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Summary. In recent years, much attention has been given to the human health
effects of atmospheric pollutants, especially particulate matter. This has been the focus
of particularly heated debate in the USA, as new regulations introduced in 1997 by the
United States Environmental Protection Agency (USEPA) have considerably tightened the
existing standard. Similar regulations are also being considered by several countries of the
European Union. Much of the debate revolves around claims that particulate matter in
the atmosphere directly influences mortality, hospital admissions with respiratory diseases,
and so on. In this chapter, we take a critical look at one of these issues, the influence of
PM; (particulate matter of aerodynamic diameter no more than 10 gm) on deaths in the
elderly population. Two data sets are considered, one from Birmingham, Alabama, and
the other from Chicago. In both cases we find a significant PM;¢—mortality relationship
in some of the models fitted, but not in others. Other issues considered include the
existence of a threshold below which PM;, has no discernable influence, the interaction
with other pollutants, and the mortality displacement or harvesting effect (the theory
that the direct effect of PMyg is limited to a very small subset of the population who are
already critically ill and whose death is only advanced by a few hours or days as a result
of air pollution). For the latter phenomenon, a compartment-type model is introduced
and analyzed using a Markov chain Monte Carlo procedure. The results show that even
when all these alternative effects are considered, there remains a considerable amount of
unexplained association between particulates and mortality, but there appear to be too
many uncertain issues to allow us to make definitive statements about a causal relationship.

Keywords: Bayesian inference, Generalized additive model, Harvesting phenomenon,
Influence of other atmospheric pollutants, Linear regression, Markov chain Monte Carlo
algorithms, Mortality displacement, Non-linear relationships, PM;(, Poisson regression,
Variable selection.

! Address for correspondence: Department of Statistics, University of North Carolina,
Chapel Hill, NC 27599-3260, USA. Email: rs@stat.unc.edu. This research was primarily
conducted at the (US) National Institute of Statistical Sciences, Research Triangle Park,
NC, supported in part by the United States Environmental Protection Agency (USEPA)
under Cooperative Agreement #CR819638-01-0. The work has not been internally re-
viewed by the USEPA and no endorsement by that agency should be inferred. We thank
Jerome Sacks for numerous conversations and insights. This paper is a revised and ex-
tended version of one presented at the 1997 Joint Statistical Meetings of the American
Statistical Association (Smith et al. 1997a).

2 Department of Marine, Earth and Atmospheric Sciences, North Carolina State Uni-
versity, Raleigh, NC 27695-8208, USA.

3 Department of Statistics, University of Missouri, Columbia, MO 65211, USA.

1



1 INTRODUCTION

In recent years there has been increasing concern over the effects of air pollution on
human health. The debate has been particularly intense in the USA, where in July 1997
the United States Environmental Protection Agency (USEPA) introduced new standards
for ozone and particulate matter, citing extensive published research on human health
effects as the reason why a tightened standard was necessary. In the case of ozone, a
previous standard based on the maximum hourly value for each day was replaced by one
based on the eight-hour average ozone level, but with a sharply reduced threshold (the
old standard was 120 ppb for hourly ozone; the new standard is 80 ppb for the eight-hour
average). In the case of particulate matter, the previous standard was based on PMyy
(particulate matter of no more than 10 pm in aerodynamic diameter) and established an
acceptable annual average level of 50 pg/m® and a daily maximum of 150 ug/m?. The
new standard is based on PM; 5 (particulate matter of no more than 2.5 ym in diameter)
and permits an annual average level of 15 pug/m? and a daily maximum of 65 ug/m?3. The
annual average standard has been particularly contentious because many US cities are
currently above that level and industry groups have argued that it would be extremely
costly to implement the new regulations. Health care groups, however, have argued that
epidemiological studies, based largely on current EPA monitoring of PMg, show a strong
influence of particulate matter on a variety of adverse health outcomes, including deaths in
the elderly population, increased hospital admissions due to asthma and other respiratory
complaints, and increased infant mortality. Moreover, it is believed that the very small
particles are primarily responsible for these effects, hence the switch to a standard based
on PM; 5. At the present time, the new regulations are in force but penalties for non-
compliance will be delayed for five years to allow time for additional scientific research.
The issue has also come under close scrutiny in Great Britain, The Netherlands and several
other European countries as similar regulation is considered there.

In this chapter, one of the key issues in this debate will be reviewed, the influence
of PMyy on mortality in the elderly population. A number of authors have analyzed
data on this, and have found a statistically significant relationship. Based on data from
Birmingham (Alabama) and Chicago, we find that the relationships are highly model-
dependent. We also raise questions over the the existence of a threshold below which
PM; has no discernable influence, the interaction with other pollutants, and the mortality
displacement or harvesting effect (the theory that the direct effect of PMyg is limited to
a very small subset of the population who are already critically ill and whose death is
only advanced by a few hours or days as a result of air pollution). The latter question
is examined by trying to reconstruct the size of the critically ill population through a
Bayesian analysis. Overall, we believe that there are too many uncertain issues to allow
us to make definitive statements about a causal relationship between PM;y and mortality.

2 METHODOLOGY

One of the first papers to consider the particulates-mortality relationship carefully
was Schwartz and Marcus (1990), who were concerned primarily with data from London
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in the 1960s. In that paper, the authors addressed a number of the difficulties involved in
inferring a causal relationship from the available data. Among these are

e the effect of autocorrelation,
e the influence of long-term trends,

e the possible existence of a threshold level of particulates, below which there is no
observable effect,

e whether the particulates effect is confounded with the weather,

e whether the effect due to particulates can be separated from that due to other forms
of air pollution.

In the case of the London data, there was a tenfold drop in particulate levels over the
period of the study, and there seems little doubt that this had direct benefits on human
health, but the interpretation in the case of modern US cities is much less clear cut.

The main results in the present paper are based on classical linear regression models

of the form
yi=Y Bizji+e (1)

where y; is some transformation (logarithm or square root) of the daily death count on
day t, {z ¢} are covariates representing the long-term trend, meteorology and air pollution,
and {e;} are treated as independent N (0, c?) variables with unknown o%. In other studies,
either maximum likelihood Poisson regression or variants of the generalized estimating
equations technique due to Liang and Zeger (1986) have been adopted, but the alternative
estimation methods make little difference to the kinds of models fitted or the conclusions
obtained from the studies. Questions of overdispersion (with respect to a Poisson model)
and autocorrelation among the residuals have also been considered, but in the data sets
analyzed here these do not appear to be important features, provided one adequately
models the long-term trend. Much more critical issues, in our view, concern how to define
the covariates in (1).

