is to calculate a simulation-based approximation to the maximum
likelihood estimate for a particular realization of the Markov random field, X
say.

Suppose we generate a Monte Carlo sample X(l), . XM) of realizations of
the random field X for some particular value of 6, say 6y. It is not essential
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that X1, ..., X(M) be independent. Then for 1 < m < M,

F(XMmie) | F(x;0) _
E{m} = Ly (W00

= C(60) ) F(x;0)

- . (30)

If the distribution of x is continuous, then the sum in (30) is replaced by an
integral. Based on (30) , therefore,

;0)  F(X;6)
M Z (X;t90) (31)

0

is an unbiased estimate of the likelihood ratio of 6y to 6, in other words

C(6o) F(X; )
COF(X;0)

An estimator of 6 defined so as to minimize (31) , then, may be regarded as a
simulated maximum likelihood estimator, and provided M is sufficiently large,
may be expected to be a good approximation to the true MLE.

Note that as the method is commonly applied, the sample XV ... X(M) ig
generated only once, with a fixed 6y, and then (31) is treated as a deterministic
function of . However, partly as a check on the simulation-sensitivity of the
method, and also in some cases to speed up the convergence to the MLE, it is
possible to update 6y during the procedure, for example, minimizing (31) to
get an initial estimate 61 ), then taking 6 = 6" and repeating the process to
get an estimate 62 ), and so on.

Many practical issues are raised by this method — for example, the choice of
M, and the method of simulation used to generate the individual X (™) fields.
Many modern ideas such as the Gibbs sampler (Geman and Geman 1984),
auxiliary variable methods (Swendsen and Wang 1987), Metropolis-Hastings
algorithms (Besag et al. (1995) reviewed all of these methods) and perfect
simulation (Propp and Wilson, 1996) have been developed in recent years for
simulation from random fields, but we shall not attempt to review these here,
beyond mentioning that they are all relevant for the kinds of models that have
been discussed.

4.2 Comparisons between geostatistical and MRF approaches

One aspect of spatial models which has not been very much explored is the
connection between the geostatistical approches of sections 1 and 2, and the
MRF models of the present section.
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In multivariate normal cases, one way to characterize the difference is that
geostatistical approaches work by specifying the covariance matrix of the ob-
servations, ¥ say, in terms of unknown parameters . The MRF approach,
through (28) , amounts to a parametric model for the inverse autocovariance
matrix, B = X~ !. There is no obvious reason for preferring one to the other.

One issue is that of marginalization (the author thanks Julian Besag for
drawing his attention to this issue). Suppose we have a random field defined
for a continuous space variable. In order to fit it in with a MRF approach, we
must first restrict the data to some form of lattice. For example, one approach
which has been adopted in some agricultural or epidemiological contexts is
to aggregate data by county, treating counties with common boundaries as
neighbors in the MRF specification. But the question then arises: how much
are the resulting joint distributions invariant to the arbitrary specifications of
county boundaries?

As a concrete example of this problem, consider a model with data z1, ..., z,11
corresponding to averages of some spatially distributed quantity over n + 1
counties, and suppose a joint density py (21, ..., Zn+1) is specified. Now suppose
some administrative authority decides to amalgamate the nth and (n + 1)st
counties, defining =), = (2, + Zn11)/2. Let pa(x1,...,25_1,2),) denote the
joint distribution under the new model. Logically, po should be derived from
p1 through a marginalization condition of the form

P2(T1, ey Tty X)) = /p1(361, ooy B 1y Ty 200, — T )iy (32)

The question then arises: do natural specifications of the models p; and po
satisfy relationships such as (32) ?

Although this is a very specific question it is meant to illustrate a general
point, that there are natural consistency relations among probability distribu-
tions, and it may require some care to ensure that there are satisfied.

In the case of geostatistical models, the difficulty just described does not
arise, because such models work by specifying the covariance between any pair
of sites, and the covariance between two county averages is computed by an
obvious integral of the pointwise covariance function over the two counties.
Such an operation will always satisfy consistency relations such as (32) . How-
ever, for a typical MRF model, (32) will not be satisfied unless unusual care
is taken in specifying the model. This appears to be an argument against the
use of MRF models in cases where the lattice structure is not defined by the
natural geometry of the system.

