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Abstract

This paper presents an analysis of regional trends in atmospheric concentra-
tions in sulfur dioxide (SO2) and particulate sulfate (SO3 ™) at rural monitoring
sites in the Clean Air Act Status and Trends Monitoring Network (CASTNet)
from 1990 to 1999. A two-stage approach is used to estimate regional trends
and standard errors in the Midwest and Mid-Atlantic regions of the U.S. In the
first stage, a linear regression model is used to estimate site-specific trends in
data adjusted for the effects of season and meteorology. In the second stage,
kriging methodology based on the maximum likelihood estimation is used to es-
timate regional trends and standard errors. The method is extended to include
a Bayesian analysis to account for the uncertainty in estimating the spatial
covariance parameters. Both spatial prediction techniques produced similar
results in terms of regional trends and standard errors.
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1 Introduction

The reliable estimation of temporal trends in pollution is of considerable interest to
the scientific community and environmental managers for assessing the effectiveness
of emission reductions mandated by the Clean Air Act Amendments (CAAA) of
1990. To determine whether emission reductions have had the intended effect of
reducing pollution, airborne concentrations can be statistically modeled to reveal
the magnitude and spatial distribution of trends. The identification of long-term
trends is difficult because changes in pollution may be smaller than the influences of
meteorology. This paper describes a two-stage modeling approach to estimate trends
in concentrations of sulfur dioxide (SO2) and particulate sulfate (SO3~) measured
at 33 monitoring sites in the Clean Air Act Status and Trends Monitoring Network
(U.S. Environmental Protection Agency, 1998). This approach reduces nontrend
variation in the data, including mitigating the effects of meteorology. Monitoring



site locations are predominantly rural by design to provide insight into background
levels of pollutants where urban influences are minimal. These data are particularly
important to study the effect of regional emissions for which long-range transport
plays an important role.

2 Data

This analysis is applied to weekly measurements of SOy and SO?L_ concentrations
(ng/m3) at 33 rural long-term monitoring sites in the eastern U.S. that are part of
the CASTNet. These data were observed across an eleven-year period from Jan-
uary, 1990 to December, 2000. Continuous measurements of temperature (degrees
Celsius), wind speed (m s~!), and wind direction (degrees clockwise from north) are
made at each site. The east-west wind component (u) is calculated as —windspeed x
sine(wind direction) and the north-south wind component (v) is calculated as —
windspeed x -cosine(wind direction). It was necessary to summarize hourly meteo-
rological data on the same scale as the SOy and SO?[ measurements, i.e., weekly.
These meteorological summaries were calculated by averaging all hourly meteorolog-
ical variables between 10 a.m. and 5 p.m. across the week to characterize conditions
during periods of atmospheric mixing. All sites in this analysis were required to have
75 percent of all weeks with concurrent pollutant concentration and meteorological
data.

3 Two-stage Model for Regional Trend

The first stage uses a linear additive model to relate the logarithm of weekly SO2
and SOZ‘ concentrations to prevailing meteorological conditions, season and time.
The model is of the form

11 11
log(Cijre) = Z vk X 1(yeary) + Z ¢je x 1(month;) + flg(temperatureim)
k=1 j=1
+  foe(humidity;;pe) + gi(uijke, vijre) + €ijke (1)

where Cjjpe refers to the measured pollutant concentration of the i week within
the j month and k™ year at the ¢! site (£ = 1,...,n;), €jre ~ N(0,07), 1 is an
indicator function for the year and the month variables. We represent fi, and fo; as
either simple linear functions or an arbitrary smooth function using splines, which
are defined as piecewise polynomial functions with smooth connections between one
segment and another. Here, we use cubic B-splines (Green and Silverman, 1994) to



model the functional relationships for temperature and humidity. A sum of radial
basis functions is used to model the bivariate wind component relationship in (1).

Given our goal of estimating trend in pollutant concentrations adjusted for sea-
sonal and meteorological effects, we use the estimates and variances of the year
effect in model (1) to estimate site-specific trends. For each site location, ¢, the
estimated year effect (jx¢) is assumed to have a normal distribution with param-
eters ¢ and o2, given the logarithmic transformation used in model (1). Then
Elexp(4ke)|=exp (ke + 024/2) and site-specific trend (Z(s,)) expressed as a percent
change between 1990 (k = 1) and 1999 (k = 10) may be defined as

Z(s¢) = 100[exp{(vio¢ — 71e) + (0700 — 01¢)/2} — 1]. (2)

Trends for other annual periods of interest can be estimated by substituting the
appropriate estimates of year effects and variances. Although the resulting trend
cannot be directly related to emissions per se, it seems likely that emission changes
would be the dominant effect in the trend. The delta method based on retaining
the first term of a Taylor series expansion of a transformation function for trend,
fne;moe 03 4030 ,) = 100[exp{(v10¢ — V16) + (0350 — 01)/2} — 1], is used to ap-
proximate the variance of trend at location £ and the covariance of trend for different
site locations £ and ¢'. In practice, we find the variance terms are so similar that
the influence of the difference in these quantities is negligible. Therefore, we do not
consider the variance terms in the application of the delta method.

