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Summary

The paper is concerned with the estimation of a spatial correlation structure under
circumstances when the usual assumptions of stationarity and isotropy do not apply. An
ingenious approach due to Sampson and Guttorp is based on a nonlinear transformation
of the sampling space into an alternative space within which the spatial structure is sta-
tionary and isotropic. However the actual algorithm devised by Sampson and Guttorp is
complicated and has a number of ad hoc features. In this paper we consider alternative
methods based on parametric maximum likelihood fits, using a radial basis function repre-
sentation of the nonlinear map. A key part of the fitting procedure is model selection, or
equivalently, reduction in dimensionality by selection of a subset of radial basis functions.
The methodology is illustrated with two examples, one based on tropospheric ozone and
the other on U.S. climate data. However a number of cautions are noted: there is no
guarantee of uniqueness of the estimates and the evidence that more complicated models
result in improved spatial predictions is, at best, inconclusive.

1. INTRODUCTION

Environmental data are often collected on an irregular grid of spatial locations, and it
is important to understand the spatial covariance structure. Besides the classical geosta-
tistical problem of prediction at unmonitored sites (“kriging”), there are also important
applications concerned with trend estimation and spatial design. The problem of trend
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estimation concerns how to measure, or to determine the significance of, a trend in the
presence of spatial and/or temporal correlations in the data. For example, this problem
frequently arises in the analysis of global climate change (Handcock and Wallis, 1994).
Spatial design problems arise in deciding, for example, where to locate monitoring stations
so as to maximize the information obtained about a pollutant over a broad geographical
area. This problem has been much studied in recent years, see e.g. Oehlert (1995). All of
these problems require, in the first instance, a model for spatial covariances.

We consider a spatial process {Z(s), s € D}, where D C R? is a domain of spatial
locations. Usually d = 2 or 3 (in this paper, d = 2 always). Spatial dependence is usually
characterized in terms of either the covariance function

C(s1,32) = Cov {Z(s1),Z(s2)}, 1,82 € D,
or the dispersion
D(sy1,s9) = Var {Z(s1)— Z(s2)}, s1,32 € D.
Much of the literature is concerned with processes which satisfy some or all of

(1) entrinsic stationarity: D(s1,s2) depends on s; and sy only through the (vector)
difference s; — s,

(ii) stationarity: C(s1,s2) depends on sy and sz only through s; — so (this implies
intrinsic stationarity, but not conversely),

(iii) ssotropy: D(sy1,s2) or C(s1,s2) depends only on ||s; — s2]|| (the Euclidean norm
of s — sy or, equivalently, the Euclidean distance between the locations s; and s3). In
this case we often write D(s1,s2) = 27o(||s1 — s2]|), where 7q is an isotropic semivariogram
function.

When all of (i)—(iii) hold we shall call the process homogeneous.

Classical geostatistics is concerned primarily with homogeneous processes for which,
by now, a very extensive literature exists — see, for example, the comprehensive review
by Cressie (1993). Until recently, however, not much was known about the modeling of
inhomogeneous processes. One old approach (Journel and Huijbregts 1978) for stationary,
non-isotropic processes is to write the dispersion in the form

D(s1,52) = 270(|[Ao(s1 — s2)|])

or by extension
J—1

D(s1,52) =2 7i([|4;(s1 = s2)I]). (1.1)

J=0



Here Ay, Ay,..., are arbitrary matrices and 79,71, ..., isotropic semivariogram functions.
However, this is still quite a restrictive class of models.

A much more radical extension has been proposed in a series of papers by Sampson
and Guttorp — see, in particular, Sampson and Guttorp (1992). They considered models
of the form

D(s1,52) = 270(f(s1), f(52)) (1.2)

with vy again an isotropic semivariogram and f a smooth nonlinear map from R? to RY. In
principle one may permit d' # d though in most of the Sampson-Guttorp work it is assumed
that d' = d and we shall continue to assume that here. The idea behind (1.2) is that the
map f takes the coordinates from the real, geographical or “G” space, into an alternative
dispersion or “D” space in which the process is homogeneous. This approach may not be
universally applicable to inhomogeneous processes, and in Section 5 of the present paper
we shall see some limitations to it, but the model represents such a significant departure
from previous practice, such as (1.1), that it has rightly attracted a lot of attention. One
early illustration of the effectiveness of spatial distortion, in this case applied to the map
of Ireland, was given by Lewis (1989). Other examples discussed by Sampson and Guttorp
(1992), Guttorp, Sampson and Newman (1992) and Mardia and Goodall (1993) include
solar radiation data from a number of sites near Vancouver, B.C., and data sets drawn
from the UAPSP (acid rain) study. In sections 4 and 5 we shall discuss applications to
ground-level ozone data and to climatology. Thus the potential applications of (1.2) appear
to be very broad.

