
Data Analytic Procedures for Monitoring Specific Pollutants in

Epidemiological Studies

Richard L. Smith∗

December 31, 2002

Abstract

This note describes some statistical procedures relevant to studying the effect of a specific
pollutant, such as emissions from diesel fuel, in epidemiological studies. After some initial
remarks about the formulation of the problem in statistical terms, we consider two methodologies
in detail. The first concerns exposure modeling via spatio-temporal interpolation of a pollutant
based on a limited network of monitors. The second is about the assessment of health effects
when data on multiple constituents of air pollution data are available; an example is given based
on data from Phoenix, where data on PM2.5 broken into individual elements were available.
However the discussion also highlights the inadequacy of many existing data bases for this kind
of study.

1 Introduction: What is the Question?

Time series studies of air pollution and health, such as the NMMAPS study (Samet et al. 2000a,
2000b), are designed to answer questions about the short-term impact (e.g. excess numbers of
deaths per year) of an atmospheric pollutant, such as PM10 or PM2.5, on some measure of human
health. Similarly, prospective studies (Krewski et al. (2000)), which attempt to measure long-term
as well as short-term effects, are ultimately designed to assess the total impact on the human
population of some aspect of air pollution health effects. It seems to me that the ultimate objective
of research in diesel fuel emissions, or any other specific component of air pollution, is to answer
similarly broad-brush questions of total impact on human health, but restricted to that component
of the total pollution. I emphasize this point because the effective design of an epidemiological
study depends on a clear articulation of its objectives. By focussing on these objectives and the
kind of statistical analysis needed to achieve them, we gain insight into the data that need to
be collected, and the sample sizes required to answer the questions of interest with a satisfactory
degree of precision.

In the case of diesel pollution, a key aspect seems to be that it is not possible to measure
directly the emissions of diesel fuel: realistic methods of measurement depend on proxies, such as
the concentrations of certain chemical markers in the ambient air, from which we can infer the
diesel emissions with some measurement error.

The effect of measurement error in epidemiological studies of air pollution is one of the known
difficulties of this area of research. It is widely acknowledged that pollution measured by ambient air
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monitors differs substantially from that measured by personal monitors, and some limited attempts
have been made to account quantitatively for the effect this has on regression relationships (e.g.,
Dominici et al. (2000)). If proxy variables are used for diesel emissions, then the question of how
to deal with measurement error is central to the analysis. A typical analysis may use the following
variables:

X: Measured air pollution variables (e.g. criteria pollutants, PM2.5, specific chemical markers)
Y : Response, e.g. mortality, hospital admissions due to asthma,
Z: True variable of interest, e.g. diesel emissions

We would like to fit a model of the form

f(Y ) = βZ + other fixed effects + random error (1)

where f(Y ) is some function of the response Y , and the other fixed effects include confounders such
as meteorology, terms to represent time trends and seasonal effects, etc. The measurement error
problem arises because in epidemiological studies, we are not able to measure Z directly but must
use X as a set of proxy variables.

However, we also have available training data (e.g. from supersites) that can allow us to study
in detail the joint distributions of X and Z. With this information, the probability distributions
we need to specify are

1. p(X|Z), the distribution of X given Z — this may come from detailed chemical analyses

2. p(Z), the prior distribution of Z — this is needed for Bayesian analyses

Using Bayes’ Theorem, the last two distributions may be combined to produce p(Z|X), the
conditional distribution of Z given X. This in turn may be combined with (1) to produce a
posterior distribution of β.

This approach, being explicitly Bayesian and taking into account the uncertainty of our knowl-
edge about Z, is different from the conventional non-Bayesian approach to measurement error in
regression. While there is much room for discussion about details, I believe that an approach of
this broad structure is needed to take account of the different sources of uncertainty.

Two questions are:

1. What should X be? — In other words, what are the best variables to use as proxies for diesel
fuel? Possibly that question is already answered by other presentations at this workshop, but
a balance may need to be struck between using a good chemical marker and one that is easy
and cheap to measure on the extensive scale needed for a good epidemiological study.

2. What kind of information should be use to assess p(Z)? A crude measure might be based on
traffic patterns, but perhaps something more sophisticated is needed.

2 Spatial Statistics

One way of reducing measurement error would be if we had better methods of spatial interpolation
between monitors. Patrick Kinney, at this workshop, has highlighted some of the difficulties with
diesel particulate matter (DPM) in comparison with the more extensively studied fine particulate
matter (PM2.5). The spatial-temporal variability of PM2.5 is dominated by the temporal component
— at any fixed point in time, the field tends to be fairly homogeneous spatially, and this makes it
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relatively easy to interpolate based on a limited set monitors. With DPM, it appears, the situation
is reversed — the variability is dominated by the spatial component. Limited studies with personal
monitors have highlighted the difficulty of interpolating DPM.