3.1 Second Stage Spatial Prediction of Trends

To make inference about trend at non-monitored locations as well as regional trends,
we apply an extension of kriging analysis that allows for the errors of trend estimation
in the first stage. We assume there is an underlying and unobserved spatial field
Z(s) where Z(s) measures the “true” trend at locations at s. For each monitoring
site sy, we make an observation Z (s¢), corresponding to the first stage trend estimate
at site £. We assume our regression estimate of trend represents the true trend with
error:

Z(se) = Z(se) + e - (3)
Here, ey ~ N (O,&%) are interpreted as measurement errors, independent of the
random field Z(s). Each monitoring site has its own “nugget effect”, 6%, that are
assumed known and equal to the first stage estimates of the variances of trends
obtained by the delta method. Note that these variances are not the variances of
the year effects (07,) defined in (2). For now, we assume e; to be independent
random variables.



The true underlying process Z(s) is a spatial process consisting of spatial trend
and spatially correlated errors. We assume Z(s) is a Gaussian random field {Z(s), s €
N2}, with

a
E{Z(s)} =D Bifi(s);  Cov{Z(s),Z(u)} = a Ky(|[s —u|l), (4)

7j=1
where 3 is a g-vector of unknown regression parameters, fi(s),..., fq(s) are known

functions of site locations, @ = Var{Z(s)}, Ky(-) is an isotropic correlation model
parametrized by 6 € © controlling the range of correlation, and ||s—ul|| denotes either
the Euclidean or geodesic distance! between site locations s and u. Models (3) and
(4) together form a hierarchical model for the “trend data”, Z = (Z(s1),..., Z(sn))"-
Given that both parts of the hierarchy are assumed to be normally distributed, we
can proceed directly to the likelihood of the model parameters

a2 = () ren [z xprs Tz xp) @

where X is a known ng x ¢ matrix (full rank) of known regressors, X;; = f;(si),
and ¥ is the ny x n, matrix defined by X;; = a V;;(0) + Sij, Vij(0) = Ko(||si — s;|)
and S;; = diag(&%,...,&%s). An alternative modeling strategy which allows for
spatial correlations among the measurement errors could be used. Under this model,
the diagonal S would be replaced with a general covariance matrix S =Var(e).
We consider three commonly used correlations models: exponential, Gaussian, and
spherical. For each model, the parameters 8, « (sill), and 6 (range) are estimated
by maximum likelihood (ML). Further, we consider a geometrically anisotropic form
of the correlation model (see Cressie, 1993) with two additional spatial parameters:
a dilation parameter, )\, and a rotation parameter, v.

3.2 Regional Trend Estimation

Simple averaging over monitoring sites within a region may be a poor estimate of
regional trend. Kriging methods can be used to produce estimates with minimum
mean squared error based on modeling the spatial dependence demonstrated by the
data. Since kriging variances do not account for the estimation of unknown spatial
covariance parameters, Bayesian techniques are also used to estimate regional trends
and standard errors. The, these two approaches are compared to determine the effect

!The distance in units of 100 km (D) between two sites with longitude-latitude coordinates
in radians ((#1,91), (x2,72)) is D = 127.234 arc sin[(v/T)/2] where T = [cos(y1)cos(x1) —
cos(y2) cos(x2)]? + [cos(y1) sin(z1) — cos(ya) sin(x2)]? + [sin(y1) — sin(y2)]* .



of ignoring the uncertainty of the covariance parameters on inference about regional
trends.

In the Bayesian analysis using the geometric anisotropic correlation model, we
define the posterior distribution of the covariance parameters by use of the likelihood
function in (5) with joint prior density

m(By @, 0,A) oc ™M exp(—b1 /)8 exp(—bz/O)AT " exp(~b3/A),  (6)

where now § has an improper prior density assumed constant on (—oo,00), and
a, 6 and A all have inverted gamma, priors. We also denote the right hand side of
equation (6) by 7(a, 8, ). In the model we are considering with measurement error,
the likelihood tends to a positive constant as any of the covariance parameters tends
to 0 or oo, so an improper prior leads to an improper or highly diffuse posterior
distribution. For the isotropic model, we omit the prior density for the geometric
anisotropic dilation parameter (\).

Then 7(8, o, 0, \|Z) o L(B, a,8,\) ©(3,,0,\) and after integrating this poste-
rior with respect to 8 we obtain

(e, 0, )| Z) o w(a, 0, ) |53 | X5 X[ exp {—%(2 _XB)Yn(Z - XB)} .
(7)

For the geometric anisotropic and isotropic models, the posterior distribution is not
amenable to analytical treatment, so we use Markov Chain Monte Carlo (MCMC)
methods (see Gilks et. al., 1996) to draw samples of the covariance parameters
from the respective posterior distribution for inference about Bayesian estimates of
regional trends. The overall Bayesian posterior regional means and variances are
calculated using iterative expectation formulae described by Holland et. al. (2000).