The precise methodology used by Sampson and Guttorp to fit (1.2), however, con-
tained a number of rather ad hoc features. Briefly, it consists of three stages:

a) A mapping of the n sampling points from the G space into the D space is found
pping pling p p p
to minimize a stress criterion

- Dicito(dij) = hiz}?
6 Zi<j hzzj

where d;; is the observed dispersion between sites ¢ and j, h;; is the distance between
sites ¢ and 5 in D space and the minimization is taken over all monotonically increasing
functions 6. This formulation of the problem permits it to be solved by a multidimensional

scaling (MDS) algorithm.

(b) The mapping of the N sampling points is then extended to a smooth function from
the entire G space into the D space, using a representation based on thin plate splines.

(c¢) The function ¢ is replaced by a smooth function ¢ (so d;; ~ ¢g(h;;)), which satisfies
the positive definiteness condition required for ¢ to be the variogram of a homogeneous
process. For this purpose, Sampson and Guttorp used a very general representation of ¢
as a mixture of Gaussian-type variograms.



The central theme of the present paper is to propose an alternative, likelihood-based,
approach to fitting the model (1.2). There are a number of reasons why this might be
considered desirable:

(i) The maximum likelihood approach to spatial processes was first proposed by Mar-
dia and Marshall (1984) and has been shown to be computationally feasible for data sets
consisting of as many as several hundred sites. This has not been unchallenged, since
Warnes and Ripley (1987) argued that the likelihood may be highly multimodal even in
the case of a very simple homogeneous model for the spatial correlations, and illustrated
this on a particular geostatistical data set. However, Mardia and Watkins (1989) analysed
the same data set, and claimed that the likelihood for this example is in fact unimodal
— a claim which, based on independent computations, I believe to be correct. Maximum
likelihood approaches have the potential advantages (though these will not be considered
in the present paper) of being automatically extendable to models including a spatially
varying mean and to spatial-temporal processes. Nevertheless, multimodality s an issue
in fitting complicated spatial models, as we shall see.

(ii) In recent years, stimulated by Handcock and Stein (1993) and several papers by
Zidek and co-authors, attention has turned towards Bayesian approaches to spatial data
analysis. For example, Brown, Le and Zidek (1994) considered a model of the form

AR
Z = <Z<2)> ’

in which Z(?) represents a set of “gauged” sites at which data are available, and Z(") a set
of “ungauged” sites for which predictions are sought. Their hierarchical model was of the
form
Z|X,B,¥ ~ N(BX,Y),
B|By,S,F ~ N(By, S @ F'),
ST, m ~ W T, m),

where N and W ™! represent normal and inverse Wishart distributions of the appropriate
dimensions, X is a matrix of known regressors, and By, F and ¥ respresent parameters of
the prior distribution. A key component of this, essential for any meaningful extrapolation
from the gauged to the ungauged sites, is a representation for ¥, which can be thought
of as a prior guess for ¥. To estimate ¥ for an inhomogeneous process, Brown, Le and
Zidek in effect used the Sampson-Guttorp technique — but, not being likelithood-based,
this necessarily takes us outside a formal hierarchical Bayesian approach. Although the
approach taken in the present paper is non-Bayesian, by developing representations for the
likelihood function, it also provides a framework for Bayesian analysis of spatial models.

(iii) The Sampson-Guttorp approach implies some restrictions on the models consid-
ered. In particular, by using MDS to model the locations so that increasing distances
correspond to increasing dispersions, the possibility that ¢ may be non-monotone is ex-
cluded. Our approach does allow non-monotonic g, a feature that turns out to be important
in Section 4.



Apart from Sampson and Guttorp (1992), a number of other approaches to inhomoge-
neous spatial process have been given. Loader and Switzer (1992) used generalized additive
models to develop a broad class of models for an inhomogeneous spatial trend surface, but
still with isotropic covariances. This approach may well be adequate for many inhomoge-
neous processes, but not when there is clear evidence of inhomogeneity in the covariances.
The ozone data of Section 3 provides a clear example of this. Much closer to our approach
is Mardia and Goodall (1993), who also used a maximum likelihood approach for a class
of models very similar to those discussed in section 2. In fact, they considered some more
general features — Box-Cox transformations on the observations, multivariate data, and
spatial-temporal models. However, they did not study the model selection aspects of the
problem, which are an important part of the methodology developed here.