There is no ready answer to this problem, but in a recent study, Smith et al. (2003) have
proposed a new approach to interpolating PM2.5, and this method may provide some clues as to
how to deal with the harder problem of DPM.

This particular analysis was based on one year’s PM2.5 data from 74 monitors in three southern
states (NC, SC, GA). Weekly averages were computed based on data available at each monitor.
Also available were the latitude-longitude coordinates of the monitor, and a “land use” variable
(agricultural, commercial, forest, industrial or residential). Preliminary analysis of the data sug-
gested showed a strong weekly variability common to all sites, but with upward or downward shifts
depending on the characteristics of the sites (Fig. 1).

A model was fitted of the form

yst = ωt + ψs + `s + ηst (2)

where yst is the square root of PM2.5 for week t at site s (the square root transformation was found
to improve the fit of the model), ωt is a week effect, ψs represents a fixed spatial component of
the variability, `s is a land-use effect (one value for each of the five possible land uses) and ηst

is a random component. The “spatial interpolation” aspect of this only applies to ηst, the other
components being regarded as fixed. The parameters ωt and `s were treated as fixed effects, similar
to an analysis of variance, while ψs was modeled as a smooth function of s through a thin-plate
spline representation.

As an example of the output of this analysis, a map of overall mean PM2.5 was produced,
and compared with the (much rougher) map produced by simply averaging and interpolating the
raw values (Fig. 2). Another feature of the spatial analysis, not possible with non-statistical
interpolation methods, is the possibility of creating a standard error map (Fig. 2(b)). This would
be needed to pursue the kind of analysis discussed in Section 1: for example, if Z represents the
PM2.5 at a specific location, and X represents a set of PM2.5 measurements from monitors, then the
conditional distribution p(Z|X) involves some measure of variability and not just the conditional
mean of Z given X.

It is conjectural whether a similar technique could be applied to the interpolation of DPM.
However, some features of the method should be noted. It has been pointed out that for DPM,
although the spatial variability is typically much higher than for PM2.5, the pattern of spatial vari-
ability seems to be fairly constant in time (for example, because of consistent traffic patterns). This
suggests that a model of the form (2), in which there is a fixed term ψs to represent the consistent
spatial pattern of observations, would do much better than simple geostatistical interpolation of
the spatial field at each time point. The method is also well adapted to missing data, since typically
(even with PM2.5 data) observations are not available from all monitors at all time points.

3 PCA, Empirical Bayes and Related Methods

We now turn to a different aspect of the analysis, using examples based on Kim et al. (1999), Smith
et al. (2000), in which PM10 and PM2.5 data were available from the Phoenix site (1995–1997),
along with data on the contributions of individual chemical elements to the PM2.5 total. Daily
mortality and meteorological data were also available. The challenge in this study was how to
incorporate a large number of possible covariates into a regression analysis.
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Figure 1. Comparison of fitted trend and raw data for subpopulations. (a) All data combined,
(b) NC, (c) SC, (d) GA, (e) Agricultural sites, (f) Commercial, (g) Forest, (h) Industrial, (i)
Residential. A single common weekly trend is shown (same on all plots), with superimposed data
points from the individual stations in each subpopulation.
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Figure 2. Reconstructed surface for overall annual mean PM2.5. (a) Mean surface. (b) Standard
error. (c) Plot of raw data with linear interpolation on a triangulation (S-PLUS “interp” routine).
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Figure 3. Estimates and 95% confidence bands obtained for each of 42 elements. Three estimates
for each element: (left) ordinary least squares (OLS) estimates when elements are added one at
a time; (middle) OLS estimate when elements are added all together; (right) Ridge regression
estimates.

One conclusion that contradicted conventional wisdom on air pollution health effects was that
for this data set, it appeared that the effect due to coarse particles (difference between PM10 and
PM2.5) was stronger than that due to PM2.5, though the PM2.5 effect was significant above a
threshold in the region of 20–25 µg/m3 (Smith et al. (2000)).

In further analysis, we considered regressions in which the covariates of a pollution-mortality
relationship included the measured concentrations (for 300 days of data) of 42 chemical elements.
In Fig. 3, the regression coefficients and 95% confidence limits are plotted, computed three different
ways: (a) putting in the 42 elements one at a time (the left-hand member of each group of three
estimates), (b) including all 42 elements at once (middle), (c) including all 42 elements but reducing
the variability of the estimates by ridge regression (right). Method (a) produces reasonable-looking
estimates, but the difficulty is that we do not believe that any single element is responsible for

5



the mortality effect: the intention behind the analysis is to identify groups of elements, or specific
combinations of elements, that might act as some kind of marker. The analysis (b) includes all
the elements, but many of the individual estimates have very large standard errors as indicated by
the length of the vertical bars. Ridge regression, method (c), is a method described in many texts
on regression analysis, that aims to reduce the variability of the individual estimates at the cost
of introducing a small amount of bias. In this case, the ridge estimates are quite similar to the
single-variable estimates in (a), and apparently superior to those in (b).