4 Results

4.1 Spatial Covariance

In terms of the Akaike (AIC) and Bayesian Information Criterion (BIC), the two best
models for SOy appear to have constant mean, general S using geodesic distances
and geometrically anisotropic covariance using longitude-latitude coordinates. A
comparison of the two best models using the asymptotic result that twice the differ-
ence in the negative log-likelihood values is approximately distributed as a chi-square
distribution with ¢ degrees of freedom (g is the difference in the number of param-
eters) shows the isotropic model with geodesic distances would just be accepted
(p—value=0.052). However, the comparison seems sufficiently close to justify con-
sidering the anisotropic as well as the isotropic model in subsequent analyses. For



SO32™, a Gaussian correlation model with general S and constant mean function using
geodesic distances is nearly identical to the same model with geometric anisotropy
in terms of AIC and BIC. Using an asymptotic generalized likelihood-ratio test to
compare these models, we observe that the isotropic model with geodesic distances
would be just accepted (p—value=0.051). Again, it seems reasonable to consider
both model in the following analyses.

4.2 Regional Trend Estimates

For the anisotropic covariance, modeling explorations indicated that if the inverted
gamma shape parameter (a;) was too close to 0 or b;/a; was too far from the ML
estimate of the corresponding parameter (a, 6 and A respectively for j = 1,2,3),
then the mode of the Bayesian posterior distribution for each parameter was some
distance from ML estimate of the parameter. To avoid this undesirable effect of the
prior distribution, b; was fixed so that b;/a; was equal to the ML estimate of the
corresponding parameter. Two classes of priors were considered: (1)“wide priors”
with a;=a2=a3=0.1 and (2)“narrow priors” with a;=as=a3=2.0. In each case, the
b; parameters were selected as described. A similar approach was adopted for the
isotropic model where we fixed a=0.1 and a=2. For both pollutants, the choice of
the “wide priors” leads to a very diffuse posterior density with a mode that in some
cases is well removed from the ML estimate. Given this result, we conclude that the
“narrow prior” is superior because it provides results similar to the MLE analysis.

Using the ML estimation and Bayesian techniques, regional trends were obtained
for two broad areas in the Midwest (includes Illinois, Indiana and Ohio) and Mid-
Atlantic (includes Pennsylvania, Maryland, West Virginia, and Virginia) regions of
the U.S. The highest frequency of CASTNet monitoring sites can be found within
these regions. Regional trend estimates and standard errors are given in Table 1
for both classes of Bayesian priors, isotropic and anisotropic models, and MLE to
show how regional inference might differ with the choice of the underlying covariance
model. For both pollutants, the regional estimates of trend for the “narrow prior”
class are closer to the ML estimates than those for the “wide prior” class. The
Bayesian standard errors are slightly larger than those for the MLE, but it appears
that accounting for the uncertainty in estimating the covariance parameters does
not significantly increase the regional uncertainties.

In both regions, the estimated regional trends in SO2 concentrations are consis-
tent with annual SO2 emissions from affected utility sources participating in EPA’s
Acid Rain Program established under Title IV of the 1990 CAAA. Estimates of
regional trends in SO?~ were less than those for SO, (see Table 1).



5 Conclusions

Site-specific and regional trends in airborne concentrations of SOy and SO?™ are
estimated in the presence of variations in atmospheric chemistry and meteorology
at 33 rural CASTNet monitoring sites in the eastern U.S. from 1990-1999. These
results are useful for evaluating the effectiveness of legislated SO2 emission con-
trol strategies and provide input needed for making informed pollution management
decisions over regional-scale landscapes. Significant reductions in SO, and SO~
emissions under the Clean Air Act Amendments of 1990 have resulted in unprece-
dented improvements in SO, and SOE* concentrations.

Disclaimer

The U.S. Environmental Protection Agency, through its Office of Research and De-
velopment, partially collaborated in the research described here. This paper has
been subjected to peer and administrative review and has been approved for publi-
cation.
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SO2

Region Models MLE  Bayes with Bayes with
“Wide Prior” “Narrow Prior”
Midwest isotropic  -40.0 -38.4 -39.8
(3.4) (3.6) (3.6)
Midwest anisotropic -40.3 -37.9 -40.2
(3.2) (3.6) (3.4)
Mid-Atlantic  isotropic  -33.9 -36.6 -34.8
(3.6) (3.9) (3.8)
Mid-Atlantic anisotropic -32.8 -36.8 -34.1
(3.5) (3.7) (3.7
SO;
Region Models MLE  Bayes with Bayes with
“Wide Prior” “Narrow Prior”
Midwest isotropic  -33.9 -34.6 -34.5
(4.0) (4.1) (4.0)
Midwest anisotropic -36.2 -34.9 -35.7
(3.5) (3.9) (3.7)
Mid-Atlantic  isotropic = -31.2 -32.0 -31.6
(3.6) (3.7) (3.7
Mid-Atlantic anisotropic -31.8 -33.2 -32.1
(3.5) (3.8) (3.7

Table 1: Comparison of regional SOy and SO?~ regional trend estimates (%) and
their standard errors (%) (shown in parentheses) for both isotropic and anisotropic
model by MLE, Bayes with “wide prior”, and Bayes with “narrow prior”.