An outline of the remainder of the paper is as follows. Section 2 presents the basic
approach and discusses its computational aspects. Section 3 discussses model selection, in
particular the choice of centers for the radial basis function representation of f. Sections 4
and 5 present two examples, concerned with ozone and climate data respectively. Section
6 presents a simulation experiment designed to assess the usefulness of the methodology
for spatial prediction — this contains some cautions about its applicability. Finally section
7 presents conclusions and some indications of future work to be done.

2. MAXIMUM LIKELTHOOD ESTIMATION
The main components of our model are as follows:
1. We have N replications Zi,...,Zx of a spatial field observed at each of n sites

(thus Zy = (Zk(s1), ..., Zk(8n)), where s1, ..., s, are the sampling sites, for k = 1,2,..., N).
These are assumed independent with

Zi ~ Np(p, ), (2.1)

N,, denoting the n-dimensional normal distribution, g an arbitrary n-vector of means and
Y an n X n covariance matrix.

2. We assume o;; = Cov {Zy(s;), Zr(s;)} of the form

oij = Co(f(si), f(55)) (2.2)

where Cj is a homogeneous covariance function and f is represented by a linear combination
of radial basis functions ((2.5) below).

3. For the initial analysis we assume Cy has the Matérn structure

Co(t)

L (M@y% Ko, <N9_2t> . (2.3)

- 292_1F(92) 91 91
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Here 6, > 0 is the spatial scale parameter and 6, > 0 i1s a shape parameter. The function
['(+) is the usual gamma function while Ky, is the modified Bessel function of the third
kind of order €, (Abramowitz and Stegun 1964, Chapter 9). This form was used by
Handcock and Wallis (1994) for their analysis of climate data and it seems to be very
widely applicable as a simple parametric form for spatial correlations. Neveretheless it is
not universally appropriate and we shall propose a more general representation for two-
dimensional isotropic covariances in (2.12) below.

One simplification adopted in the present paper is that we do not consider in any
detail the estimation of p in (2.1), but focus all our attention on ¥. Thus if we simply
replace p by the vector of sample means, the negative log likelihood based on Zy, ..., Zx
reduces to

N N -1 )
L= log|Sl+ —— to (2—12> (2.4)

where ¥ is the usual n x n sample covariance matrix. In fact, we simplify the analysis
further by focussing on the correlation matrix. Thus, Y is the sample correlation matrix
and ¥ the correlation matrix determined by the model. From now on, all the analysis is
based on correlation matrices via (2.4).

If f represents a univariate function of spatial coordinates s; = (z;,y;), then a familiar
way to represent f nonparametrically is in terms of thin-plate splines (see, for example,
Green and Silverman 1994, Chapter 7). Typically a function f is chosen to pass through
a finite number of data points f; = f(z;,vi) (¢ =1,...,n), to minimize the bending energy

AN ) A
LAY w2 () + (52) e

The solution to this problem may be represented in the form (Green and Silverman 1994,
page 142)

fla,y) =a+br+ecy+ Y Smi(z,y) (2.5)
1=1
where
Y=Y biwi=) biyi=0 (2.6)
and
ni(z,y) =r2logr,  r={(z—a;)?+(y—yi)?}7. (2.7)

Thus (2.5) represents f as a sum of linear terms and n radial basis functions n; with centers
at the observed data points (z;,y;). The constraints (2.6) ensure that the problem does
not become overdetermined.

An interpolating spline is a function of the form (2.5)—(2.7) which satisfies f(z;,yi) =
fi at each of the n data points. In statistics, however, one is usually more interested in a
smoothing spline, which is typically presented as a solution to the problem of minimizing

S(f) =D _Afi — fxi,y)}* + aJ(f) (2.8)
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where a > 0 is a smoothing parameter.

Although the exact solution to (2.8) is computable (Green and Silverman 1994, page
147-148), in practice we do not usually have an a prior: fixed value of o and an alternative
approach is simply to restrict the representation (2.5) to a subset of radial basis functions.
Thus we assume

6; =0 fori ¢ {i1,....im} (2.9)

where 1, ...,1,, are some subset of indices to be determined. This approach is similar to
the way radial basis functions have been used in non-linear time series analysis (Casdagli
1989, Smith 1993, Judd and Mees 1995), where they are an alternative to neural net
representations.