First, we consider the long-term trend. All the data sets exhibit significant trends
well beyond anything that can be explained in terms of meteorology and air pollution.
For example, Fig. 1 shows weekly death counts for six years in Chicago, together with a
trend fitted both by a simple loess smoother in S-PLUS (solid curve) and by the B-spline
method to be described below (dashed curve). It is clear that there is a strong seasonal
variation, but that it is irregular — the peak occurs at a different time each year and
is of much greater height some years than others. This has been modeled by treating
the trend as a single continuous curve represented as a linear combination of B-spline
basis functions (Green and Silverman, 1994). In the analysis of Chicago which follows,
the eventual analysis was based on 56 months’ data and this was modeled by a B-spline
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representation with 55 degrees of freedom. For Birmingham, we used 20 degrees of freedom
for 41 months of data.

The next issue to consider is meteorology. It is accepted that extreme meteorological
conditions may be correlated with air pollution and therefore act as confounders in the
analysis. In most analyses, temperature and humidity are treated as the main meteorolog-
ical confounders, the latter represented by either specific humidity or dewpoint. It matters
little which of these two is adopted, but in the present analysis we use specific humidity.
It is also necessary to consider some lagged variables, and to allow for nonlinear effects.
The most important nonlinear relationship is that between deaths and temperature, which
is decreasing over most of the range of temperatures but increasing at high temperatures.
In the present analysis this is allowed for by introducing two regressors, T and (T — Ty )+
(r4+ = max{z,0}) where T is either daily mean or daily maximum temperature and Tj is
a changepoint. The fitted curve is thus a broken straight line with a change of slope at
Ty. In Birmingham, T is daily max temperature and 7 set equal to 30°C; in Chicago, T
is daily mean temperature and 7, = 22°C. In both cases the value of Tj was chosen on
the basis of initial plots of the data. One indicator of the success of this strategy was that
it eliminated any need for seasonal interactions in the model. In some earlier analysis,
temperature has been modeled as a linear term only, but then an interaction between the
temperature coefficient and season has been found, the coefficient being positive in sum-
mer and negative in winter. It seems likely that this is an artifact created by the fact that
the true temperature-mortality relationship is non-linear. In the current analysis, seasonal
interactions were tested, but not found to be statistically significant.

In both Birmingham and Chicago, the actual variables included were selected through
standard variable selection techniques. For example, in Birmingham this led to the regres-
sors T and (T — 30); where T is maximum temperature lagged four days, as well as
minimum temperature lagged three days, current day’s specific humidity, square of cur-
rent day’s specific humidity, and specific humidity lagged two days. However a number of
different meteorological models were tried, and the subsequent conclusions regarding the
PMjq effect are not overly sensitive to the choice of variables, though it does appear to be
important to include both temperature and humidity (or dewpoint) among the variables
considered.

Finally, we consider which variable or variables best represents the particulates. This
has been the source of considerable confusion in the literature. For example, Schwartz and
Dockery (1992) and the subsequent “HEI” reports of Samet et al. (1995, 1997) have used
two-day averages of total suspended particulates (TSP) in their studies of Philadelphia.
Schwartz (1993) used three-day averages of PMy, excluding the current day (average of
lags 1, 2 and 3) in his analysis of Birmingham, Styer et al. (1995) used three-day averages
of PMy including the current day (lags 0, 1, 2) in Chicago, Pope et al. (1992) used five-
day averages of PMyq (lags 0, 1, 2, 3, 4) in Utah Valley, and so on. In each case the final
exposure measure was decided based on some kind of statistical criterion of best-fitting
model, but previous discussions of this question have not (with one exception) drawn
attention to the sensitivity of the results to which measure is selected.

4



3 LINEAR MODELING RESULTS

The data from Birmingham, Alabama, are elderly (aged 65 and over) nonaccidental
deaths for the period August 1985-December 1988, together with daily meteorology and
PM; readings. The data set is approximately the same as that of Schwartz (1993). The
analysis which follows used square root of daily death counts as the dependent variable ;.
The square root transformation is a natural choice because this is the variance stabilizing
transformation for the Poisson distribution. Maximum likelihood Poisson regression, in-
cluding the standard logarithmic link function, has also been applied and produces results
very similar to the following.

In the case of Chicago, the data are the same as in Styer et al. (1995), but restricted to
the period from April 15, 1986 to December 31, 1990. Styer et al. used data from January
1, 1985 to December 31, 1990. The reason for omitting the first 15 months’ of data is
that within this period the PM;q readings are available only every six days, and this seems
rather unsatisfactory for a comparison of different exposure measures. The remaining data
have approximately daily PMi, values, though still with about 15% missing. For this data
set, the most satisfactory regression was found to be a simple linear regression taking y,
as logarithm of daily death count.

To ensure a uniform scale for presentation of the results, all regression coefficients for
PM;, are expressed as 10,000 times the increase in log deaths associated with a 1 ug/m3
rise in PMyg. Thus if the regression coefficient is 8 (a fairly typical value), then according
to the model, a 10 pug/m? rise in PM;, would produce an increase of 0.008 in log deaths,
or a relative risk of e°°® ~ 1.008. Results from square root regression were converted to
this scale using a Taylor expansion. The reference level of a 10 pug/m? change in PMy,
is chosen because this i1s a reasonable guess of how much PM;y values might actually be
reduced if standards were tightened. Some other authors have used a 100 pug/m? change
in PMj as the basis for relative risk calculations, but this seems misleading since in all
US examples, the current level of PMyg is less than 100 pg/m?, so the possibility of a
reduction by this amount does not exist.

Daily values of PMyq will be denoted by pm with the appropriate lag — pmyg for
today’s value, pm; for yesterday’s, and so on. We also use pmmean with appropriate
lag for three-day average. Thus pmmeang is the average of pmg, pm; and pm,, while
pmmean, is the average of pmy, pms and pms.

