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Most precipitation data comes in the form of daily rainfall totals collected across a network of rain gauges.
Research over the past several years on the statistical modeling of rainfall data has led to the development of
models in which rain events are formed according to some stochastic process, and deposit rain over an area before
they die. Fitting such models to daily data is difficult, however, because of the absence of direct observation of
the rain events. In this paper, we argue that such a fitting procedure is possible within a Bayesian framework.
The methodology relies heavily on Markov chain simulation algorithms to produce a reconstruction of the unseen
process of rain events. As applications, we discuss the potential of such methodology in demonstrating changes
in precipitation patterns as a result of actual or hypothesized changes in the global climate.

1. Introduction

This paper represents the first part of research di-
rected towards the question “What influence will fu-
ture climate change have on the spatial and temporal
patterns of precipitation?” General circulation models
typically produce spatial averages of temperature and
rainfall over large grid cells. However, the questions
concerning rainfall that are of interest in hydrology,
agriculture, etc., typically concern patterns of rainfall
over a much smaller spatial scale. Thus there is a very
general problem, sometimes referred to as “downscal-
ing” or “disaggregation”, concerned with turning pre-
dictions over large spatial scales into predictions over
small spatial scales. As a first step to doing this, we
need some understanding of current patterns of rainfall
over the temporal and spatial scales of interest. This
task motivates the present paper, which is concerned
with contructing statistical models for the spatial- tem-
poral distribution of rainfall.

It seems reasonable to try to construct models which
reflect, even if only in a very crude and incomplete way,
our physical understanding about precipitation, and in
this connection there is a long history of stochastic mod-
els based on superpositions of point processes. An early
attempt was that of Le Cam (1961), who proposed a
three-level hierarchy of “storms”, “fronts” and “rain
cells”. Subsequent modifications include the model of
Waymire, Gupta and Rodriguez-Tturbe (1984). How-
ever, these papers did not directly attempt to fit the

models to real data. Statistical methods were proposed
by Rodriguez-Tturbe et al. (1987, 1988) and Cox and
Isham (1988), using “method of moments” fits based
on equating the theoretical and sample values of vari-
ous quantities that can be calculated directly, such as
moments and correlations. They pointed out the diffi-
culties of a likelihood-based approach for these models.
For recent discussion see Barnett and Turkman (1993).

In this paper we argue that a Monte Carlo simula-
tion approach, making use of the Gibbs sampler and
Hastings-Metropolis algorithms (see, e.g., Smith and
Roberts 1993, for a review) provides a viable methodol-
ogy for fitting these models and constructing Bayesian
estimates (which, with a diffuse prior, should also ap-
proximate maximum likelihood estimates). Space per-
mits only a brief outline of the method here; a fuller
description is in preparation for publication elsewhere.
The method is applied to daily rainfall data from North
Carolina, and deliberately uses a somewhat simplified
form of the model; however, once the general method-
ology becomes established, it should be relatively easily
extended to other models.

2. The model and its
Bayesian analysis

Our model is as follows. All random variables are

mutually independent except where specified otherwise.
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(1) Each day is either “wet” or “dry” over the region
of study. The process of wet and dry days has a first-
order Markov structure where

Pr{Day n is wet | Day n — 1 is wet } = py,
Pr{Day n is wet | Day n — 1 is dry } = po,
with 0 <p; < 1,0 <ps < 1.

(2) Given that a day is wet, the number of rain events
N has a geometric distribution with parameter ¢, 0 <
g<l,ie.

Pr{N=k|N>0}=(1-q)¢" !, k=1,2,3,..

Dry days, of course, correspond to N = 0.

(3) Given N > 0 on a particular day, the kth rain
event for 1 < k < N is specified by an origin (X%, Y)
(in cartesian coordinates), a direction ®j (in radians,
measured clockwise from north), a duration Dy and a
radius Ry. It is assumed that (X,Ys) are uniformly
distributed over a rectangle (27, 24) X (41, Yu) containing
all the measurement stations, Dj has a gamma distri-
bution with parameters (ap,bp) and R has a gamma
distribution with parameters (ag,br). These random
variables can reasonably be assumed independent from
one rain event to the next, but there is a difficulty with
the directions ®; because we would expect them to be
highly correlated within a particular day. We therefore
adopt the following hierarchical model for the event di-
rections {®y, k=1,..., N}:

(a) For each day there is a dominant direction ®g
which has a von Mises distribution centred at some
“prevailing wind direction” ®* and with concentration
parameter Ko,

(b) Conditionally on ®q, the individual directions
®,,..., o5 are independently drawn from the von Mises
distribution centred at ®; with concentration parame-
ter k1.

The centre of the kth rain event begins at (Xj, Y%),
moves a distance Dy, in the direction @, and then dies.
Throughout this time the rain event is assumed to be
a circle of radius Ry, whose centre is the centre of the
rain event. From this it is possible to calculate the ex-
tent to which each rain event covers each measurement
station. This is defined to be the distance that the rain
event moves while the measurement station is inside the

event. A rain event which does not cover a particular
station at all is said to have coverage extent 0 for that
station.