In the present context f is a bivariate function, so we apply the RBF approach to
each of its two components, f) and f(?) say. There is a potential difficulty with this in
that a function constructed in this way may not be bijective. Non-bijective functions are a
problem in the Sampson-Guttorp approach because they correspond to a mapping which
folds over itself, which in most contexts seems counterintuitive. The difficulty is noted by
Sampson and Guttorp (1992) who suggest that, in most cases, the problem of folding can
be avoided by choosing a sufficiently smooth map, which is equivalent to keeping m, the
number of active RBF's, fairly small.

Some further simplification is possible. First, the constant a in (2.5) is unnecessary
— this is so because the resulting covariance functions depend only on differences between
coordinates in the D space and are therefore unaffacted by locations shifts in D space. So
we set a = (. Second, in the case m = 0, the model is invariant under orthogonal rotations.
This suggests that, in the case m > 0 as well, we simplify the parametrization to

FO(z,y) = blz + pbibay + Y 8 iz, y),

111 (2.10)
FO(@,y) = phiboa + By + 3 6P ni(a, y),

1

where by > 0, by > 0, p € R, and each of the sequences {651), i=1,...,n} and {552), i =
1,...,n} satisfy the constraints (2.6), (2.9). Finally we note that with f still permitting ar-
bitrary scale changes, we may without loss of generality set §; = 1in (2.3). Thus, whenever

s, 6 6t )

[ 2T 5 T 7 Ttm—3"

m > 3, the final model has 2m — 2 free parameters by, by, p, 62,

The model (2.3) does not allow for a nugget effect. This could be permitted, for
example, by allowing the value for Cy(0) to be greater than the limiting ¢ — 0 value
obtained from (2.3). In many applications, no nugget effect is observed with the Matérn
covariance structure, but with the climate data of Section 5, it turns out that such an
effect is needed. A much broader extension is to abandon the parametric form entirely and
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to represent Cy nonparametrically. A general representation for a d-dimensional isotropic
covariance function (Cressie 1993, page 85) is given by

Co(h) = /OOO Ya(wh)®(dw)

where ®(-) is a general positive measure on [0, 00) and

= (2) 7 (4 100

where J, is the modified Bessel function of order v. In particular, when d = 2 this reduces
to

Co(h) = /OOO Jo(wh)®(dw). (2.11)

In practice the measure ® may be assumed concentrated on a finite number of atoms, so
(2.11) reduces to

Co(h) =Y dedo(weh) (2.12)

in terms of 2C parameters ¢y, w1, ..., pc, we. Sampson and Guttorp (1992) used a similar
representation but with Jy(¢) replaced by the Gaussian-type kernel e~'". This is derived
from the slightly less logical requirement that the function Cy should be a positive definite
isotropic covariance function in all dimensions simultaneously, rather than just in the
specific dimension d in which we happen to be working. The practical importance of this
is that the Sampson-Guttorp representation forces the covariance function to be monotone,
whereas ours does not.

Calculation of the maximum likelihood estimates has been carried out using the
Cholesky decomposition (Healy 19xx) to assist in evaluating |X| and ©~!, followed by
the quasi-Newton routine DEPMIN of Press et al. (1986) to minimize (2.4). This routine
assumes that first-order derivatives of L are available, but these were calculated through
a simple differencing approximation. The Matérn covariance function (2.3) was computed
using a Fortran routine kindly supplied by Dr. M. Handcock, whilst Jy in (2.12) was cal-
culating via a combination of power series for small argument and asymptotic expansions
for large argument (Abramowitz and Stegun 1964).

3. MODEL SELECTION

An important feature of the approach being developed in this paper is that only a
subset of centers, represented by the indices 7y, ...,%,, in (2.9), is included in the model.
This is contrast to Mardia and Goodall (1993), who implicitly assumed that all the centers
are included. Using all the centers leads to intractable computational problems when the
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number of centers is large, and might also be expected to result in badly overfitted models.
Therefore, we must limit the number of centers included, but the computational complexity
of the problem rules out any attempt at an exhaustive search over subsets.

To simplify this problem, the n centers are first arranged in order, with indices ¢4, ..., 2,,.
The problem then reduces to the selection of m, the number of centers to be included in
the model. To determine the order of centers, different approaches have been adopted
for the two examples to be considered later in the paper. With the ozone example of
section 4, the total number of centers is comparatively small (n = 21), and this makes it
possible to proceed somewhat interactively. The ideal would be to introduce the centers
in an order which maximizes the log likelihood at each stage of the fitting proceduce. In
practice even this is not easy to determine, but some trial and error along these lines did
precede the actual choice of order which is used for the discussion in Section 4. With
the climate example of Section 5, the size of the problem (n = 138) seems to preclude
any attempt to determine an optimal ordering. In this case, the order was determined
on purely geographical grounds, so as to achieve a good spread of stations at each stage.
However, this part of the modeling procedure is admittedly somewhat arbitrary and I make
no claim to any kind of optimality.

