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ABSTRACT

Spatial processes are an important modeling tool for many problems of environmental monitor-
ing. Classical geostatistics is based on processes which are stationary and isotropic, but it is widely
recognized that real environmental processes are rarely stationary and isotropic. In this paper, a
new class of nonstationary processes is proposed, based on a convolution of local stationary pro-
cesses. This model has the advantage that the model is simultaneously defined everywhere, unlike
“moving window” approaches, but it retains the attractive property that locally in small regions, it
behaves like a stationary spatial processes. We discuss model fitting through exact and approximate
likelihood maximization, and propose a hierarchical Bayes approach to allow predictive inference
when the parameters of the model are unknown. Applications include obtaining the total loading

of sulfur dioxide concentrations over different geo-political boundaries.
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1 Introduction

A major focus of the Clean Air Act Amendments of 1990 has been the effect of atmospherically-
transported pollutants on terrestrial and aquatic ecosystems. The 1990 amendments include new
requirements that will appreciably reduce sulfur dioxide (SO) emissions. Monitoring data for SO,
are analyzed as part of the process for assessing compliance with the Clean Air Act Amendments
of 1990. The ground-level concentration of SOy will depend on the proximity to the source, the
prevailing meteorology, and the nature and extent of atmospheric chemical reactions between the
source and receptor. The interaction of these chemical and physical atmospheric processes and the
source locations tend to produce data patterns that show large spatial variability. Because spatial
patterns of SO, fluxes and concentrations are nonstationary processes, in the sense that the spatial
structure changes with location, standard methods of spatial interpolation are inadequate. We
present a new statistical methodology for prediction of nonstationary processes, with the objective
of obtaining in an efficient way the total loading of SO concentrations and fluxes over different
geo-political boundaries.

In recent years, probably the most extensively studied method for nonstationary spatial pro-
cesses is the deformation approach due to Sampson and Guttorp (1992); see also Guttorp and
Sampson (1994), Guttorp, Meiring and Sampson (1994). Maximum likelihood versions of the
method were developed by Mardia and Goodall (1993) and Smith (1996). In a series of papers
best represented by Haas (1995, 1998), T. Haas has proposed an approach to nonstationary spatial
kriging based on moving windows. Higdon, Swall and Kern (1999) give a model for accounting
for heterogeneity in the spatial covariance function of a spatial process, using a moving average
specification of a Gaussian process. Another approach has been developed by Nychka and Saltz-
man (1998) and Holland et al. (1999), that extends the “empirical orthogonal functions” (EOF)

approach that is popular among atmospheric scientists.



In this paper we give a new methodology for spatial interpolation of nonstationary processes.
More specifically, we represent the process locally as a stationary isotropic random field with some
parameters that describe the local spatial structure. These parameters are allowed to vary across
space and reflect the lack of stationarity of the process. We present a nonstationary process Z

observed on a region D as a convolution of local stationary processes:

Z(x) = /D K (x — ) Zg(s)(x)ds. (1)

where K is a kernel function and Zg(x), x € D is a family of (independent) stationary Gaussian
processes indexed by 6. If K is a sharply peaked kernel function and 6(s) varies slowly with s, this
has the property that for x near s, the process “looks like” a stationary process with parameter
0(s). On the other hand, since #(s) may vary substantially over the whole space, it also allows
significant nonstationarity.

This paper is organized as follows. Section 2 describes the current kernel approaches to non-
stationary spatial processes. In section 3, we propose a new model for nonstationarity and we
introduce some fitting algorithms to estimate the spatial structure. Section 4 discusses prediction
from a Bayesian point of view, to take into consideration in the prediction the uncertainty in the
covariance parameters. In Section 5, we discuss the change-of-support problem that occurs when
the modeled data and the required predictions are defined on different spatial scales. Section 6 is
an application of the methodology presented in this paper to the SO data. Finally, in Section 7

we present some conclusions and final remarks.

2 Models defined by kernel smoothing
A broad class of stationary Gaussian processes may be represented in the form

Z(s) :/K(s—u)X(u)du,



with K (-) some kernel function and X (-) a constant-variance Gaussian white noise process. The
motivation for defining a spatial process as an integral of white noise can be said to go back to
Whittle (1954), who gave a similar representation for discrete spatial processes. Matérn (1986)
used this representation to derive a wide class of stationary spatial processes. Higdon, Swall and

Kern (1999) considered extensions of the form

Z(s) = / K. (u)X (w)du, @)

where the kernel K depends on position s. The idea of Higdon et al. was to model Ks(u) as an
unknown function in terms of specific parameters which can then be estimated in a hierarchical
Bayes framework. In the case where Ky is a Gaussian kernel for each s, this leads to tractable
expressions for the covariance function and hence the likelihood function for the process.