On the other hand, from other points of view, MRF models are more flexible
— for example, we have already seen that they may be defined for binary data
(through the autologistic model) and there are by now many models for count
data with either marginal or conditional Poisson distributions, whereas all
of our geostatistical discussion has been (implicity or explicitly) for normally
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distributed data. For this reason, the MRF models potentially lead to a much
richer class of models.

4.3 Use of MRFs in hierarchical models

One of the most rapid developments in recent years has been the use of MRF's
as a component model in some hierarchical structure, this greatly increasing
the scope of applications for such models. As an example, Best et al. (1998)
considered extensions of the Clayton-Kaldor (1987) model of the form

Y; | pi ~ Pois{E;exp(u;)},

i =z B+ u; + vi, (33)

in which Y; is the count (of disease incidences, say) in a particular county or
region ¢, F; is the susceptible population and y; is a random intensity function;
p; is specified through a regression model z!' 3 and additional random errors
u; and v;. In the model of Best et al., v; are independent random errors but
u; are spatially dependent and specified through a conditional autoregressive
(or autonormal) model.

Diggle et al. (1998) proposed something similar but based on geostatistical
models for p;. Wolpert and Ickstadt (1998) also considered a model with
Poisson counts, but for them, the underlying field was assumed to have a
special structure with gamma marginal distributions. Evidently, these are
only a few examples of what is possible with this kind of structure, and there
are many possibilities for extensions to other kinds of marginal or conditional
distributions.

4.4 Environmental applications of MRF models

So far, the applications of MRF models in physical environmental modeling
have been very limited, but an exception is the recent paper by Cressie et al.
(1999). That paper applied both geostatistical and MRF approaches to the
prediction of a particulate matter field based on 27 monitoring stations in the
area of Pittsburgh, Pennsylvania. They also gave a more detailed discussion
than we have here of the relative merits of the two approaches.

5 Spatial design of experiments

In this and the following section, we deal much more briefly with two other
topics which are of major importance, but which space does not permit us to
develop in more detail in the present review.

The issue of spatial design of experiments arises most commonly in develop-
ing a monitoring network. To take one example where the problem arises, the
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U.S. Environmental Protection Agency is responsible for monitoring a large
number of airborne and water-borne pollutants. There are legal requirements
and political considerations in deciding where to place monitors but, in most
cases, the Agency still has discretion over how many monitors to place in a
particular city or region, and over the precise location of these monitors. For
example, in a city such as Chicago, should there be a higher concentration of
monitors near Lake Michigan (where, experience shows, there is a higher vari-
ability in atmospheric conditions due to local meteorological and lake-based
effects), or should the monitors be evenly distributed over the suburban regions
near the city? Another version of the problem (Oehlert, 1996) is when there
is an existing network of monitors but, for cost-saving reasons, it is desired to
close down a certain fraction of the network.

One formulation of the problem developed by Le and Zidek (1992) is to
assume a relatively large but discrete set of potential sites of interest, divided
into “gauged” sites (the ones where monitors are actually located) and “un-
gauged” sites. In broad terms, the problem then becomes to select the set
of gauged sites so that the predictions at the ungauged sites are as accurate
as possible. There are then two issues: (i) how to specify a suitable criterion
for accuracy at a large set of ungauged sites, (ii) how to find designs which
perform well under such a criterion.

Problem (i) is essentially the classical problem of optimal design of experi-
ments, for which there are classical criteria such as D-optimality, E-optimality
and so forth (see, e.g., Fedorov (1972) or Atkinson and Donev (1992)), or
Bayesian approaches which are often formulated in terms of information-
theoretic criteria, following Bernardo (1979).

Even when the criterion is well defined, the problem of selecting, for exam-
ple, the best 99 out of 249 potential sites (Oehlert 1996) is a formidable com-
binatorial problem which defies exact solution. In practice, ad hoc addition-
deletion rules have been developed. Other references include Brown et al.
(1994), Oehlert (1993, 1995), Le et al. (1997) and Nychka and Saltzman
(1998).