With these conventions, the regression of Birmingham deaths on pmmeany, including
regressors for the log-term trend and for meteorology as described in section 2, produces a
coeflicient of 9.6, standard error 4.9, ¢ value 1.98. This is borderline statistically significant
and is close to the result obtained by Schwartz (1993), who used a different meteorological
model but the same measure of PMyy. However, other measures of PM;y produce quite
different results. For example, taking pmmeang as the regressor produces a coefficient of
5.5, standard error 4.8, not significant. If we include all five daily values pmy, ..., pmy in the
regression, the coefficients are —8.7, 11.4, —5.2, 6.7 and 4.2, each with standard error about
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5. In other words, we get negative coefficients for two of the five days. If we introduce pmy,
pmy and pmsy into the model one at a time, the coefficients are 2.3 (standard error 3.7)
for pmg on its own, 6.4 (standard error 3.8) for pm; on its own, and 5.2 (standard error
3.8) for pm, on its own. None of these is statistically significant but again the coefficient
for pmy is negative.

These results are in line with the independent analyses of Roth and Li (1996). They
also demonstrated great sensitivity to the lags of PMyg included in the model, including
a negative coefficient for pmg, even though the data set they used (1988 to 1993) only
partially overlapped the one used here.

It seems unlikely that the current day’s PMy, has a protective effect, but the results
demonstrate the sensitivity of the estimates to the exposure measure. On balance, it does
not appear that one can claim a significant PM;p—mortality relationship on the basis of
this data set.

The results for Chicago are more complex. Chicago is a much bigger city than Birm-
ingham, as reflected in the mean number of elderly nonaccidental deaths per day (83 for
Chicago, 15 for Birmingham), and this should make it easier to detect statistically signif-
icant results. In this analysis, trend was modelled via a B-spline with 56 knots, one for
each month of data. For the meteorological variables, attention was restricted to daily
mean temperature mntp and daily mean humidity mnsh, each for the current day and for
lags of 1, 2, 3 and 4 days. For example, in the case of temperature these five values are
denoted mntpy, mntpy, ... ,mntps where the suffix denotes the lag. In addition, a new
variable tg22 = (mntp — 22)1 was created to allow for possible changes in the tempera-
ture effect above 22°C, together with its lagged values t¢22;,....tg22,. We also considered
squared terms in all of these variables. After routine variable selection a model was con-
structed including the variables mntpg, mntpy, mntps, mntpy, tg229, tg222, tg22,, tg222,
mnshg, mnshy,mnshs and mnsh% (Smith et al. 1998). Taking this as the basic model and
adding different terms to represent particulate matter, the coefficients for pmmeany and
pmmean, added separately were 7.3 and 3.9 respectively, each with standard error 2.3. In
other words, the result was significant when based on pmmeany but not when based on
pmmeany. When pmyg, ..., pmy are inserted together, the estimates are 4.8, 3.9, 0.4, 0.8
and 2.2, each with standard error about 2.0. When pmg, pm; and pms are inserted one at
a time, the estimates are 4.7, 5.1 and 0.05, each with standard error 1.7. Thus we do get
a statistically significant result when based on either pmg or pmy, but somewhat smaller
in magnitude than that based on pmmeany.

The overall evidence here is that PM;( does affect mortality in Chicago, but it is still
surprising how sensitive the result is to different lags. An earlier analysis (Styer et al. 1995)
discussed seasonal variation of the PM;( coefficient and suggested that it is significant in
the spring and the fall, but not in the summer or winter. In the present analysis, we
have also considered the possibility of a season x PM;( interaction and have concluded
that this is not statistically significant. However this may be yet another manifestation
of the sensitivity of all these kinds of results to model specification — in this case, the
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different strategies for meteorological and seasonal adjustment used by Styer et al. and in
the present research.

4 NONLINEAR RELATIONSHIPS BETWEEN PM;;, AND MORTALITY

One of the original questions raised by Schwartz and Marcus (1990) was “is there a
threshold”? In the context of fixing standards, this is a critical question, because an impor-
tant issue is whether particulates at levels within the current standards have a measurable
adverse effect.

One way to pursue this is to model the PM;y component of the model nonlinearly.
In Fig. 2 a nonlinear relationship is plotted, using a B-spline representation, together
with pointwise 95% confidence bands. The PM;, measure in each case is taken to be the
one which in section 3 produced the most significant result, pmmean; for Birmingham
and pmmeang for Chicago. The discussion in this and subsequent sections does not take
into account the uncertainties associated with the selection of these particular exposure
measures. Also, the rest of the model (trend and meteorology effects) is treated exactly
as in the models of section 3. The effect is calculated in terms of relative risk (RR) with
respect to the median level of the PM;, variable (45 for Birmingham, 37.5 for Chicago).
Thus the RR is 1.0 and the confidence band of width 0 at this point. FElsewhere, the

confidence band gives a measure of the uncertainty of the fitted curve.

In both cases the estimate and confidence bands indicate an increasing effect at higher
levels, above 80 pg/m? for Birmingham and above 100 pug/m? for Chicago. These are both
above the USEPA standard for the mean, though within that for daily maxima. The effect
at lower levels is less clear. In Birmingham, the point estimate shows a steady decrease
in effect as pmmean, decreases to 0, but the confidence bands cast severe doubt on the
statistical significance of this. Schwartz (1993) gave a very similar plot of the estimated
effect, but without any confidence bands. In the Chicago plot, there is a sharp drop in the
estimated risk below about 20 pg/m?, and the confidence bands suggest this is statistically
significant. This would imply that there is no threshold in this case, though it is a little
hard to explain this precise shape of curve. It is possible that it is an artifact of the B-
spline representation used to fit the curve, though some exploration has been carried out
with alternative representations, producing similar shapes of plot. We return to this point
in section 5.

An alternative approach is to look for a threshold directly. This can be done by
fitting the PM;o dependence through a relation of the form 3;(P — Py)4+ where P is our
measure of PMyy — pmmean; for Birmingham, pmmeany for Chicago — and Py is a
threshold value. The relevant parameters in this case are therefore the threshold P, and
the regression coefficient . In Fig. 3, the profile log likelihood for F; is plotted for each
of the two data sets. Once again the rest of the model is as in section 3. The calculation
is conducted by fixing Py, then estimating the rest of the model by least squares, then
computing the residual sum of squares and hence the maximized likelihood. In each case
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the profile log likelihood is normalized to have maximum value 0. Also shown on the plot
is a horizontal line at —1.92, this being the level that determines the 95% confidence limit
according to the standard %X% limiting distribution of the likelihood ratio statistic. In fact
for this problem, being of the form of changepoint estimation, the standard asymptotic
theory does not apply but nevertheless the % x? bound is shown as a reference point.