This approach is promising, and a quite different idea from earlier approaches for nonstationary
processes, but it has the disadvantage of not being easily related to traditional spatial models. The
development of Higdon et al. relies heavily on the Gaussian form of kernel function and it is not
clear how restrictive this is. Our own approach also uses kernel representations, but has a quite

different motivation.

3 A new model for nonstationary spatial processes

Fuentes, (2001a) and (2001b) presents some new spectral approaches to study the spatial structure
of a nonstationary process, using a Fourier-Stieltjes representation of the process and assuming the
process behaves locally as a stationary isotropic random field. The model used in Fuentes (2001a)
and (2001b) represents a nonstationary process Z observed on a region D as a weighted average of

orthogonal local stationary processes, Z; for i = 1,...,k, with cov(Z;(x), Z;(y)) = 0 for i # j,

Z(x) = Z Zi(x)w; (x) (3)



where Si,...,S; are well-defined subregions that cover D, and Z; is a local stationary process in
the subregion S;, w;(x) is a positive kernel function centered at the centroid of S;.
In this article, we propose to write model (3) as an integral to obtain a continuous representation

of Z. Thus, we represent a Gaussian spatial process Z as a convolution of stationary processes:

Z(x) = /D K (x — 8) Zo(s) (x)ds. (4)

where K is a kernel function and Zg(x), x € D is a family of (independent) stationary Gaussian
processes indexed by 0, where @ is the parameter associated with the covariance function. The
stochastic integral (4) is defined as a limit (in mean square) of approximating sums (e.g., Cressie,
1993, p. 107, Yaglom, 1962, p. 23). The parameter function @ is allowed to vary across space to
reflect the lack of stationarity of the process.

The processes Zg(s) are stationary with autocovariances Cp(s), then they can be represented in

the form:

ZO(S) (X) = - Ks(u - X)Xs(u) (5)

where Ky is a kernel for each s, and X are independent white noise process for each s. A direct
attempt to rewrite (4) in the form (2) does not work because the process X is an independent
white noise process for each s, and we conjecture that there is no way of reducing the present model
to one of the structure of (2), with a common underlying white noise process X.

There is a possible alternative interpretation of (5), in which the process Xg, instead of being
an independent white noise process for each s, is a common process for all s, so the processes
Zg(s) are correlated. In that case it is straightforward to rewrite (4) in the form of (2), though the
kernel Ks(u) would be difficult to evaluate in practice. Because of its additional computational
complexity, we have not pursued that approach in the present paper.

In the proposed nonstationary model (4), if K is a sharply peaked kernel function and 6(s)



varies slowly with s, this has the property that for x near s, the process “looks like” a stationary
process with parameter (s). On the other hand, since @(s) may vary substantially over the whole
space, it also allows significant nonstationarity. The method has features in common with Haas’s
approach, but in view of the representation (4), there is no problem about it being a well-defined
process with a positive definite covariance function (this is also an attraction of (2), of course).
We could even use a variant of Haas’s approach to estimate the model, for instance, by estimating
0(s) for a finite set of values of s assuming stationarity within some window, and then smoothing
the function @(s) by kernels or splines. In the discussion to follow, however, we shall outline a
number of more sophisticated estimation procedures. Another attraction of model (4) is that it
allows all model parameters @ to vary over D, unlike the two-dimensional version of the Guttorp
and Sampson (1994) model.

We treat Z as a zero-mean process, and we have a separate smooth surface for the mean function.

The covariance of Zy() is stationary with parameter 6(s),

cov{Zg(s)(x1), Zo(s)(x2)} = Co(s)(x1 — x2).

The covariance C'(x1,%2;0) of Z is a convolution of the local covariances Cys) (%1 — X2),
C(x1,%2; 0) = / K (x1 — 8)K (x2 — 8)Co(s) (x1 — x2)4ds. (6)
D

We assume that @(s) is a continuous function of s. As an example, the process Zg(s) could have

a Matérn stationary covariance:

Os
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Co(s)(x)

where K., is a modified Bessel function and we have 8(s) = (v, 05, ps). The parameter p; measures
how the correlation decays with distance, generally this parameter is called the range; o, is the

variance of the random field, i.e. o5 = var(Zg()(x)), the parameter o is usually refereed to as



the sill; and the parameter v; measures the degree of smoothness of the process Zg ), the higher

, we get the exponential covariance

the value of v, the smoother Zg () would be, e.g. when vs = %

function. If we consider the limit as vs — 0o we get the Gaussian covariance

In (6) every entry requires an integration. Since each such integration is actually an expectation
with respect to a uniform distribution, we propose to evaluate (6) by Monte Carlo integration. We

draw an independent set of locations s,,, m = 1,2, ..., M over D, C(x1,x2;80) by

N

M
C(xl,xz; 0) = M_1 Z K(X1 — Sm)K(X2 — Sm)Co(sm)(xl — X2) (8)
m=1

In this notation, the “hat” denotes a Monte Carlo integration which can be made arbitrarily
accurate and has nothing to do with the data Z. The size of the sample, M, could be selected
using the same kinds of criteria as are used for assessing convergence of simulation procedures in

Bayesian inference.