6 Spatial-temporal data

Spatial-temporal analysis is concerned with random fields of the form X (s, %),
where s is a location or site variable and ¢ is time. (In contrast to previous sec-
tions, here we use t specifically to denote time.) A model for the random field
then requires that we specify the joint distribution of { X (s1,%1),..., X (Sn,tn)}
for any combination of space-time pairs (s1,%1), ..., (Sp,tn). In the simplest
case where we assume the field is Gaussian, this means spacifying the covari-
ance between X (s,t) and X (s',t') for any s,t,s' .

The simplest models are the separable models, for which the spatial-temporal
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covariance function factorizes as
Cov {X(s, t), X (s, t')} =C(s,8)y(t—t) (34)

where C(+, ) is a spatial covariance function and () is the covariance function
of a stationary time series.

An early example of the application of (34) was the paper by Haslett and
Raftery (1989), who used it to model the joint distribution of wind speeds at
12 stations in Ireland. In their model, spatial covariance was represented by
a stationary, isotropic model with an exponential variogram (15), while the
temporal covariance function they adopted was the fractional ARIMA process
(Beran 1994), which incorporates long-range dependence in time.

Apart from the convenience of the mathematical representation, another
advantage of separable models is their computational tractability. For exam-
ple, Mardia and Goodall (1993) considered the case of a m x n data matrix
X = (X;k), where X is the value at the ith spatial location and the kth time
point, with a model of form

X ~ N(u,A®T)

where A = ();;) is a spatial covariance matrix and I' = () is a temporal
covariance matrix. [The ® notation is interpreted to mean Cov (X, X)) =
XijYki-) Assuming multivariate normality, the joint density of X may be writ-
ten as

(2m) ™AL exp [t (AT D X - )T (35)

The importance of (35) is that it shows that one only needs to compute the
determinant and inverse for the matrices A and I', and not for the (mn) x (mn)
matrix A®TI'. To do the latter directly would, of course, be both much slower
and would consume far more computer storage space.

Nevertheless, despite the pragmatic advantages of separable models, it is
now increasingly recognized that they are not a realistic assumption for much
practical data. It is likely that much work over the next few years will be
devoted to the development of new non-separable models for spatial-temporal
processes. At the present time, the literature is scattered, with few coherent
themes. A few recent developments are:

(i) Carroll et al. (1997) proposed a model for the spatial-temporal distri-
bution of atmospheric ozone in the Houston area. By examining correlation
vs. distance plots at different time lags, they proposed a specific paramet-
ric form for the spatial-temporal covariance function and fitted it through a
cross-validation-type method, full maximum likelihood being infeasible for the
data sizes they were considering. The model appeared to have good practical
properties for the specific data to which it was applied, but the general form
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of the covariance does not appear to be positive definite (Cressie 1997), and
without this, the model is of limited general utility.

(ii) Jones and Zhang (1997) have proposed a class of continuous-parameter
models derived from stochastic partial differential equations.

(iii) The most promising approach at the present time is based on gener-
alizations of the Kalman filter, in which the set of spatial variables at each
time is viewed as a random vector with dynamic equations for the temporal
evolution. The approach is highly computationally intensive, but it is feasible
within the structure of Bayesian hierarchical models, and has the additional
advantage (e.g., in an atmospheric science context) that the dynamical equa-
tions can sometimes be suggested by the physics of the process being observed.
Some representative papers on this approach are those by Wikle et al. (1998),
Wikle and Cressie (1999).

7 Hierarchical models for spatial trends

In the remainder of this chapter, we outline some recent ideas for modeling
of a spatially varying temporal trend. The canonical problem is suggested
by global warming: empirical data show an increasing temperature trend at
many points of the earth’s surface, which some scientists interpret as evidence
of an anthropogenically induced greenhouse effect. However, the trend is not
the same at all places. For example, within the continental United States,
the increasing temperature trend is greatest in the northern midwest states,
while in other parts of the country, such as the south east, there has been
little or no observed trend. This effect is clearly seen in individual time series
at different spatial locations, but there is wide variability in estimated trends
from one location to another which may simply be due to the statistical error
in estimating the trends. Therefore, the problem arises of “smoothing” the
trends available from individual time series, to obtain an overall picture of how
the trend varies with space. A similar problem has been studied in connection
with trends in atmospheric SO levels across the United States (Holland et
al. 2000), and in a rather different context, for the variability of particulate
matter-based mortality across different cities (Dominici et al. 2000).