A more detailed analysis is possible for the choice of m, the number of centers to
include. Omne approach is via the maximized log likelithoods, with either a sequence of
likelihood ratio tests or some automatic model selection criteerion such as AIC. This tends
to result in a large value of m being chosen, and there is evidence that models chosen
in this way perform badly from a predictive viewpoint (Section 6). As an alternative, I
propose a method based on cross-validation.

The traditional approach to cross-validation is based on leaving out one observation
at a time, in order to predict it by re-fitting the model to the remaining observations. In
the present context, that would mean leaving out one station at a time. However, with
so much effort needed to calculate the maximum likelihood estimators, such an approach
would be very time consuming. As a compromise between statistical and computational
efficiency, I adopt an approach based on leaving out one quarter of the observations as
each stage.

Suppose we write a typical data vector in the form

ALY,
Z = ( 7(2)
where Z() represents the approximately one quarter of the observations omitted, and

Z?) the remainder. We partition both the fitted correlation matrix ¥ and the sample
correlation matrix ¥ in the obvious way,

211 212 o ZAlll 212
Z - Z = ~ ~ .
(ZZI Z]22> ’ (ZZI Z]22>



The model is re-fitted using just the Z(?) components, and used to predict Z(1). Since we
are not attempting to model the station means, we assume without loss of generality that
they are all 0. The optimal predictor of Z(!) is then Z(1) = AZ?) where A = 21222_21.
The mean squared prediction error is given by

E{(z<1> _ 2Tz 2(1))}

3.1

If we average (3.1) over the N data points, a sample-based estimate becomes
tr {211 — 221222_21221 + 21222_2122222_21 221} . (32)

This calculation is repeated four times, with a different quarter of the stations omitted on
each occasion. Finally, the four cross-validation scores obtained from (3.2) are added, to
obtain an overall CV score for the model.

4. OZONE EXAMPLE

This example arose during the course of a larger study (Nychka and Royle, 1996)
into the design of a monitoring network for ground-level ozone. Twenty-one monitoring
stations from the greater Chicago area are shown in Fig. 4.1. The city of Chicago is
roughly in the middle of the picture and the blank area to the upper right is part of Lake
Michigan; there are no monitoring stations on the lake. We shall not attempt to review the
network design problem itself, except to remark that it requires accurate modeling of spatial
covariances. Henceforth we concentrate on this feature. The data consisted of a sample
covariance matrix based on 89 vector observations, which we assume to be independent.
As previously discussed, the analysis will be simplified by ignoring any variation in the
station variances and focussing exclusively on the sample correlation matrix.

Fig. 4.1: Ozone Stations
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As discussed in Section 3, a critical part of the analysis is to arrange the stations
in order, and the order that has been adopted in this example has been determined by
a certain amount of trial and error, with the intention that centers which make a large
contribution to the model are introduced early in the analysis. I shall not attempt to
describe this in any detail, however, and proceed immediately to the selection of m, the
number of centers to be included in the model.

Table 4.1 lists the 19 models, starting with m = 3 (for which all the 551‘) and 552‘)
coefficients in (2.10) are 0) and proceeding up to the full model m = 21. The table shows
both the minimum L values and the CV scores. All the models are based on the Matérn
form of covariance (2.3), with 2m — 2 independent parameters. It can be seen that a
likelihood ratio test or AIC approach would lead to a large value of m being chosen, such
as m = 19. However, the approach based on minimizing the CV score leads to m = 8.
This only just beats the models with m = 3, a linear transformation from G to D space!

Number of stations Minimium L CV score
0 598.7 3.34
4 649.3 3.35
5 672.3 3.47
6 689.2 3.49
7 701.3 3.53
8 745.3 3.33
9 753.7 3.44
10 754.3 3.44
11 765.7 3.66
12 772.1 3.74
13 772.3 4.01
14 777.9 4.33
15 782.2 5.22
16 793.0 7.68
17 802.0 6.44
18 805.6 3.92
19 813.6 7.10
20 813.9 5.32
21 815.8 4.33

Table 4.1: Minimum L values and CV scores for a sequence of models, ozone data.

A plot of the CV scores is shown in Fig. 4.2. We might expect these to decrease
steadily for the first few values of m, to reach a minimum, and then to increase again.
This is far from the observed form of the plot, a situation which may be due to the
irregular spatial distribution of the stations combined with the strong nonlinearity of the
optimization problem. However, it is clear that the CV scores in the right-hand part of
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the plot (say, for m > 12) are substantially larger than those in the left-hand part, which
indicates that we should not allow m to be too large. The subsequent discussion is based
on m = 8.