3.1 Choice of weight function and bandwidth

In most settings where kernel methods are employed, e.g. density estimation or nonparametric
regression, it is critical to choose the bandwidth parameter in a way that achieves reasonable
balance between bias and variance. In particular, too small bandwidth would typically create an
estimator that is too rough (too large variance). In contrast, analytic form of the kernel is generally
considered to be of much less importance.

In the present setting, the smoothness of the spatial process is largely dependent on how
smoothly @(u) varies as a function of u. The bandwidth of the kernel is more important. However,
the proposed computational method requires that, for each point of prediction x, at least one of

the sampling locations s, (1 < m < M) satisfies K(x —s,,) > 0. This defines a lower bound on



the permissible bandwidth.
Therefore, in practice we use a kernel of the form K (u) = h=2Kg(u/h), where for Ky we have

used the two-dimensional version of the Epanechnikov (1969) kernel,

21— Juf),. (9)

Ko(u) = —
and the bandwidth A is chosen near the minimum value for the previously mentioned condition to
be satisfied. In the case that si,...,sas lie on a regular grid with distance ! between neighboring
grid points, it suffices to take h = [/+/2. This is the value used later in Section 7.

Our convolution model could be also considered a generalization to spatial problems of the

delta sequences used for probability density estimation (e.g.. Walter and Blum (1979)). With delta

sequences, small values of h are ideal to preserve the “shape”.

4 Hierarchical Bayesian model

The parameter function 6(s) for s € D, measures the lack of stationarity of the process Z. It would
be natural to treat @(s) as a stochastic process, with correlated errors. Alternatively, we could use
a spline approach to model 8(s), though the approach presented here allows splines as a special
case. We consider a hierarchical Bayesian approach to model and take into the account the spatial
structure of the parameter 8(s) in the prediction of Z. The essence of the hierarchy that we suggest
is the specification of Z as a parameterized process model:
[process, parameters|=[process | parameters| [parameters].

Bayes’ Theorem provides [process, parameters | data] by combining with an observational data

model [data | process, parameters].

Stage 1:



The process Z is written as a convolution of local stationary processes:

Z(x) = /D K(x — 5) Zo()(x)ds. (10)

where K is a kernel function, and Zg(x), x € D is a family of (independent) stationary Gaussian
processes indexed by 6. Thus, the distribution of Z given 6 is Gaussian.

Stage 2:

We present an approach to model @. The parameter function @ is modeled using a Bayesian
version of the median polish approach (e.g. Cressie, 1993). Assume the process Z is observed in a

grid n1 X ng, then we propose the following model for the parameter function 8
0(s) =a+r;+cj+eg(s) (11)

where s = (s;,s;), fori =1,...,n1 and j = 1,...,n9. The process eg(s) represents some spatially
correlated zero-mean noise. We assume €g(s) is Gaussian with mean zero and a Matérn stationary
covariance, cov(eg(x +y),eg(x)) = Cr,(y), with parameters 9. We use B, to denote the hyper-
parameters a, r; for i = 1,...,n1, and ¢; for j = 1,...,n2,. The vector parameter 3, is unknown.
If o does not change very rapidly with location, then only few values of 7 and ¢ (i.e. small n; and
ng) should be enough to characterize the large scale structure of o.

The kernel function K in the representation of Z is a kernel smoother with bandwidth h. The
function K is not representing the lack of stationarity. The crucial parameter here to explain the
lack of stationarity of Z is 8. The bandwidth parameter h is chosen using the algorithm discussed in
Section 3.1. Another alternative that has not been used in this paper, it is to include the bandwidth
parameter h in this hierarchy. Thus, in stage 1, we would have [Z|6, h], and the Bayesian model
would be completely specified once we give a prior distribution to & and 6.