Ridge regression is just one of a number of so-called shrinkage methods that have been designed
to improve the performance of regression estimates when there are very many regressors or a high
degree of multicollinearity. Other methods include the lasso method (Tibshirani 1996), various
methods developed in the context of calibration (Brown 1993), and empirical Bayes methods (Carlin
and Louis 1996). As an example of the latter, Kim et al. (1999) adapted the triple-goal estimates
of Shen and Louis (1998) to this regression setting.

For this particular data set, none of the methods was successful in identifying any particular
element or group of elements that was especially strongly associated with pollution health effects,
a conclusion that was scarcely surprising given the overall weak association between PM2.5 and
mortality in this data set.

For an alternative analysis, Smith et al. (2000) looked at seasonal effects with a view to
examining whether seasonal patterns in the PM-mortality effect could in any way be associated with
seasonal pattern in the pollutants. Table 1 shows seasonal coefficient estimates for the mortality
effect of coarse PM (the corresponding results for fine PM showed no evidence of any seasonal
effect). The effects are strongest in the spring and summer.

Season Mean coarse Regression Standard t statistic p value
PM (µg/m3) Coefficient Error

Winter 33.6 0.0036 0.0023 1.5 0.13
Spring 28.9 0.0139 0.0026 5.3 0.0001

Summer 31.6 0.0063 0.0026 2.4 0.018
Fall 39.3 0.0023 0.0022 1.0 0.3

Table 1. Effect of coarse PM on mortality, measured by season.

A subset of the single-element data (Al, Si , S, Ci, K, Ca, Ti, Mn, Fe, Cu , Zn, Pb) was further
classified using a principal components analysis which showed that the crustal elements (Al, Si,
K, Ca, Ti, Mn, Fe) explained 55% of the variation of coarse PM, the anthropogenic elements (Fe,
Cu, Zn, Pb) explained 30%, and the elements of marine origin (Cl in NaCl; Na was not measured)
explained 5%. Table 2 shows a breakdown by season of the means of three principal components
corresponding to each of these groups.

Season Crustal Anthropogenic Marine
Winter –.144 .503 –.589
Spring –.278 –.323 .073

Summer .004 –.483 .41
Fall .245 .222 .03

Table 2. Breakdown by season of mean level of each of the three principal groups of elements
(standardized to overall mean 0 for each component)

It appears that the seasons in which the anthropogenic effect is low are also the ones with
highest effect due to PM. This is, of course, contrary to the common understanding that the effect
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of naturally occuring particulate matter in the atmosphere is much less important than the effect
of industrial and other anthropogenic sources. There may be some natural explanation of this
phenomenon in the case of Phoenix, or the whole result may just be an artifact of the relatively
small scale of the study, but either way, it suggests questions for further study.

4 Summary and Conclusions

Any meaningful attempt to integrate measures of diesel emissions into large-scale epidemiological
studies will have to deal up front with the issue of bias induced by measurement error. Section 1 of
this discussion has outlined a possible conceptual approach and some of the main issues that need
to be addressed in order to apply it.

One aspect of measurement error bias comes from the fact that any measure of air pollution
is only available at ambient monitoring sites and these are not typically in good agreement with
measurements derived from personal exposure monitors. This is an issue with studies based on
PM2.5, but is expected to be a much more serious issue with measures of diesel fuel emissions
because of the much greater spatial variability of the latter compared with PM2.5. In Section 2,
I have outlined some current thinking about the spatial interpolation of PM2.5, which improve
substantially on simple geostatistical methods, and may be applicable to other pollutants as well.

Section 3 of this discussion has highlighted some of the issues involved in regression analysis
of pollution-mortality relationships when there are a large number of pollution-related covariates,
represented here by the individual elements in chemical analyses of PM2.5. Ordinary least-squares
regression estimates do not perform where when there are many covariates and/or a high degree of
multicollinearity. Alternative methods such a ridge regression or empirical Bayes analysis are avail-
able, and may be expected to improve the simultaneous estimation of many regression coefficients.
These methods will not help with very limited data sets. The biggest obstacle to this whole field
of research, as I see it, is designing and collecting data for epidemiological studies on a sufficiently
large spatial-temporal scale to make meaningful health effects estimates.
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