In the case of Birmingham, there is a formal “maximum likelihood estimate” at
Py = 68. It seems unlikely that this value is of much meaning in itself, but a realistic
interpretation from Fig. 3 is that the data provide no grounds to discriminate between
any two values of Py below about 80. It is true that a null hypothesis Py = 0 would not
be rejected, but neither would any other null value below 80, including 50 (the current US
standard for the long-term mean).

For Chicago, again, the interpretation is more complex. The “maximum likelihood
estimate” is at Py = 0 and the profile log likelihood drops away sharply as Py increases.
There is a secondary peak at Py = 105 but this is almost certainly spurious. A formal test
for Py would not reject any null hypothesis in the range [0, 50], but the balance of evidence
is that the value of Py is likely to be close to 0 if not actually equal to 0.

5 ALTERNATIVE APPROACH VIA GENERALIZED ADDITIVE MODELS

An alternative approach to the analyses of sections 3 and 4 is provided by generalized
additive models (Hastie and Tishirani 1990), which we have implemented using the S-PLUS
routines described in detail by Chambers and Hastie (1993). This approach allows us to
combine the variable selection features of section 3 with the nonlinear modelling approach
of section 4. Our description here concentrates on Chicago since the corresponding analysis

for Birmingham has been described elsewhere (Smith et al. 1997b, 1998).

The basic additive model is defined by the equation
ye =Y fi(zje) +e (2)
J

where zj; is the value of the j’th covariate on the #’th day. As in ordinary least squares,
E{e;} = 0 and Var{e¢;} = 0?. The f; terms are arbitrary univariate functions with an f;
modeled for each covariate. In the linear case f;(z;¢) reduces to 3;z;+ as in (1).

The nonlinear fits so far have been based on a B-spline representation for an arbitrary
nonlinear function, but for the meteorological and particulate matter effects in the present
analysis the loess procedure is used (Chambers and Hastie, 1993). This is a smoother
based on fitting a linear model to subsets of the data. The fitted value at each z;; = X
say 1s obtained from a weighted least squares fit in a small neighbourhood of X, where
the weights are constructed to be large in a neighbourhood of X, but to decrease to zero
outside of this neighbourhood.



To avoid possible difficulties for the algorithms created by missing data, it was decided
to fill in missing data in the daily PMy, values by linear interpolation between the nearest
available data points. This is in contrast to the analyses in sections 3 and 4, where days
with missing data were simply omitted from the analysis. In the case of Chicago there
are 232 missing days’ out of the 1721 days of the analysis, and the maximum number of
consecutive missing days is five.

The initial analysis attempted to build a model to predict deaths from meteorology
alone; particulate matter was only added at a later stage. This is the same strategy as
employed for the modelling of section 3. An initial list of variables consisted of mntpy
and mnshy for lags k = 0,1,...,4, as in section 3. Backwards and stepwise selection were
used together with the AIC criterion to select variables. For each variable z; selected,
a separate decision has to be made whether the corresponding function f;(z;) should be
linear or non-linear. In the non-linear case it was modeled by the S-PLUS loess function
with default bandwidth f = 0.5, and the decision between linear and non-linear functions
was made using the approximate nonparametric F test described in Hastie and Tibshirani
(1990) and Chambers and Hastie (1993). Throughout the analysis, the trend continued
to be modelled as a linear combination of 56 B-spline basis functions, while the response
variable was taken as logarithm of daily elderly deaths, as in section 3.

This analysis produced a model including linear terms in the variables mntpy, mntps,
mntpy, mnshy and mnshsy, and non-linear terms in the variables mntp; and mnshy.

Having thus produced a model for the meteorology and trend effects, variables rep-
resenting particulate matter were added as in section 3. In particular, when three-day
averages of PMyq lagged either 0 or 1 day (pmmeangy, pmmean,) were added one at a
time, we obtained regression coefficients 7.4 for pmmeang and 4.5 for pmmean,, each with
standard error about 2.3. Note that these results (both estimates and standard errors) are
very similar to the ones produced in the earlier analysis of section 3, the main difference
being a slight increase in the pmmean; coefficient (previously 3.9).

This analysis was extended to consider the effect of individual days’ PMjg, as in
section 3. This was achieved by adding the variables pmg, pmy, ...pmy4 both one at a time
and all together. When added one at a time, the two variables producing significant results
were pmy (coefficient 4.6, standard error 1.7, t-value 2.8) and pmg (4.5, 1.6, 2.7). When
all five variables were tested in a backwards selection process, pms, pmo and pmy were
dropped in that order, leaving a model with pmy and pm; as the two significant variables
(coefficients 3.56, 3.60, standard errors 1.73, 1.75). Thus we find, as in the analysis of
section 3, that the most significant results are those due to the current day and one-day
lagged value of PMyg, with the other days barely having any effect. Comparison of several
different models based on an approximate C), criterion showed two models — the one with
pmmeany alone and the one with pmy and pm; — virtually tied for the best model overall.

The substantive questions raised by these analyses are why the pattern of one-day
values is so different from Birmingham, and why the current day’s value is so important
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— intuitively, one would expect there to be at least some delay in the response to a
high particulate level. The question raised by this is whether it is possible that PMyq 1s
itself a by-product of some chemical reaction involving other pollutants and that the other
pollutants are the real cause of death. Such explanation is plausible in view of studies
showing that PM;, and ozone are produced by similar chemical processes involving the
same precursors (Meng et al. 1997).

Study was also made of whether the effect due to PM;, was nonlinear. For this part
of the analysis, PMyq was again represented by the variable pmmeany which was found
earlier to be the most significant single measure of the effect. In this case, a nonparametric
F test for nonlinearity found no evidence to reject a linear relationship, the P-value being
.88. Nevertheless, for comparison with the results of section 4, a nonlinear component in
pmmeangy was fitted, with appropriate confidence bands.

Plots of the nine f; functions from equation (2), together with pointwise 95% confi-
dence intervals, are shown in Fig. 4. The pmmeany effect (bottom panel) is to be compared
with the right-hand plot in Fig. 2 — the sharp kink near 0 in the latter plot is not so
obvious in Fig. 4, but there is still a comparatively rapid increase in the dependence on
pmmeang over the range [0,20]. Once again the nonlinear curve suggests that the PM;jg
effect persists all the way down to 0, but the width of the confidence bands do not allow
us to make any definitive statement about the presence or absence of a threshold below

which PMy, has no effect.