If the goal is to predict Z at a location xg, given observations Z = (Z(s1),...,Z(sy)), then the



Bayesian solution is the predictive distribution of Z(x¢) given Z,

p(Z(x0)|Z) x /p(Z(x0)|Z,0(s) for s € D, h,02) p(8(s) for s € D,o?,h|Z) dhdo? d8,

(12)
and a MCMC approach was used to simulate m values from the posterior of the parameters @, h,
and o2, and the predictive distribution was approximated by the Rao-Blackwellized estimator:
1 , Y
PZ(0)|Z) = — > p(Z(x0)Z,0(5) for s € D, K, 57)
i=1

where O(S)(i) fors € D, h(i),JQ(i) constitute the #th draw from the posterior distribution. Notice
that to sample from the posterior of @ we need to specify first the priors of the hyperparameters

By and Tq:

p(0(s) for s € D|Z) x /p(Z|0(s) for s € D)p(@(s) for s € D|By, T0)p(By, To)dT0 dB,-

Thus, once we determine the priors for the parameters h and o, and for the hyperparameters 3,
and 7, the Bayesian model is completely specified. The joint posterior for 8, h, and o2 is defined

as follows:

p(8(s) for s € D, h,0%|Z) o< p(ZIB(s) for s € D, h,o*)p(h)p(0?) / p(8(s) for s € D|By, To)p(Bo)p(T0)dTo dBy,

where p(h),p(c?),p(By), and p(To) are the prior distributions for 4, o, B, and 7.

5 Change of Support

The change-of-support problem occurs when the supports of the predictand and the data are not
the same. In the present instance we are interested in making predictions about the random process
at a point location Z(xg) from data on block averages, Z(B1),...,Z(Bn).

Here, we observe Z, the output of a physical model, averaged over regions, Bi,..., By of
dimensions 36km x 36km and we want to predict Z at a location of interest xg, e.g. at the location

where we have a monitoring site.

10



The covariance for the block averages is defined as follows
con(Z(B), 2(8,)) = [ [ Ctuvydudv/|Bi| B, (13)
i ¥ Bj

where

C(u,v) = cov(Z(u), Z(v))

C is a nonstationary spatial function. In practice, for each pixel B; we draw an independent set of
locations w;r, r = 1,2, ..., L; uniformly over B;, and we approximate the integral in (13) with the

following expression

éov(Z(Bi), Z(B;)) = L7 ' L7 Y Y Cluir, ujp). (14)

Gelfand et al (2000) have independently studied this problem using approximation (14) to the block
covariances. We approximate the point prediction F(Z(x¢)|Z), where Z = (Z(B1),...,Z(Bn))
with E(Z(x¢)|Z), which is obtained using (14) as an approximation of (13). It is useful to note
that, if we define Z(B;) = L; '3, Z(uy) for i = 1,..., N, then the solution E(Z(sq)|Z) is actually
E(Z (so)|Z). In the Bayesian approach if we use (14) as an approximation of (13), the Bayesian
predictive distribution we obtain to sample Z(xq) is actually f(Z(xo)|Z). Note that f(Z(x0)|Z) =
f(Z(x0)|Z). Hence, we need Z(B;) L Z(B;). If cov(Z(u), Z(v)) is a continuous function on u and
v, then Z is mean square continuous (see e.g. Stein, 1999, p. 20), which implies Z(B;) i Z(By).
By the definition of the nonstationary covariance cov(Z(u), Z(v)) in (6), if the local stationary
covariances are Matérn, then cov(Z(u), Z(v)) is continuous on u and v.

In this paper, we define the process Z in terms of a pointwise covariance C(u,v), but then we
use (13), approximated by (14), to derive the covariances of the block averages Z(B;),i =1,..., N,
in terms of the pointwise covariance C(u,v). This is then used to define a likelihood function for
the parameters of the covariance function for the process Z in terms of the observed block averages

Z(By), Z(Bs), ..., Z(By).

11



6 Application

We have two sources of data for dry deposition fluxes and concentrations of SOs:

1. The first sources of information are the regional scale air quality models. These models,
e.g. Models-3, are run by EPA and the U.S. States and provide SO areal concentrations and
fluxes in regular grids in parts of the US (see Figure 1 (a) ). The current resolution of Models-
3 is 36 km x 36 km. The primary objective of Models-3 is to improve the environmental
management community’s ability to evaluate the impact of air quality management practices
for multiple pollutants at multiple scales, as part of the regulation process of the air pollutants

standards.

2. EPA provides point measurements at 50 irregularly spaced sites in the eastern U.S. known as
the Clean Air Status and Trends network (CASTNet) (see Figure 1 (b)). At each site, EPA

measures dry deposition fluxes and concentrations of different atmospheric pollutants.