Fig. 4.2: CV Scores for Ozone Data
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Fig. 4.3: D-space for Ozone Data
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The D space under this transformation is shown in Fig. 4.3. The striking feature of
this plot is that the three stations in the lower right-hand corner of Fig. 4.1 have been
pulled a considerable distance from the other 18, which reflects the fact that the spatial
correlations between the two groups, although still positive, are much smaller than those
within the larger group. The explanation may lie in the distribution of sources. Ozone in
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Chicago itself, and in the suburbs to the north and west, is caused primarily by traffic,
whereas there are a number of industrial sources in the neighborhood of Gary, IN, where
the three discrepant monitors are located.

Fig. 4.4: Semivariogram Plots in G Space
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Fig. 4.4 shows the semivariogram plot in G space, and Fig. 4.5 the same plot in D
space, together with the fitted Matérn curve. The variability of the plot is much reduced by
transforming to D space and fits the Matérn curve reasonable well. Each pair of stations is
represented by one point on the plot, those that involve one of the three discrepant stations
being marked by a cross, the remainder by a circle. The effect of the transformation is to
move the crosses to the right of the picture and the circles to the left, showing that the
plot consists of two distinct clusters.

Fig. 4.5: Semivariogram Plots in D Space

0.2 4

0.1 A

0.0 A

0.0 0.1 0.2 0.3 0.4

13



On the strength of these results, it appears that the methodology leads to estimators
of spatial covariance which take into account the discrepant behavior of ozone at the three
southeasternmost stations. We do not consider any further here the consequences of this
for the design of an ozone monitoring network, but one obvious conclusion is that it is
necessary to pay special attention to monitoring ozone in this part of the network.

5. CLIMATE EXAMPLE

For our second example, we consider temperature measurements from 138 stations
scattered over the continental United States. The stations form part of the Historical
Climatological Network (HCN) and have been selected for their long period of continuous
high-quality data. As ultimate objectives of the study, we might consider how to measure
climate trends taking into account that these are not the same everywhere — it may be
necessary to consider a model in which the climate trend varies smoothly with spatial
location, but the accurate estimation of such a model would then require that one should
take into account spatial correlations as well as spatial variability in means and trends.
With this in mind, we now focus exclusively on the spatial correlations and defer to a
future paper the investigation of the consequences of this for climate change. A published
example in which spatial analysis has been used to inform decisions about climate change

is the paper by Handcock and Wallis (1994).

From this data set, a correlation matrix was constructed based on 40 years of annual
average temperatures at each of the 138 stations. The 40 years were selected as those
for which a reasonably complete record was available at all 138 stations. This correlation
matrix will then be treated as a sample correlation matrix on the assumption that ob-
servations from different years form independent, identically distributed random vectors.
Obviously this appraoch will fail to take into account the effect of both temporal corre-
lations between years, and long-term temperature trends such as might arise from global
climate change, but our aim in the present study is to uncover spatial structure in the data
rather than to produce a definitive analysis taking into account all aspects of variability.

For this data set, the same kinds of models were fitted by the same methods as for
the ozone data. A key issue is again the order iy,15,..., in which the possible centers
of the radial basis functions are introduced into the model (cf. (2.9)) and in this case
there is even less scope to determine an optimal ordering. Not only are the combinatorial
problems of subset selection much greater with 138 stations than with 21, but the time
taken to compute each value of the log likelihood (which includes factorizing a 138x 138
matrix) is much greater, making the whole procedure extremely computationally intensive.
For this reason, a single ordering of the centers was determined prior to any model fitting,
mainly chosen so that at each stage of the model fitting process, the centers in the model
provide reasonable geographical coverage over the whole region being studied.

Based on this, and employing a log likelihood criterion for selecting the number m
of centers included in the model, an initial model selection was made with m = 21. [At
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the time of writing this does not take account of the cross-validation criterion discussed in
sections 3 and 4, and it is hoped to include that in a later version of the paper.] For this
data set the Matérn covariance function again provided a reasonable fit, but it was found
essential to include a parameter representing the “nugget effect”.

Fig. 5.1 shows plots of the sample semivariogram in both G and D space, with
the fitted Matérn curve for the latter. Although the transformation from G to D space
unquestionably improves the fit as measured by the log likelihood, it must be admitted
that there is not much evidence from this in Fig. 5.1, especially when we contrast with
this with the very noticable improvement seen with the ozone data between Figs. 4.4 and
4.5! Maps of the G and D space are shown in Fig. 5.2 and it is evident that the main effect
of the transformation is to pull a group of stations in the southwestern states (California,
Nevada, Arizona) away from the rest of the country.