One plausible model is as follows. Suppose there is a linear spatially depen-
dent trend, denoted Z;(s) for location s, for which

E{Zi(s)} = w(s)Tﬂ, Cov{Z1(s), Z1(s")} = C(s,5';0), (36)

in which z(s) is a known spatially dependent covariate vector, # an unknown
vector of regression coefficients, and C' a spatial covariance function depend-
ing on parameters §. We assume that we cannot observe Zj(s) directly, but
instead, for a fixed set of spatial locations s = sy, ..., $;,, we observe a time
series {Y (s,t1), ..., Y (s,t,)}, whose distribution depends on Z;(s) as well as
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other unknown parameters which we shall denote by ¢. This suggests a natu-
ral “hierarchical model” structure in which there is a top level of the hierarchy
represented by the unknown parameters (3,60, ¢), a middle level represented
by the unobserved process Z;(-), and a bottom level represented by the ob-
served data {Y (s;,¢;), i = 1,...,m, j =1,...,n}. The (Bayesian) specification
of the model is completed by a prior distribution on (3,6, ¢), and the whole
structure would then be analyzable by modern methods of hierarchical models
analysis (see, e.g., Gilks et al., 1996). However, for typical data sets with large
numbers of spatial locations as well as many time points, such an approach,
directly implemented, would be very time consuming.

We therefore propose an alternative approach which avoids the full compli-
cations of a hierarchical models analysis. Suppose, for each observed spatial
location s;, we calculate an estimate of Z;(s;), which we denote Zl(sz-), based
just on the time series Y (s;,¢;), j = 1,...,n. This may be based on any model
appropriate for that time series. Since most statistical methods lead to approx-
imately normal distributions of estimators in large samples, we may assume

Z1(si) = Z1(si) +&(s1), (37)

where {£(s1), ...,&(sm)} is a zero-mean vector of errors such that

Cov{&(s;), &(s5)} = wij, (38)

W = (wj;) being the error covariance matrix. Moreover, these errors, cor-
responding to measurement errors at individual stations, may be assumed
independent of the true trend surface Zi(-).

By combining (36)—(38), we have a model
E{Zi(si)} = z(s:)' B, Cov{Zi(s;),Z1(sj)} = C(si,55;0) + wij, (39)

together with (approximate) joint normality.

We make one final simplifying assumption, which is to assume that the {w;;}
in (38) are known. This is justified by the fact that, since these estimates arise
from the statistical errors in individual time series, they can be characterized
from standard error calculations in the individual time series estimations. At
any rate, we should be able to approximate the w;;s much more accurately
than we could initially guess the covariances of the true Z; process, in other
words, the C' function in (39).

Thus we are led to a model of the form (39) in which C(-, -; #) is a parametric
covariance function depending on parameter vector #, and W = (wj;) is a
known error covariance function.

We now give two examples of this approach. The first is again based on
the Historical Climatological Network (see Section 3), from which we have
calculated time trends in winter mean temperatures, over the period 1965—
1996, for each of 184 stations, representing the data as the sum of a linear
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trend and an AR(p) staionary time series and estimatoing the slope of the
linear trend by maximum likelihood. This leads to an estimate Z;(s;) of the
temperature trend at each station, with an accompanying standard error. The
squares of the standard errors are taken as values of the diagonal entries w;;,
while the off-diagonal entries, w;; for ¢ # j, are taken as 0. A homogeneous
spatial model with Gaussian semivariogram function (16) is assumed for Z,
and a regression model x(s)” 3 corresponding to a cubic polynomial function
of s, after testing various alternative models both for the spatial covariance
function and for the polynomial regression model. Kriging is then used to
construct an estimate of the surface Zi(s). The resulting estimate (contour
plot at the top, perspective plot at the bottom) is shown in Fig. 10. The result
shows how the estimated trend varies across the country, with the largest
trend around the great lakes region, consistent with the earlier description.
Although we do not give error estimates here, it should be pointed out that
the methodology does allow us to obtain approximate error bounds of the
reconstructed surface.