The GAM analyses reinforce the conclusions from sections 3 and 4 in a number of
ways. They confirm that most of the meteorological effects except for temperature are
linear, and provide an alternative approach to those terms which are nonlinear. The
variable selection procedure leads to somewhat different variables being selected, but what
is important, the different meteorological adjustments lead to similar conclusions regarding
the significance of particulate matter, which is the real concern for us. Finally, the analyses
confirm that the most significant PM;q variable is pmmeang, with the biggest individual
contributions being from the current day and the one-day lagged value. The bottom line is
that although both the linear regression and GAM analyses involve a number of individual
decisions which are somewhat arbitrary, they lead to very similar conclusions, so providing
some reassurance that those arbitrary decisions are not exerting a great influence on the
final results.

6 MORTALITY DISPLACEMENT

Mortality displacement (also known as harvesting) refers to the possibility that the
observed PM;y—mortality relationship may be due to a very small subpopulation of crit-
ically ill individuals whose deaths are advanced only by a very short time period as a
result of a high air pollution episode. At present, very little is known about this, though
a number of authors have identified it as an important problem; for example, Samet et al.
(1995) highlighted it as one of the major unresolved issues in current studies.
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In this section, we outline a possible approach to the problem based on identification
of a latent variable representing the size of a hypothetical “frail population”, followed by a
Bayesian MCMC approach to the estimation of this variable. The idea of using this kind of
model has been suggested by other authors — for example, in unpublished notes relating
to “phase II” of the HEI study, J. Samet and S. Zeger have proposed a model very similar
to the one outlined here. However, to the best of our knowledge, the present study is the
first attempt to work out the detailed consequences of this. As we shall see, the approach is
not entirely successful, since although the analysis appears to identify a definite mortality
displacement effect, similar conclusions are found in simulated data generated from the
usual linear model.

6.1 A model for mortality displacement

The model may be represented as follows:

General Population

b

Frail Population wuy

L ¢

Deaths y;

The top box represents the general population, assumed to be effectively of infinite
size. The middle box represents the frail population, whose size on day ¢ is u;. On day
t, a number of individuals z;, assumed to be mutually independent of each other and of
the past history of the process, and Poisson distributed with mean gy, transfer from the
general population to the frail population. Then, among the u; + z¢ individuals within
the frail population, it is assumed that y; of them die on day ¢. The distribution of y;,
conditionally on us + z;, is assumed to be Binomial with individual probability of death
é¢. Thus {us, t =1,2,..., } satisfy the random difference equation

U = Ug—1 + Z4—1 — Yt—1- (3)

The key to statistical inference within this model is given by the following:

Proposition 1. Suppose u; has a Poisson distribution with mean A;. Then for each
t > 1, uy has a Poisson distribution with mean Ay, given by the difference equation

At = (M=t + pe—1)(1 — dy—1). (4)
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Furthermore, {y;, t > 1} are mutually independent random variables, where y; has a
Poisson distribution with mean vy, given by

ve = (At + pe) e (5)

Proof. Suppose, as an inductive hypothesis, that the statements about u; are true
for all ¢ < T, and the statements about y; are true for t < T — 1. We shall argue that they
must then be true for ¢ < T 4 1 in the case of {u;}, and ¢ < T in the case of {y;}. This
will suffice to prove the result for all T' > 1, since the result is true by assumption for wu.

The inductive hypothesis means that u7 has a Poisson distribution with mean Ap. The
migration z7 has an independent Poisson distribution with mean p7. Therefore, ur + 2z
has a Poisson distribution with mean A7 + pp. Conditionally on up + z7, the number
of deaths yr has a Binomial(ur + z7, ¢7) distribution. It is then readily verified (from
moment generating functions, or directly) that yr and ur + zp — yr are independent and
each Poisson distributed, with means (Ar+ pr)édr and (Ar+ pr)(1—¢7) respectively. This
immediately gives the Poisson distributions of y7 and w741, while the mutual independence
of {y:} follows from the fact that all {y;, ¢ > T'} depend on the history of the process only
through w741, and we have shown that this is independent of y7 and hence by induction
of all {y¢, t <T}. This completes the proof of the Proposition.

The beauty of this result is that the mutual independence of the y;’s means that we
can write down directly the likelihood function of the observed death counts, as a function
of the mean initial size Ay of the frail population, the migration rates {y¢}, and the death
probabilities {¢;}. It remains to specify models for the latter two quantities, for which we
adopt standard log-linear or logistic-linear relations

P
log e = Bro + Y Buje,

i=1

¢ p )
log <1 _t¢t> = B2,0 + ;ﬂZ,jxﬁv

in terms of known covariates {z;¢, j = 1,...,p} available for day ¢, and parameters
{$1,j, B2.5, 1 =0,...,p}. Note that constant terms 3y o and 3, o are assumed to be present,
and are treated separately from the other covariates; this is because of certain technical
differences in the way these parameters are treated within the Monte Carlo simulation, to

be described.

The model allows for the possibility that an individual may migrate to the frail popula-
tion and die the same day, thus in effect incorporating the possibility that some individuals
by-pass the frail population. It also includes two limiting cases in which the distinction
between the frail population and the general population disappears. One is when A\; = 0
and ¢; = 1: in this case the number of deaths on day t is Poisson with mean p; and the
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model is effectively the same as one of the standard models based on Poisson regression
with no mortality displacement. The second limiting case is when A\; — oo: in this case,
ity and the daily fluctuations in u; have no influence on the observed deaths over any finite
period, and the model is effectively one of independent Poisson deaths with Poisson rate
proportional to ¢;. Cases intermediate to these represent the ones we are really interested
in. A final comment is that it may not be the case that the migration from the general
population to the frail population is all in one direction; individuals in the frail population
may recover, but it seems unlikely in this case that the migration rates in the two directions
would be separately identifiable. Under this interpretation, p; represents a net migration
rate from the general to the frail population.