However there is also evidence in Fig. 5.1 that the semivariogram is decreasing at very
large distances. As we have noted in Section 2, the Sampson-Guttorp apprach does not
allow for the possibility of a non-monotone semivariogram, but our approach via the Bessel
representation (2.12) does create this possibility. After some further experimentation a
Bessel model with four components was fitted, with results shown in Fig. 5.3. The map of
the D space is similar to that in Fig. 5.2, but the semivariogram plot now shows evidence of
two distinct clusters of points, with the semivariogram flat or decreasing in the right-hand
cluster.

In discussing these results with a climatologist colleague ? it was suggested that there
might be a climatological explanation based on the patterns of air circulation over the
continent. There is a tendency for weather patterns to move northwards up the west coast
of the USA, then eastwards over the northern Rockies, and then to fan out over the rest of
the country. This might well induce a negative correlation between the region soutwest of
the Rockies and the rest of the country. However, it was also pointed out that this pattern
of air circulation is much more prevalent during the summer months than the winter.

This suggested a re-analysis based on sample correlations computed separately for
the summer (June, July, August) and winter (December, January, February) data, with
results shown in Figs. 5.4 and 5.5 respectively. The distortion of the map created by the
southwestern states is indeed much greater in the summer than the winter, and the evidence
for the semivariogram to be decreasing at large lags is also much greater for the summer
than for the winter. These results therefore reinforce the climatological explanation.

In fact, examination of raw sample correlations shows a much higher proportion of neg-
ative correlations (usually involving the three southwestern states) than could be explained
by chance variation on the assumption that the true correlations are always non-negative.
This however points to a limitation of the whole approach taken in this paper. If it were

2 Professor Peter J. Robinson of the Department of Geography, University of North
Carolina at Chapel Hill, whose input is gratefully acknowledged
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Semivariogram Plots for Climate Data

Fig. 5.1
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Fig. 5.2: Original and Transformed Maps
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Fig. 5.4: Bessel Fit for Summer Data
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indeed the case that in one part of the country, spatial correlations are negative over certain
distance ranges, while in another part, correlations are always non-negative regardless of
the distance between two stations, then we could not expect the model (1.2) to capture
this adequately. To do that, we would need a model which explicitly allowed for the
homogeneous semivariogram function 7y to be different in different parts of the space.

The other feature of this example that should be made clear is that, for models and
data sets of the size being considered here, the question of uniqueness of local maxima of
the log likelihood function is something that definitely needs to be considered. Indeed, all
the evidence is that the local maxima are not unique, since re-runs of the same model based
on different starting values typically result in different estimates of the coefficients of the
radial basis functions. Thus in this case the concerns originally raised by Warnes and Ripley
(1987) are seen to be valid. In most cases, when two fits of the same model produce different
answers, the log likelihood values are very close, and the resulting maps and semivariogram
plots also very similar in appearance. Nevertheless, the algorithm sometimes stops at
parameter values which are clearly a long way from optimality. Therefore as a practical
measure, it is recommended that the same model be re-run from several different starting
values before accepting any of the model fits as definitive.

Summarizing, the results for the climatological data are considerably more compli-
cated than those for the ozone data. Nevertheless the fitted models provide considerable
insight into the true spatial structure of the data, a statement which is reinforced by the
interpretation in terms of streamflow patterns.

6. A NUMERICAL EXPERIMENT

The difficulties in selecting the right sequence of centers for the radial basis function
representation, combined with the non-unigeness of local maximum likelihood estimates,
show that it is still highly problematic to identify a single “best model” using the methods
we have outlined in this paper. Does it matter? More broadly, do we have evidence that the
complicated approaches outlined in this paper really improve on very simple approaches
to the estimation of spatial structure, such as an exponentially decaying covariance fitted
without any regard for possible nonstationarity or nonisotropy of the data?