Models-3 is used to examine the response of the air pollution network to different control strate-
gies under various high-pollution scenarios. To establish its credibility, however, it is essential that
it should accurately reproduce observed measurements when applied to ground data. Models-3 uses
as inputs metereological data, emissions data and boundary values of air pollution. The available
emissions data are combined with numerical models of local weather (the Mesoscale Model ver-
sion 5 (MM5)), the emissions process (the Sparse Matrix Operator Kernel Emissions (SMOKE)),
as well as information about land use and cover, to estimate pollution levels in space and time
(the Community Multiscale Air Quality (CMAQ) output) and produce maps (Dennis et al, 1996).
Models-3. are not statistical models but numerical deterministic simulation models based on sys-
tems of differential equations that attempt to represent the underlying physics, and take the form

of huge blocks of computer code.
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Figure 1: (a): SO2 concentrations (ppb) from Models-3 for the week of July 11, 1995. The resolution is

36km x 36km. (b): SO concentrations (ppb) at the CASTNet sites for the same week.

One of the main objectives of the work presented here is to evaluate Models-3, and therefore
we need measures of how well Models-3 output and real data agree. We present a methodology
that uses Models-3 output to come up with probabilistic predictions of SOy concentrations at the
point measurement sites. In our approach we take into account the change of support problem
between Models-3 (areal measurements) and CASTNet (point measurements). This application
requires, as a first step, fitting some random field model to Models-3, but it is unrealistic to assume
that a stationary isotropic model applies over such a large geographical area. Therefore, we need
nonstationary spatial models.

The first step of our analysis is to understand and to quantify the spatial structure of air
pollutants using the output of the regional scale air quality models (Models-3). Models-3 estimates
hourly concentrations and fluxes of different pollutants. As an example we examine sulfur dioxide.
The spatial domain, D, is a regular grid (81x87), and the dimensions of each pixel on the grid

are 36km x 36km. Models-3 provides the estimated average concentration for each pixel. Figure
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1 (a) shows the weekly average concentrations of SOy for the week starting July 11, 1995. We
implemented here the nonstationary model (4) with a kernel function with compact support, the
kernel used being the quadratic weight-function (9), presented in Section 3.1. We applied the
algorithm discussed in Section 3.1 to choose the bandwidth, trying to preserve the general “shape”
of the data. The value of h in this application is 229 km (h = [/+/2), because M = 81 = 9 x 9
(sample size) and [ (distance between sampling points) is 324 km (9 - 36km). Note that the value
of h changes with M. We obtained the value of M using Bayesian criteria for convergence of the
posterior distributions in the Bayesian hierarchical model. For the purpose of illustrating the need
of the technique presented in this paper, Figures 2 (b) and 3 (a) show the posterior distributions of
covariance parameters at the selected sites plotted in Figure 2 (a). We used vague gamma priors

for all the covariance parameters, except for the sill parameter that we used

p(o) <ol

which is a uniform prior for log(c). The sill parameter is changing with location as illustrated by
the variation in the distributions in Figure 3 (a). This indicates lack of stationarity. We can clearly
appreciate this fact in Figure 3 (b). Figure 3 (b) shows a map of the modes for the posterior
distributions of the sill parameter of the Matérn covariance for the Models-3 SO, concentrations,
for the week starting July 11, 1995. Figure 3 (b) indicates clearly that there is a deviation from
stationarity. We modeled the covariance parameters (#) using the model proposed in (11). Thus,

for the sill parameter (o) we have

o(s) =a+ri+cj+eq(s)

where s = (s;,s;), fori =1,...,n1 and j = 1,...,n9, the r;’s values explain the longitude effect
and the ¢;’s values explain the latitude effect. The process €, (s) is Gaussian with mean zero and

a Matérn stationary covariance, cov(eqy(x +¥),€0(x)) = Cr,(y), with parameters 79. We have
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ny = 9 and ny = 9 (the number of sampling points is M = 81). The mode of the hyperparameters
r; for 4 = 1,...,n1, and the hyperparameters ¢; for j = 1,...,n9, are shown in Figure 4 (a). In
fact, Figure 4 (a) shows a smoothed version using a cubic spline of the longitude effect (r;’s) and
the latitude effect (¢;’s), and also the semivariogram of the error term (e, ) for the sill parameter,
o. The longitude effect shows higher sill values in a region between 80°W and 90°W, and the
latitude effect suggests an increase of variability (sill) from 35°N to 40°N, followed by an almost
linear decrease at higher latitudes. This corresponds to what we observed in Figure 3 (b), where
we obtained higher values for the sill parameter in the Midwest. In Figure 4 (a) (bottom graph) we
assumed a Matérn model for the semivariogram of the error term (€5 ), the covariance parameters
for this Matérn model are the modes of the posterior for the hyperparameter 73. The posterior
mode of the smoothing parameter for this Matérn covariance estimates the spatial local behavior
of the sill, in this case the mode of the smoothing parameter is only .09 which suggest that the sill
parameter is not a very smooth process. The range and the smoothing parameters do not change
much with location, the mode of the range is approximately 75 km almost everywhere (see Figure
2 (b)), and the mode of the smoothness parameter is approximately .5. The S0y varies rapidly
with location, so it is not surprising to obtain these short ranges of autocorrelation. Regarding the
smoothness of the process, we should keep on mind that we are working with preprocessed data,
the output of a numerical model. Therefore, the smoothness parameter was not expected to vary
much with location, because the data have been already smoothed and processed.