The second example is based on Holland et al. (2000). In this paper, sulfur
dioxide measurements at 35 locations in the eastern U.S. over the time period
1989-1995 were characterized as functions of seasonal trends, meteorology,
and an overall additive linear trend. A generalized additive model (Hastie and
Tibshirani, 1990), applied to the logarithms of weekly sulfur dioxide totals,
was used to estimate the trend at each station, after adjusting for the seasonal
and meteorological terms. In this example, instead of assuming the W = (w;;)
matrix in (39) is diagonal, w;; is estimated for each (i, j) pair by a jackknife
procedure. The model (39) is then fitted, again with a Gaussian semivariogram
kernel (16). The resulting estimate of the trend surface is shown in Fig. 11.

The importance of this analysis, in the context of evaluating improved
regional-scale air quality resulting from electric utility emission reductions,
is that it allows the characterization of estimated trends in sulfur dioxide, not
only at the monitoring stations themselves, but also on a regional basis. The
trends can be compared to corresponding changes in sulfur dioxide emissions
to evaluate the impact of reduced emissions. For the period, 1989-1995, re-
duced emissions levels from large electric utilities are similar to the estimates
of regional trends.
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8 Conclusions

In this chapter, I have attempted to give a broad overview of current themes in
spatial statistics, though concentrating on the geostatistical approach, which
remains the most widely applied method in environmental statistics. Modern
methods of estimation, such as REML or Bayesian estimation, allow these
processes to be estimated without some of the ad hoc features of earlier pro-
posals, and the Bayesian procedures in particular have the advantage that
when applied to the spatial prediction or kriging problem, they automatically
allow for the uncertainty of the estimated model parameters, a deficiency of
classical kriging. Extensions to nonstationary processes and spatial-temporal
models are major themes of current research and may be expected to remain
so for some time to come.

The final part of the chapter discussed a particular application of these
techniques, to the estimation of spatially dependent trends. The method de-
scribed in section 7 is intended to be fairly straightforward to apply as an
extension of classical kriging, but here also there are possibilities for more
general approaches, including fully Bayesian approaches.

References

Abramowitz, M. and Stegun, I.A. (1964), Handbook of Mathematical Func-
tions. National Bureau of Standards, Washington D.C., reprinted by Dover,
New York.

Atkinson, A.C. and Donev, A.N. (1992), Optimum Experimental Designs.
Oxford University Press.

Beran, J. (1994), Statistics for Long-Memory Processes. Chapman and Hall,
New York.

Bernardo, J.M. (1979), Expected information as expected utility. Annals of
Statistics 7, 686-690.

Besag, J. (1974), Spatial interaction and the statistical analysis of lattice
systems. J.R. Statist. Soc. B 36, 192-225.

Besag, J. (1975), Statistical analysis of non-lattice data. The Statistician
24, 179-195.

Besag, J. (1977), Efficiency of pseudolikelihood estimation for simple Gaus-
sian field. Biometrika 64, 616—618.

Besag, J., Green, P.J., Higdon, D. and Mengersen, K. (1995), Bayesian
computations and stochastic systems. Statistical Science 10, 1-66.

Besag, J. and Higdon, D. (1999), Bayesian analysis of agricultural field
experiments (with discussion). J.R. Statist. Soc. B 61, 691-746.

Besag, J. and Moran, P.A.P. (1975), On the estimation and testing of spatial
interaction in Gaussian lattice processes. Biometrika 62, 555-562.



Spatial Statistics in Environmental Science 499

Best, N.G., Arnold, R.A., Thomas, A., Waller, L.A. and Conlon, E.M.
(1999), Bayesian models for spatially correlated disease and exposure data
(with discussion). In Bayesian Statistics 6, eds. J.M. Bernardo, J.O. Berger,
A.P. Dawid and A.F.M. Smith. Oxford University Press, pp. 131-156.

Brown, P.J., Le, N.D. and Zidek, J.V. (1994), Multivariate spatial inter-
polation and exposure to air pollutants. Canadian Journal of Statistics 22,
489-509.