(4) Suppose the total extent of rain events cover-
ing station j in a particular day is denoted 7;. Then
conditionally on 7}, we assume the actual amount of
rainfall at station j has a gamma distribution with pa-
rameters (Tjaj, B;). The gamma parameters (o, ;)
are assumed fixed but different for each station.

Evidently this model has many arbitrary features,
but our main purpose here is to demonstrate the fea-
sibility of fitting such a model rather than trying too
hard to justify the model itself.

We now turn to the details of a Bayesian analysis of
this system. We can think of the model conceptually as
consisting of five boxes.

Box A: the top-level parameters p1, pa, q, ®*, kKo,
K1, @p, bDa aR, bR

Box B: N, ®; and the rain events
Ri, 1 <k < N} for each day.

{ Xk, Yi, @k, Dy,

Box C: The coverage extents 7; for individual sta-
tions.

Box D: The gamma parameters for individual sta-
tions, i.e. the constants a;, G;, 1 < j < m.

Box E: The observed rain gauge data.

The logical dependence between these boxes is given
by the following diagram:

D

!
A - B —C — E

Here arrows represent direction of dependence. Given
A we can generate the contents of B, given B we can
calculate C, and given C' and D together we can gen-
erate £/. Note that the dependence from B to C' is
deterministic but the other dependencies define prob-
ability distributions rather than specifying exactly the
contents of the box at the head of the arrow.

We assume proper but diffuse prior distributions for
each of the parameters in boxes A and D. The Bayesian
inference problem is then to compute the joint distribu-
tion of the boxes A, B, C and D, given E. We approach



this via Gibbs sampling: set up a Monte Carlo simula-
tion of the whole system, and then update the contents
of each of the boxes A, B, C' and D in turn, condition-
ally on the contents of all the other boxes. For A and
D, this is an application of what are by now routine
Bayesian calculations, while C' is a direct calculation
given B. For box B itself, we adopt a method based
on randomly deciding whether to add a rain event, to
delete a rain event, or to do both, with probabilities
%, %, % respectively, and then applying the Hastings
(1970) rule to decide whether to accept or reject the
new configuration. The whole procedure is repeated a
very large number of times until it appears to converge.
In the studies which follow this is based on 20,000 iter-
ations.

3. Results

The procedure of Section 2 has been applied to five
years’ daily rainfall data from 13 stations in the flat
coastal plain region of North Carolina. Separate analy-
ses were performed for “summer” (June, July, August)
and “winter” (December, January, February) data. One
of the main features of interest is the contrast between
these, since winter rainfall in North Carolina tends to
consist of cyclonic events of long temporal and spatial
extent, whereas summer rainfall is much more domi-
nated by small but intense convective storms.

Fig. 1 shows a time series plot for the summer data
of the principal parameters across the 20,000 iterations.
In the case of the distance and radius parameters, the
mean distance ap /bp and mean radius ag/bg were plot-
ted in place of the parameters bp and bg. Similar plots
were obtained for the winter data. Although these plots
do not provide any conclusive evidence that the Markov
chain has reached stationarity, the visual impressions
suggests that they have.

Fig. 2 shows estimated (smoothed) posterior densi-
ties for each of the ten principal parameters, computed
separately for the summer data (solid curve) and the
winter data (broken curve). Despite the uncertainties
over such issues as whether the model is appropriate or
whether enough iterations have been taken, some inter-
esting comparisons can be made. The p; and py values
show that the overall probability of rain somewhere in
the region is substantially higher in summer than in

winter. On the other hand, the summer rain events
have smaller mean radius, and also cover a smaller dis-
tance before they die. This is highly consistent with
our expectations, given the contrast between winter cy-
clonic events and summer convective events mentioned

above.

One the other hand, Fig. 3 shows that not every-
thing is satisfactory about this model. In this plot,
spatial correlations based on occurrences (i.e. code the
data =1 if rainfall occurs on a given day, 0 otherwise)
are computed using both the real data, and simulated
data from the fitted model. The simulated correlations
decay much faster with distance than the true correla-
tions. Work is currently in progress to find more real-
istic models that will reflect the true correlations more
accurately.
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Fig. 1: Time series plots of parameters

p_2

0

10000

20000

10000 20000

0.8
0.7

0.5
0.4

400
350
300
250

q

0 10000 20000

Mean distance

0 10000 20000

0.020
0.010

0.0

kappa_0

12
0.8

£

0.4

0 10000 20000

6.0
55
5.0
45
4.0

B

0 10000 20000

kappa_0

o wu
F—’

o
N}

40
20

—

Ing
©

Fig. 3: Spatial correlations based on occurrences

Correlation

Simulated data (summer)

1.0
08 { ¢
’
06 .
PN
0.4 K.
o
0.2 L S
v
0.0 P
e
20 60 100
Distance

True data (winter)

1.0
0.8
S 06 - 8
k< . k|
2 04 2
o o
(] (6]
0.2
0.0
S A
140 20 60 100 140
Distance

1.0

0.8

0.6

0.4

0.2

0.0

kappa_1

18
14
1.0
0.6

0 10000 20000

Mean radius

35
30
25
20

10
0 10000 20000

broken curve winter)

kappa_1

0.5

Mean radius

Simulated data (winter)

S am

20 60 100 140

Distance