The evaluation of the regional air quality models is crucial. We use the ground measurements
from the Clean Air Status and Trends Network (CASTNet) (see Figure 1 (b)), to evaluate weakly
average concentrations of SOs estimated by Models-3. The coordinates for Models-3 do not match
the location of the CASTNet sites. Thus, we spatially interpolate the output of the models at the

location of the CASTNet sites. We should do the interpolation by taking into consideration the
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Figure 2: (a): Selected CASTNet sites. (b): Posterior distributions for the range parameter (km) of the

Matérn covariance for Models-3 SO- values, at the 6 selected sites.

spatial structure of the pollutant concentrations. Furthermore, Models-3 concentrations are block
averages over the 36km x 36km. We use here a Bayesian approach to the interpolation technique
for nonstationary fields taking also into account the change-of-support problem (we calculated the
block averages covariances drawing a set of 4 locations in each pixel). We use posterior predictive
checks (PPC) as suggested by Rubin (1984) for validation of the air quality numerical models. Thus,
we compare the posterior predictive distributions of the physical models (Figure 4 (b)) at different
locations to the observed data (Figure 2 (a)), to determine if the numerical models generate data
that are similar to the CASTNet data. Figure 4 (b) shows the predictive values of the Models-3
S0, weekly average concentrations at the CASTNet selected sites. As expected, we get very high
variability at the Indiana site, this site is very close to several coal power plants, and therefore
the SOy levels can be very high or very low depending on wind speed, wind direction, and on the
atmospheric stability. The sites in Maine and Florida have the lowest SOs levels and variability.

The agricultural site in Illinois and the site in North Carolina have similar behavior regarding SO-
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levels. The site in NC is not far from the Tennessee power plants, and the site in Illinois is also
relatively close to some Midwestern power plants. The site in Michigan, which is very close to the

lake Michigan and relatively far from power plants has also low SO; levels.

Posterior distribution for SILL
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Figure 3: (a):Posterior distributions for the sill parameter of the Matérn covariance for Models-3 SO-
concentrations, for the week starting July 11, 1995. At the 6 selected locations showed in Figure 2 (a).
(b):Map of the modes of the posterior distributions for the sill parameter of the Matérn covariance for

Models-3 SO, concentrations, for the week starting July 11, 1995.

We do not consider CASTNet measurements to be the “ground truth”, because there is mea-
surement error. Thus, we assume there is an underlying (unobserved) field Z(s), where Z(s)
measures the “true” concentration/flux of the pollutant at location s. At station s we make an

observation Z (s), corresponding to the CASTNet observation at this station, and we assume that

A~

Z(s) = Z(s) + e(s), (15)

where e(s) ~ N(0,02) represents the measurement error (nugget) at location s. The process e(s) is

independent of Z(s). With the purpose of estimating o., EPA has two collocated monitors at the
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Figure 4: (a):Longitude effect (r;’s), latitude effect (¢;’s) and semivariogram of the error term (e, ) for
the sill parameter (o), where o(s;,8;) = a +r; + ¢; + €5(84,8;) for i = 1,...,n1 and j = 1,...,n9, and
the process €, is Gaussian with mean zero and a Matérn stationary covariance with parameters 7¢. In the
bottom graph we plot the Matérn covariance model of the the error term (¢, ), the covariance parameters for
this Matérn model are the modes of the posterior for the hyperparameters 7. (b):Predictive distributions
for the Models-3 SO, concentrations, at the 6 selected locations showed in Figure 2 (a), for the week starting

July 11, 1995.

Mackville site in Kentucky. The collocated monitors in Kentucky have been collecting weekly data
since 1993. We estimate o, using the mean squared differences of all the available CASNet values
at the two collocated sites, the estimated value is .3 ppb.