6.2 Bayesian inference

The model in (3)—(6) is specified by the mean of the initial frail population size Ay and
the regression parameters {f; ;, t = 1,2, j =0,...,p}. To aid the specification of suitable
prior distributions and to improve the stability of Monte Carlo estimation procedures,
some reparametrization is desirable. First, we model A\; on a logarithmic scale:

A = e (7)

where the prior distribution of 3] is flat. In other words, subsequent Monte Carlo evalu-
ation of the posterior density uses 3, rather than Ay, as the parameter which determines
the expected initial size of the frail population.

We also reparametrize 31 9 and (20 in terms of alternative parameters 3f ; and f3; ,,
defined as follows. Let D be the mean number of deaths per day. (In the example developed
in section 6.3, which is based on elderly nonaccidental deaths in Chicago, D ~ 83.) Then
write

ePro = Deﬂio, (8)
D
* S 9
¢ Bio+ M (9)
, 9" o
132’0 = 10g <1 _ ¢* + ﬂ270. (10)

The rationale behind these transformations is as follows. Long-term stability of the frail
population means that the long-run migration rate must roughly equal the daily death
rate D. Hence in (8), we expect 37, ~ 0. Taking 810 + A1 to be the approximate
mean size of the frail population after daily migration, we then have ¢* in (9) to be the
approximate mean death probability. This in turn means that in (10), we expect B30~ 0.
Defining 7 o and 33 ; in this way means that they are approximately independent of Ay,
which improves the performance of the Monte Carlo algorithm and also makes it more
reasonable to assume that they have prior distributions independent of ;. In fact we do
assume this, the prior distributions being improper uniform priors on (—oo, o). It does
not matter that the arguments which have been used to justify (8)—(10) are deliberately

13



rather rough and heuristic, because any discrepancies from these will be picked up by the
eventual posterior distributions of 37 ; and 5 ;.

In the case of the remaining regression parameters {3; ;, ¢ = 1,2, j = 1,...,p}, it is
desirable to ensure that the uncertainty about these parameters is on roughly the same
scale, but for the example to be discussed in section 6.3, this does not seem to be a problem.
The reason for this assertion is that in an initial Poisson regression analysis without taking
account of harvesting, the standard errors of all the parameters were within an order of
magnitude of one another. In fact a change of scale was made in the definition of the
PMiq coeflicient to ensure this. With that proviso, however, no change was made in the
original specification of these parameters. However, we still have to specify a suitable prior
distribution for these parameters, and for this we proceed as follows.

Assume 3y j, 7 = 1,..., p follow the hierarchical model

51,j|#1771 ~ N(/ilﬂ'l_l)a
/“L1|7_1 ~ N(07 (mTl)_1)7 (11)
1 ~ G(a,b),

where N and G denote the normal and gamma distributions respectively. We assume the
same, but independent, model for 3 ;, 7 = 1,...,p, in terms of hierarchical parameters
p2 and 1. The model parameters m, a and b are assumed to be the same for both sets
of regression parameters, and we arbitrarily set m = a = b = 0.01 to ensure diffuse but
proper prior distributions.

Within the model (11), if we write down the joint density of 34 1, ..., 51 p, 1,71 and
integrate out p1, we find that the remaining parameters have joint density proportional to

2—1+a 1 . (2‘517‘)2
Tf/z Texp [—m { b+ > 2512,]‘ - 72(7% _|_;) : (12)
J

This suggests the following Gibbs-Hastings-Metropolis sampling scheme. Conditionally on
{$1,;, 7 =1,...,p}, the posterior density of 7 is G(a',b’), where

P
a—a—|—2,

1 B ) (13)
b’:b+—2ﬂfj—7(zfﬂ1”) .

2]‘ ' 2(m +p)

Therefore, we resample 7 according to the conditional distribution determined by (13).
Then, conditionally on 7, the conditional joint density of {3; ;} is given by (12) multiplied
by the Poisson likelihood for {y;}. Thus we may resample the individual 3y ; parameters
according to a Hastings-Metropolis algorithm. This has been implemented via a random
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walk Metropolis algorithm in which the initial trial distribution for 3; ; is uniform of half-
width sq ; about the current value. There is no clear-cut guideline to the choice of s ;
but the value that has actually been adopted is half the standard error of 317]- according
to the Poisson regression model without mortality displacement. This typically results
in Metropolis acceptance rates of between 60% and 80% which is somewhat higher than
the usually recommended optimum rates of between 15% and 50%, but alternative ways
of specifying the s; ; parameters have not led to noticably better performance of the
algorithm.

A similar procedure is, of course, used for resampling {3 ;, 7 = 1,...,p} along with
the scale parameter 5. For 7, 37 o, 33 , a simple Metropolis updating procedure has been
used with step lengths 0.5, 0.2, 0.2 respectively. These specifications are no better than
rough guesswork but are given here so as to make explicit the procedure which has been
adopted.

A number of parallel Monte Carlo runs were carried out with run lengths between
5,000 and 50,000 iterations and a variety of starting values, particularly for the parameter
A1 which represents the initial size of the frail population. It was found that if A\; was
taken too large, then the value drifted off to oo and the MCMC never appeared to reach
convergence, but for moderate values of Ay, the results apparently converged to a posterior
distribution which did not depend on A;. We say apparently converged because with the
high dimensionality of the problem and the slow running time of the algorithm, there does
not appear to be any way to ensure convergence. For the final results reported in section
6.3, a run length of 50,000 iterations was used, with model parameters recorded every
tenth iteration.

6.3 Results

The method outlined in the section 6.2 is now applied to the data on elderly deaths
in Chicago. The covariates {z;;} are assumed to be those derived at the end of section 3,
in which there are a total of 68 terms, i.e. 55 for the representation of trend as a linear
combination of B-splines, 12 meteorological terms and one PMq term — in this case, the
variable pmmeang (three day mean including current day’s value) was taken as a single
variable representing the “best” effect due to particulate matter. The same 68 regressors
were used in both parts of the model (6).