Carroll, R.J., Chen R., George, E.I., Li, T.H., Newton, H.J., Schmiediche,
H. and Wang, N. (1997), Ozone exposure and population density in Harris
County, Texas. J. Amer. Statist. Assoc. 92, 392-404.

Clayton, D.G. and Kaldor, J. (1987), Empirical Bayes estimates of age-
standardized relative risks for use in disease mapping. Biometrika 43, 671—
681.

Clifford, P. (1990), Markov random fields in statistics. In Disorder in Phys-
ical Systems: A Volume in Honour of John M. Hammersley (G.R. Grimmett
and D.J.A. Welsh, editors). Oxford: Oxford University Press.

Comets, F. (1992), On consistency of a class of estimators for exponential
families of Markov random fields on a lattice. Annals of Statistics 20, 455-468.

Cressie, N. (1993), Statistics for Spatial Data, second edition. John Wiley,
New York.

Cressie, N. (1997), Comment on Carroll et al. (1997). J. Amer. Statist.
Assoc. 92, 411-413.

Cressie, N., Kaiser, M.S., Daniels, M.J., Aldworth, J.W., Lee, J., Lahiri,
S.N. and Cox, L.H. (1999), Spatial analysis of particulate matter in an urban
environment. Preprint, lowa State University.

Diggle, P.J., Tawn, J.A. and Moyeed, R.A. (1998), Model-based geostatistics
(with discussion). Applied Statistics 47, 299-350.

Dominici, F., Samet, J.M. and Zeger, S.L. (2000), Combining evidence on
air pollution and daily mortality from the 20 largest US cities: a hierarchical
modelling strategy (with discussion). J.R. Statist. Soc. A 163, to appear.

Fedorov, V.V. (1972), Theory of Optimal Ezperiments. Academic Press,
New York.

Geman, S. and Geman, D. (1984), Stochastic relaxation, Gibbs distribu-
tions and the Bayesian restoration of images. IEFE Transactions on Pattern
Analysis and Machine Intelligence, 6, 721-741.

Geyer, C.J. and Thompson, E.A. (1992), Constrained Monte Carlo maxi-
mum likelihood for dependent data (with discussion). J.R. Statist. Soc. B 5/,
657-699.

Gilks, W.R., Richardson, S. and Spiegelhalter, D.J. (eds.) (1996), Markov
Chain Monte Carlo in Practice. Chapman and Hall, London.

Guttorp, P., Meiring, W. and Sampson, P. (1994), A space-time analysis of
ground level ozone data. Environmetrics 5, 241-254.



500 Smith

Haas, T.C. (1990), Lognormal and moving-window methods of estimating
acid deposition. J. Amer. Statist. Assoc. 85, 950-963.

Haas, T.C. (1995), Local prediction of a spatio-temporal process with an
application to wet sulfate deposition. J. Amer. Statist. Assoc. 90, 1189-1199.

Handcock, M.S. and Stein, M. (1993), A Bayesian analysis of kriging. Tech-
nometrics, 35, 403-410.

Harville, D.A. (1974), Bayesian inference for variance components using
only error contrasts. Biometrika 61, 383-385.

Harville, D.A. and Jeske, D.R. (1992), Mean squared error of estimation
or prediction under a general linear model. J. Amer. Statist. Assoc. 87,
724-731.

Haslett, J. and Raftery, A.E. (1989), Space-time modelling with long-memory
dependence: Assessing Ireland’s wind power resource. Applied Statistics 38,
1-21.

Hastie, T.J. and Tibshirani, R.J. (1990), Generalized Additive Models. Chap-
man and Hall, London.

Holland, D.M., De Oliveira, V., Cox, L.H. and Smith, R.L. (2000), Esti-
mation of regional trends in sulfur dioxide over the eastern United States.
Environmetrics, to appear.

Holland, D., Saltzman, N., Cox, L.H. and Nychka, D. (1999), Spatial pre-
diction of sulfur dioxide in the eastern United States. In geoENV I — Geo-
statistics for Environmental Applications, eds. Gémez-Herndndez, J., Soares,
A. and Froidevaux, R., Kluwer, Dordrecht, 65-76.