The graph on the left in Figure 5 presents a naive approach for evaluation of Models-3. This
graph shows Models-3 versus CASTNet, without doing any spatial interpolation of Models-3. In this
graph we simply have the values of Models-3 for the pixels that are the closest to each CASTNet
site, without considering the change of support. In some areas the atmospheric pollutants vary
significantly at scales smaller than the grid size of the model, therefore comparing the value of the

grid cell with a point measurement in the ground would lead to erroneous conclusions. In Figure
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5 the dotted lines indicate a 90% confidence region for CASTNet (CASTNet values +1.64 - o).
The graph on the right in Figure 5 shows the modes and 90% credible intervals of the predictive
Bayesian distributions derived from Models-3 at the CASTNet locations versus the CASTNet data.
The latter plot is much more informative about the fit of Models-3 to the real data, since we
compare values that have the same spatial support instead of comparing grid cells with point
measurements. The uncertainty in the estimated Models-3 values in this figure depends on location
and is represented by the variance of the distributions in Figure 4 (b). The 90% credible intervals in
Figure 5 show that at some locations, the bias in Models-3 is not significant. This Bayesian approach
gives more reliable prediction errors, by taking into account the uncertainty in the covariance
parameters, and the change of support. In Figure 6 we plot all CASTNet values versus the means
of the predictive distributions of Models-3 at those locations. There are 3 sites where Models-3
overestimates the SO, values considerably, a site in Indiana, a site in Maryland, and a site in West
Virginia. These three sites are close to power plants. In Figure 7 (a) we show these predictive values
on a map, and in Figure 8 (a) we present the corresponding standard errors also on a map. Figure
6 is just an illustration of the powerful application of the technique presented in this paper, though
it does arises some important questions that are currently being discussed with the Models-3 group
regarding the formulation and improvement of the physical models. Some of the main sources of
uncertainty that affect the performance of the models are the following; the photo-chemistry model
parameterizations (which is the treatment of photo-chemistry phenomena varying at scales smaller
than the grid size of the model), the boundary conditions, the treatment of the land use/land cover
at smaller scales than the grid size, the quality of the emissions input that goes into the air quality
models, and the air dispersion modeling of pollution plumes (at smaller scales than the grid size).
The fact that the models perform worse in areas closer to power plants suggests that the dispersion

modeling of pollution plumes in that areas needs to be improved. The Models-3 output used for
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the analysis in this paper assumes that the SO, diffuses uniformly within each grid cell. New
dispersion models are currently being added to Models-3. For more information about dispersion
modeling of pollution plumes, see e.g. Beychok (1995).

We compare now our proposed modeling approach with a geostatistical kriging prediction ap-
proach (see, e.g. Cressie, 1993, for more information about kriging). In a geostatistical kriging
approach for spatial prediction the covariance structure is estimated first, and then the estimated
covariance is used for interpolation. The properties of the interpolants based on an estimated
covariance structure are not well understood, and it is common practice to ignore the effect of
the uncertainty in the covariance structure on subsequent predictions. Our Bayesian approach to
interpolation of spatial nonstationary processes provides a general methodology for taking into ac-
count the uncertainty about parameters on subsequent predictions. We used for both approaches
the same model for nonstationarity. For the kriging prediction the covariance parameters were the
modes of the corresponding posterior distributions. In Figure 7 (a) we show the Bayesian predictive
values (mean of predictive posterior distribution) at the CASTNet locations, and in Figure 7 (b)
the kriging predictive values. Figure 8 shows the Bayesian standard errors (standard error of the
predictive posterior distribution), and Figure 8 (b) the standard errors from kriging. Figure 9 plots
the Bayesian standard errors at the CASTNet locations versus the Kriging standard error. The
points in Figure 9 where the Bayesian standard errors are much larger than kriging, correspond to
locations close to power plants.

As one would expect the Bayesian approach tends to originate larger standard errors, since it
also takes into account the uncertainty about the covariance parameters. The Bayesian standard
errors are particularly larger than kriging in areas with high emissions, mainly because the proximity
of power plants and the uncertainty associated with that. In these areas the SOy values are high or

low depending on the atmospheric stability, wind direction, and many other atmospheric factors.

20



Evaluation of Models-3

CASTNet
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Models-3

Figure 5: The graph on the left shows CASTNet measurements for the week starting July 11, 1995,
versus the values of Models-3 for the pixels that are the closest to each CASTNet site, without
considering the change of support. The graph on the right shows the CASTNet measurements
versus the modes and 90% credible intervals of the predictive Bayesian distributions derived from

Models-3 at the CASTNet locations.The dotted lines indicate a 90% confidence region for the

CASTNet values.
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Figure 6: CASTNet values versus the mean of the predictive posterior distribution at each site.

The kriging standard errors are quite stable everywhere. This kriging method fails to capture the

relatively larger uncertainty in areas close to power plants.