The main results are represented by Fig. 5. This shows the posterior density for four
key parameters, (a) the mean size of the frail population, (b) the PMy, coefficient in pq,
(¢) the PMyg coeflicient in ¢4, and (d) the mean number of days of life that would be lost,
for each individual in the frail population, under the assumed model, if the level of PMyq
were to rise by 10 pug/m®. These results are based on a single long run of 50,000 iterations
after some initial runs of shorter lengths, as described at the end of section 6.2. Table 1
shows the posterior means and standard deviations of the four key parameters.
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Parameter Posterior Posterior

Mean SD
Mean frail population size 823 221
PMig in py 5.23 7.04
PMiy in ¢ 8.17 2.50
Mean days lost .081 .033

Table 1: Posterior means and standard deviations for the four key parameters
graphed in Fig. 5

These results may be summarized as follows:

1. The estimated mean size of the frail population is very small. Consequently the mean
time to death within this population is also small — given a mean of 823 individuals
in the frail population, and a mean number of deaths per day of 83, the mean number
of days each person lives in this population is only about 9.9. This interpretation is
only believable if the frail population is confined to very sick individuals, though as we
shall see in section 6.4, there is plenty of reason to doubt such a literal interpretation
of the results.

2. Within the frail population, the posterior mean and standard deviation of the PM;,
coefficient are very similar to the estimate and standard error computed from the least
squares analysis.

3. The mean number of days of life lost, associated with a rise in PMyy of 10 pug/m?,
is very small — less than 0.1 days. It should be pointed out, however, that this
conclusion is almost inevitable given the small size of the frail population: we have
argued that each individual in the frail population survives for an average of 9.9 days,
and under the fitted model, the effect of a 10 pug/m? rise in PMyj is to increase the
death rate by about 0.82%. This leads at once to an expected 9.9 x .0082 = .081 days
decrease in life length.

4. Tt may well be that the really critical parameter is the PMy coefficient in p. If this
were positive, that would indicate that entry into the frail population is affected by
PM;, and this would lead to the conclusion that the PM;y—mortality relationship is
not explained away by mortality displacement. In the present analysis, this parameter
has a posterior mean of 5.23 and a posterior standard deviation of 7.04. Reinterpreted
as a point estimate and standard error, this implies that it is not significantly different
from zero, or in other words, that the observed PM;o—mortality relationship can be
explained as entirely the result of mortality displacement.
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6.4 A simulation study

The results of section 6.3 cannot be taken as definitively establishing the existence
of a harvesting effect. We have no means of knowing for sure that the MCMC algorithm
has converged to the true posterior density. Even if we knew that it had, the frequentist
properties of a Bayesian procedure when applied to such a complicated high-dimensional
problem are completely unknown.

To gain a greater insight into these aspects, a simulation study was conducted in which
the observed log deaths {y;} were replaced by simulated values generated from the model
(1). The covariates {z;} were kept the same as in the real data, and the parameters {3;}
and o2 were also assumed to be the same as those estimated when (1) was fitted to the data
by ordinary least squares. However, independent random variables {e;} were generated,
and hence new values of {y;}. The process was repeated 20 times to create 20 simulated
data sets, which were then analyzed using the algorithm of section 6.2.

Because of the enormous computation required, it was not feasible to repeat each of
these simulations with 50,000 iterations of the MCMC algorithm, as in section 6.3. Instead,
5,000 iterations were used. To maintain comparability, just 5,000 iterations were used from
the real data study. The starting values for the unknown parameters and the step lengths
of the Metropolis updating scheme were also kept the same for all the data sets. Thus
the results are strictly comparable with each other, irrespective of whether the MCMC
algorithm has actually converged.

The results are summarized in Table 2. In this table, the Bayes posterior means and
standard deviations are given for each of the four principal parameters, for each of 19
simulated data sets plus the real data (run no. 0). For the 20’th simulated data set, no
estimates were obtained as in this case (only) the algorithm palpably failed to converge, the
estimated Ay diverging to oco. In all other cases, however, the MCMC algorithm appeared
to converge, creating the impression of a finite frail population size.

In run no. 2, the estimated frail population size is a ridiculously small 388, with
similarly meaningless values for the other parameters, e.g. a negative dependence on
PM; in the current daily death rate. It may be that if this simulation were continued, we
would eventually find Ay — 0, which as noted in section 6.1, is one of the limiting cases
which reduces to a standard Poisson regression.

All the other simulations produced estimated frail population sizes which are larger
than the one estimated for the real data. This may be interpreted as mild evidence that a
harvesting effect actually exists: if we exclude the two simulations that produced obviously
nonsensical results, then among the 19 data sets (18 simulated and one real) remaining,
the real data set produced the strongest evidence of a finite frail population size as judged
by the posterior density estimates. Nevertheless it is clear from this simulation that the
actual size of the frail population, as estimated by the approach, should not be taken
literally.
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Run No. Frail Pop Size PM;yg in p¢ PM;yy in ¢ Days lost

Mean SD Mean SD Mean SD Mean SD
0 799 160 8.4 8.0 8.1 2.8 077 .028
1 1455 484 17.3 8.9 7.3 2.4 .130 .063
2 388 656 9.2 6.8 -4.9 7.4 .005 .036
3 1135 344 18.4 9.0 6.6 2.2 .091 .042
4 1022 257 6.7 6.5 4.2 2.3 .052 .031
5 829 217 6.7 4.9 4.6 2.8 .047 .034
6 1419 451 16.1 9.0 10.2 2.5 .180 .079
7 922 262 11.0 5.4 9.1 2.7 104 .045
8 996 477 12.0 8.1 7.9 2.6 .099 .064
9 868 315 14.1 8.0 1.6 2.4 .019 .027
10 895 844 13.0 8.0 7.8 3.7 .084 .086
11 1025 648 6.7 5.4 6.3 2.8 .078 .062
12 1446 535 15.7 6.2 7.5 2.3 137 075
13 2036 543 .D 8.3 10.3 2.1 .259 .093
14 1184 304 7.3 7.1 10.8 2.4 157 .057
15 912 382 13.3 9.3 10.6 2.7 116 .056
16 1373 325 -16.1 8.5 9.5 2.4 .159 .051
17 1140 440 4.0 9.2 9.7 2.3 .136 .068
18 867 208 -2.5 6.1 5.0 2.4 .054 .031
19 1379 467 18.3 6.6 3.9 2.3 .066 .045

Table 2: Posterior means and standard deviations for the four key parameters
from 5,000 MCMC iterations for the real data set (run no. 0) and for 19
simulations based on the linear model (1)

It may be that the difficulties highlighted in this section result from inadequate MCMC
sampling, and that if we continued all the MCMC runs until it became clear whether the
algorithm was converging or not, more of the simulations would show a diverging frail
population size. Our own suspicion is that this is not the correct explanation, and that
the simulation study shows an inherent limitation in this kind of Bayesian analysis. It
should be emphasized that the direct evidence for a harvesting effect is very weak. For
example, correlations between residuals from the linear model and lagged PM;q, which
might be expected to be negative if the harvesting effect were real, do not in fact show
any different behaviour from that which would be expected under a linear model with
independent errors. It would be of interest to repeat the entire analysis using a larger
data set, possibly one formed by combining data from different cities, to see whether the
failure to obtain definitive conclusions in the current analysis is primarily a consequence
of limitations in the available data.