Jones, R.H. and Zhang, Y. (1997), Models for continuous stationary spatial-
temporal processes. In Modelling Longitudinal and Spatially Correlated Data:
Methods, Applications and Future Directions, edited by T.G. Gregoire et al..
Lecture Notes in Statistics 122, Springer Verlag, New York, pp. 289-298.

Kitanidis, P.K. (1983), Statistical estimation of polynomial generalized co-
variance functions and hydrologic applications. Water Resources Research 19,
909-921.

Le, N.D. and Zidek, J.V. (1992), Interpolation with uncertain spatial co-
variances: A Bayesian alternative to kriging. Journal of Multivariate Analysis
43, 351-374.

Le, N.D., Sun, W. and Zidek, J.V. (1997), Bayesian multivariate spatial
interpolation with data missing by design. J.R. Statist. Soc. B 59, 501-510.

Mardia, K.V. and Goodall, C.R. (1993), Spatial-temporal analysis of mulit-
variate environmental monitoring data. In Multivariate Environmental Statis-
tics, eds. G.P. Patil and C.R. Rao, Elsevier Science Publishers, pp. 347-386.

Mardia, K.V. and Marshall, R.J. (1984), Maximum likelihood estimation of
models for residual covariance in spatial regression. Biometrika 71, 135-146.

Nychka, D. and Saltzman, N. (1998), Design of Air Quality Monitoring
Networks. Chapter 4 of Case Studies in Environmental Statistics, edited by



Spatial Statistics in Environmental Science 501

D. Nychka, W. Piegorsch and L.H. Cox. Springer Lecture Notes in Statistics,
number 132, Springer Verlag, New York, pp. 51-76.

Oehlert, G.W. (1993), Regional trends in sulfate wet deposition. Journal of
the American Statistical Association 88, 390-399.

Oehlert, G.W. (1995), The ability of wet decomposition networks to detect
temporal trends. Environmetrics 6, 327-339.

Oehlert, G.W. (1996), Optimal shrinking of a wet decomposition network.
Atmospheric Environment 30, 1347-1357.

Penttinen, A. (1984), Modelling interaction in spatial point patterns: para-
metric estimation by the maximum likelihood method. Jy. Stud. Comput.
Sci. Econ. Statist. T.

Propp, J.G. and Wilson, D.B. (1996), Exact sampling with coupled Markov
chains and applications to statistical mechanics. Random Structures and Al-
gorithms 9, 223-252.

Ripley, B.D. (1981), Spatial Statistics. Wiley, New York.

Ripley, B.D. (1988), Statistical Inference for Spatial Processes. Cambridge
University press, Cambridge, U.K.

Sampson, P.D. and Guttorp, P. (1992), Nonparametric estimation of non-
stationary spatial covariance structure. J. Amer. Statist. Assoc. 87, 108-119.

Smith, R.L. (1996), Estimating nonstationary spatial correlations. Unpub-
lished; University of North Carolina, Chapel Hill. Available at

www.unc.edu/depts/statistics/postscript /rs/nonstationary.ps.

Swendsen, R.H. and Wang, J.-S. (1987), Nonuniversal critical dynamics in
Monte Carlo simulations. Phys. Rev. Lett. 58, 86-88.

Waller, L.A., Carlin, B.P., Xia, H. and Gelfand, A.E. (1997), Hierarchical
spatio-temproal mapping of disease rates. J. Amer. Statist. Assoc. 92, 607
617.

Wikle, C., Berliner, L.M. and Cressie, N. (1998), Hierarchical Bayesian
space-time analysis. Journal of Environmental and Ecological Statistics 5,
117-154.

Wikle, C. and Cressie, N. (1999), A dimension reduction approach to space
time Kalman filtering. Biometrika 86, 815-829.

Wolpert, R.L. and Ickstadt, K. (1998), Poisson-gamma random field models
for spatial statistics. Biometrika 85, 251-267.

Zimmerman, D.L. and Cressie, N. (1992), Mean squared prediction error

in the spatial linear model with estimated covariance parameters. Ann. Inst.
Statist. Math. 44, 27-43.