A number of variations of the following experiment were tried. Take one of the fits
produced by the model, and call it model 1. Now take a competing fit, such as one
produced by a slightly different selection of centers or possibly a re-fit under the same
model when this does not produce the same result. Call this model 2. Now as a “straw
man” alternative, fit an exponentially decaying covariance under the assumption that the
true structure is stationary isotropic. This is model 3. If the nonstationary models are
working well, and if their nonuniqueness is not to be too much of a concern, then we would
like some assurance that in terms of their performance, models 1 and 2 are much closer to
each other than either of them is to model 3.
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One way to assess the performance of a model is to use it for spatial prediction
(kriging). So the following experiment was conducted. Let us assume that model 1 is the
true spatial covariance. Construct kriging estimators, at a number of unmonitored sites,
using each of the models 1, 2 and 3. Calculate the mean squared prediction errors (MSPEs),
for each of the three estimators, when model 1 is true. Of course, the MSPEs associated
with model 1 will be the smallest — this is simply a re-expression of the optimality criterion
that defines the kriging estimator, i.e. that it minimizes the MSPE when the assumed
model is correct. However if things are working well, model 2 should not be a great deal
worse than model 1, whereas model 3 might well be very much worse. The mean over all
predicted locations of the ratio

MSPE using kriging estimator from model j

6.1
MSPE using kriging estimator from model 1’ (6.1)

computed separately for ; = 2 and j = 3, may then be taken as an indicator of the relative
performance of the two “wrong” models.

The initial results of this analysis have produced rather sobering conclusions. Here is
a sample of results, where in each case a particular choice has been made, which will not
be elaborated, for models 1 and 2.

We have to agree on a set of unmonitored sites for which predictions will be sought.
The reader will observe that in each of the maps drawn in this paper, the spatial locations
have been represented within a 10x 10 grid. Therefore one obvious choice for the prediction
sites is the set of 81 interior grid points.

With this choice of models and prediction sites, for the ozone data, the ratio (6.1)
comes to 1.47 for 7 = 2 and 1.17 for j = 3. The same results for the climate data produce
1.21 for y = 2 and 1.18 for j = 3. In other words, model 2 performs worse than model 3,
dramatically so in the case of the ozone data.

However on further reflection, perhaps this result should have been expected. In both
data sets, there are substantial regions where data sites are either absent or very sparse
— over Lake Michigan in the ozone example, and in much of the underpopulated western
regions of the USA for the climate example. A model which relies on picking up local
fluctuation in the spatial covariances cannot be expected to perform well in regions where
there are very few stations, and it is quite conceivable that the exponential isotropic model
would provide a better broad-brush representation of the covariances between these regions
and the observed monitoring stations.

Another way to assess the predictive performance of the models is to see how well
they reproduce the results at the monitoring stations themselves. This has something
in common with the cross-validatory approach worked out in section 3 (though for the
analysis considered here, it does not involve re-fitting the model). Four separate runs of
the kriging experiment were performed, in each case using three quarters of the data points
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to predict the remaining one quarter. This was repeated for each of models 1, 2 and 3,
and the results evaluated as above, assuming model 1 is the true model. The ratio (6.1)
was calculated, averages over all data points and all four runs of the experiment.

For the ozone data, the result was 1.03 under model 2 and 1.11 under model 3. So at
least in this case, we have established that model 2 is a better fit than model 3! For the
climate data, the respective values were 1.09 and 1.11 — again evidence in favor of model
2, though admittedly not very convincing.

In future studies of this nature it is intended to repeat the experiment using different
choices of models 1, 2 and 3, and in particular to integrate the results better with the cross-
validation criterion of Section 3 (which has not been used at all in selecting the models
for this section). In the meantime, the results serve as a warning against overenthusiastic
fitting of very complicated models. Ultimately one would obviously hope that the models
do give good predictions over unmonitored regions of the sampling space!

7. SUMMARY AND CONCULSIONS

The analysis of this paper has deliberately focussed on a specific part of the problem,
namely how to estimate spatial correlations without taking into account spatial variations
in either the mean or the variance, let alone the possibility of different trends at different
places (which is obviously an issue with the climate example, and may well be important
in ozone monitoring as well). Another issue is the development of spatial-temporal models
which make due allowance for temporal as well as spatial correlations. These topics must
await future research, but the development of an adequate likelihood-based approach will
greatly facilitate such research.

As far as the present paper is concerned, I believe that the results demonstrate the
feasibility of a maximum likelihood approach but the difficulties associated with model
selection, and those created by the non-uniqueness in many cases of the local maximum
of the likelihood function, must not be ignored. We have seen that the cross-validation
approach tends to select models of much lower order (i.e. fewer centers in the radial
basis function representation) than a likelihood ratio criterion, and the results of section 6
show that the the issue of prediction into unmonitored regions of the sample space must be
considered very carefully. These considerations would seem to point towards caution in the
fitting of highly nonlinear transformations. Finally our discussion of negative correlations
in the climate example points towards a possible limitation of this whole class of models.
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