6.5 Conclusions

The results of this section must be taken a highly tentative. Section 6.3 taken at
its face value implies that the frail population size is finite, that the posterior mean and
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standard deviation of the PMj, coefficient in ¢; are similar to the point estimate and
standard error obtained in a linear regression analysis, and that no definitive conclusions
can be made about the arguably more interesting PM;( coefficient in p;. On the other
hand, section 6.4 shows that similar results were obtained in 18 out of 20 simulated data
sets in which there was no harvesting, though with estimated frail population sizes larger
than that obtained in the real data set based on the same number of MCMC iterations.
Taken together, these results provide mild evidence that a harvesting effect exists, but
allow very little to be said about the magnitude of the effect.

The consequences for the broader issue, of how to interpret studies showing a re-
lationship between PM;, and mortality, are essentially to add further confusion to the
whole debate. We would really like to know the extent to which life expectancy is reduced
by exposure to high levels of particulate matter, but it seems impossible to obtain such
information directly without detailed data on health histories of individual patients. It
may be that a similar analysis to the one presented here, but for a much larger data set,
would produce more definitive conclusions. Until further studies are available, we cannot
dismiss the possibility that observed particulate-mortality associations are due primarily
to mortality displacement.

7 OTHER ISSUES

In this section we mention, more briefly, two other issues that have been raised in
connection with the particulates-mortality relationship.

One issue is the influence of other pollutants. This was a particular focus of Samet et
al. (1997), who analyzed data from Philadelphia with respect to five “criteria pollutants”:
TSP (as a substitute for PMjy), O3, SO2, NO2 and a lagged value of CO. When all five
were included in the model together, they all produced statistically significant results, but
the coeflicient of TSP was not the one producing the greatest statistical significance, since
both O3 and lagged CO had larger t values. Also, the coefficient for NO; was negative,
which the authors suggested was most likely a spurious result caused by linear correlations
among the variables.

For Chicago, a more limited analysis has been conducted in which PM;,, represented
by pmmeang, was included in the model along with SO; and O3. The exposure measure
for SO, was taken to be the average of three days on lags 1, 2 and 3, while that for Oj;
was the average of two days on lags 1 and 2. These were selected by a similar process to
that which led to pmmeany being selected as the exposure measure for PM;5. When all
three variables were included in the model, the PM;( coefficient was 7.1, standard error
3.0, and the t statistics for all three variables 2.4 for PMyg, 1.9 for O3 and -1.9 for SO,.
The comparison with the earlier result for PM; alone is confused by a large number of
missing days for Oz, but if we re-fit the model with PM;, to those days in which O3 and
SO; readings are available, we get the same point estimate 7.3 as in our original analysis of
Chicago using pmmeany (section 3). However the standard error in this case is 2.8. Thus
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of the three pollutants, PM;, appears to be the most significant and the point estimate
is little changed compared with the case when PM;j, is fitted on its own. On the other
hand the situation is similar to Philadephia in that one of the pollutants, SO, has a
negative coefficient which is probably spurious but which does suggest that the estimates
are influenced by correlations among the variables. When either O3 or SO; is fitted on its
own, we get a positive estimate for the effect, the ¢ values being 2.1 and 1.3 respectively.
Thus there is stronger evidence for PMyy being the most important pollutant than Samet
et al. (1997) found for TSP in the case of Philadelphia, but there must remain doubts
about whether this is a causal effect associated specifically with PM;jg.

Yet another issue is whether one can find significant interactions among the effects of
the different pollutants. Preliminary investigations of this point have suggested that the
PMig effect is greatest when Oj is high and SO; is low; if correct, this would provide a
possible explanation of why the SO, coefficient is negative in the preceding analyses. This
issue needs to be investigated further.

The other main question of concern is that of errors in variables. All the variables are
measured with uncertainty, but this is especially true of PM;y because the daily measure-
ment is usually at only one site in a city and essentially nothing is known about variations
in individual exposure. Particular concern has been expressed about the differences be-
tween indoor and outdoor exposure, and about the possibility that measurement error may
be helping to mask confounding between PM;; and other variables. In an earlier Spruce
volume, Zidek (1997) provided an excellent discussion of the role of measurement error in
this kind of analysis, but as with the discussion of section 6, the task of quantifying the
effect seems formidable. It remains a major issue in this debate.

8 CONCLUSIONS

This review has discussed several aspects of the problem which belie a simple inter-
pretation of a causal relationship of particulates on mortality. The eventual outcome of
the debate remains unclear, in our view. For the Birmingham data, the estimated effect is
highly dependent on the particular choice of exposure measure, and even with that choice,
suggests no meaningful relationship below about 80 ug/m?®. For Chicago, there is again
considerable sensitivity to the choice of exposure measure, but the results are more robust
than those for Birmingham and do suggest a significant result. Moreover, the nonlinear
analysis suggests that this effect persists to low threshold values and possibly to Py = 0.
On the other hand, the analyses of the mortality displacement effect, and of the interaction
between PMyq and other pollutants in Chicago, raise more complicated issues which have
not been resolved. The errors in variables problem has only been discussed very briefly
but is another issue which complicates the interpretation of the regression analyses.

In the broader context of environmental regulation, it is often argued that where there
is reasonable evidence of an adverse health effect, government should act without waiting
for the evidence to become certain. In the present context, some commentators have
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argued that the evidence in existing data is perfectly clear-cut and that it would simply be
wasting time and lives to delay regulation. Our own approach is more cautious than this.
While acknowledging that there is cause for concern, we cannot accept that the current
studies provide definitive evidence of an effect specifically due to particulate matter. A
number of critical scientific issues remain to be resolved.
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Fig. 1. Plot of weekly deaths in Chicago, 1985-1990, together with smoothed
trends fitted by loess (solid curve) and B-splines (dashed curve)
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Fig. 5. Posterior density plots for four key parameters in mortality displace-
ment analysis.
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