7 Conclusions and final remarks

We introduce in this paper a new statistical methodology for nonstationary models, the spatial field
is represented locally as a stationary isotropic random field, but the parameters of the stationary
random field are allowed to vary continuously across space. Kernel functions are used to ensure that
the field is well-defined but also continuous. New fitting algorithms are developed. The methods are
extended to prediction/interpolation questions using Bayesian approaches to account for parameter
uncertainty. In this paper we also take into account the change of support problem that occurs
when data and predictant have different spatial resolution.

One of the main objectives of the application presented in this paper is to evaluate the physical

air quality models (Models-3). Therefore, we need measures of how well Models-3 output and real
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Bayesian predicted values Kriging predicted values

(a) (b)

Figure 7: (a): Mean of the predictive posterior distribution at each CASTNet site. (b): Kriging predictor

at each CASNet location, with a nonstationary covariance.

data (CASTNet) agreed. We compared Models-3 with CASTNet at all the 50 CASTNet locations,
taking into account the measurement error in CASTNet, and the change of support problem.
Previous attempts to evaluate dry deposition values from Models-3, did not take into account
the fact that Models-3 estimates grid-cell averages and not point values, leading to misleading
conclusions about the performance of Models-3. For instance, in Figure 5 the CASNet site in NC
does not seem to disagree with the models (if we ignore the change of support). But, a more
careful analysis, using point predictions at the CASTNet sites suggests that Models-3 does not
perform there as well as expected. Models-3 group is analyzing this site and other suggested
locations, mainly in the areas close to power plants, where the models do not perform very well
when compared to the ground measurements. It is very computationally expensive to run these
physical models. Therefore, it is crucial for the modelers to understand where the numerical models

do not perform very well. Because, they can then run the models for these areas of interest under
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Bayesian standard error Kriging standard error

(a) (b)

Figure 8: (a): Standard error of the predictive posterior distribution at each CASTNet site. (b): Standard

error of the Kriging predictor at each CASNet location.

different emissions scenarios, and under different model parameterizations and plume dispersion
models, with the goal of improving the air quality models and understand better the reason for the
disagreement between models output and ground observations.

We also compared our proposed modeling approach with a kriging prediction method, that
ignores the uncertainty in the covariance parameters. Both approaches were implemented using
the same model for nonstationarity. Our approach gave larger standard errors than kriging for the
Models-3 predicted values, specially in areas close to power plants. This reflects the difficulty in
estimating the covariance parameters in these areas. The kriging approach reported rather uniform
standard errors everywhere. For the evaluation of the physical models, we studied where CASTNet
values lay with respect to a confidence interval for the SO, predicted values from Models-3. Using
kriging for the prediction we underestimated considerably the length of the confidence intervals

leading to wrong conclusions about the performance of Models-3.
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Figure 9: The standard error of the predictive posterior distribution at each CASTNet site, versus

the standard error of the Kriging predictor.

The spatial model proposed in this paper could be also applied to spatial temporal data. Right
now Models-3 is being run for short periods of time, but in a near future we should get access
to longer periods of time than one week to conduct a spatial temporal analysis. Then, we would

model Z as a spatio-temporal process,

Z(X, t) = M(Xat;ﬂ) + 6(Xat)

where F (Z(x,t)) = p(x,t;3), and the process € represents some spatial-temporally correlated
zero-mean noise. We could represent Z(x) using the model in Section 3 where x now varies over a
domain D contained in a 3-dimensional Euclidean space R®. However, if we assume that the local

stationary processes have a separable covariance, then we model Z as follows:

Z(x,1) = /D K (x — 8) Zg()(x, 1)ds. (16)
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where ¢(s) = (6(s), p(s)) and the local processes Z ) have a separable spatial-temporal covariance,
(Zg(s) (51511)s Zos) (52, 12)) = CS1 (51— 82) - CO). (|t — ¢ 17
COV \Zg(s)\S1,11), Zgp(s) 52, 2)) O(S)(Sl 52) p(s)(| 1 2|) ( )

where C’él(l) is a stationary spatial covariance with parameter 6(s), for instance a Matérn (7), and
C,(f()s) is a stationary temporal covariance with parameter p(s). For instance we could model CI(JQ()S)
as the covariance of an autoregressive AR(1) temporal model. Forms such as (17) have a history

in spatial-temporal modeling; see e.g. Mardia and Goodall (1993) and references therein.

Then, the covariance of Z can be written as follows:
cov (Z(s1,t1), Z(sa, t2)) = / K (51— 8)K(s2 — 5)Cl)y (51 — 2) - O ([t — ta)ds~ (18)
D

this is a nonstationary spatial-temporal covariance. Note that the covariances for the processes Z )
are separable but the covariance of Z is not separable. We should acknowledge that a separable
model for Z would be no longer considered acceptable by many users. For each local process Z )
spatial association at a fixed time point is captured through C(!); decay in such association over

time is captured by C(2).
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