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Abstract

The multivariate extremal index has been introduced by Nandagopalan as a measure
of the clustering among the extreme values of a multivariate stationary process. In this
paper, we derive some additional properties and use those to construct a statistical es-
timation scheme. Central to the discussion is a class of processes we call My processes,
which are characterized by means of a multivariate generalization of a characterization
due to Deheuvels for univariate max-stable processes. The multivariate extremal in-
dex for M, processes is derived, and certain properties established. We then discuss

estimation of the multivariate extremal index.

Keywords: Moving maxima processes, multivariate extreme value theory, stationary

processes.

1 Introduction

Suppose {X;, : =1,2,..., } is a stationary sequence in one dimension, with continuous
marginal distribution function F(z) = P{X; < z}. Let M, = max{X;y,..., X,} and
also let M, = maX(Xl, ,Xn) where {)A(Z} is the so-called associated sequence of i.i.d.

random variables with the same marginal distribution function F'. Suppose {u,, n > 1}



is a sequence of thresholds such that n{l — F'(u,)} — 7 as n — oo, where 0 < 7 < o0.

Then it follows immediately that

P{M, <u,} — e . (1.1)
Under quite mild additional conditions, we also have that

P{M, <u,} — e . (1.2)

where 6 is a parameter called the extremal index (Leadbetter 1983, Leadbetter, Lind-
gren and Rootzén 1983). Among its more elementary properties are that 6 can take
any value in the interval [0, 1], and that if the limit (1.2) holds for some 7 and corre-
sponding {u,} sequence, then it holds for all; in other words, the value of 6 does not

depend on the particular 7 or {u,} sequence chosen.

In this paper, we are interested in multivariate extensions of these results. Suppose
{X: = (Xi,..., Xip), ¢ = 1,2,...,} is a D-dimensional stationary stochastic pro-
cess with marginal distribution functions F(@&) = F(x1,...,2p) = P{Xiu < 24, d =
L,....D}and Fy(z) = P{X;s <z}, d=1,...,D. Suppose 7 = (71,...,7p) is a vector
of nonnegative finite numbers, and suppose for each d € {1,..., D}, {uug,n > 1} is a

sequence of thresholds satisfying
n{l — Fy(tnq)} — 74 (1.3)

as n — oo for each d. Let M, = (M,1,...,M,p) denote the vector of pointwise
maxima, M,; = max{X,;;, 1 <i < n}. Also let {XZ} denote the associated sequence
of i.1.d. random vectors having the same D-dimensional distribution function F', and
let M, = (Mm, . ,an) denote the vector of pointwise maxima from {XZ} We are

interested in cases where the joint limits

H(T) = hm P{Mnl g Unt,y - - -7MnD g unD} )
H(t) = lim P{M < tp,...,Myp < unp}, (1.4)

both exist and are nonzero. In such cases, we may define a parameter 6(7) by the

relation

H(t) = H(T)"™), (1.5)

With minor changes in notation, this is what Nandagopalan (1990, 1994) called the
multivariate extremal index. Just as in one dimension, it is the key parameter relating

the extreme-value properties of a stationary process to those of independent random
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vectors from the same D-dimensional marginal distribution. However, unlike the one-
dimensional case, it is not a constant for the whole process, but instead depends on

the vector 7. Some elementary properties include

(i) 0 <0(r) <1 forall T,

(ii) if 7; > 0 but 7, = 0 for all &’ # d, then O(7) = 0, the extremal index for the dt

component process; namely (0,...,0,74,0,...,0) = 6,

(iii) O(er) = 0(r) for all ¢ > 0 (Theorem 1.1 of Nandagopalan, 1994).

However, these properties are not sufficient to characterize the function 6(7). We
would like a more precise characterization, for two reasons. First, the number of ex-
amples for which the multivariate extremal index has been calculated is currently very
small (Nandagopalan 1994, Weissman 1994) and it is important to be able to extend
this class to cover a much broader range of processes. The second reason why we need
a characterization is statistical: crude estimators of 0(7) are easy to construct, but
would not correspond to the multivariate extremal index of any real stochastic process.
The situation is analogous to estimating the dependence function of a multivariate ex-
treme value distribution, for which it is necessary to impose some convexity conditions,
cf. Pickands (1981), Smith (1985), Smith, Tawn and Yuen (1990). In the univariate
case, estimators of the extremal index have been proposed by Leadbetter et al. (1989),
Nandagopalan (1990), Hsing (1993) and Smith and Weissman (1994). Thus, a part of
our purpose is to bring together two previously separate branches in the statistics of

extreme values.

In Section 2 we introduce a particular class of stationary processes, Multivariate
Mazima of Moving Mazima (henceforth My) processes, and prove a characterization
result similar to Deheuvels (1983). In essence, our claim is that for a very wide class
of processes, the multivariate extremal index may be approximated arbitrarily closely
by one from the M, class. In Section 3 we study the M, class in more detail, derive
the multivariate extremal index for this class, and establish some properties. The
remaining sections are concerned with more practical aspects: some statistical theory
in Section 4, then two examples in Section 5, along with some simulations to illustrate

the methods in Section 6.



2  Multivariate Maxima of Moving Maxima

In this section we introduce the class of M, processes and argue that the problem
can effectively be reduced to the study of these processes. There are two steps to
this argument. First, under an assumption that the finite-dimensional distributions
of the process are in the domain of max-attraction of a max-stable process, together
with some mixing conditions, it is shown that the extremal index of a multivariate
stationary process is the same as that of the limiting max-stable process. This reduces
the problem to the study of max-stable processes. The second step is to adapt an
argument originally given by Deheuvels for the characterization of one-dimensional
max-stable processes. If we exclude processes containing a deterministic component,
in a sense that will be explained later, then the process may be approximated arbitrarily
closely by one in the My class. In this sense, the multivariate extremal indices of My

processes form a rich subclass of those of general multivariate stationary sequences.

As a preliminary, observe that provided all the marginal distributions are contin-
uous, the multivariate extremal index is invariant under pointwise strictly increasing
continuous transformations. Therefore, there is no loss of generality in assuming that
Fi(z),..., Fp(z) take any given (continuous) form. We choose to adopt the unit Fréchet
form, i.e. Fy(z)=e /", 0 <2 < oo, for 1 <d < D. This assumption is made for the
rest of the paper.

The following elementary result gives an alternative characterization of the multi-

variate extremal index:

Proposition 2.1 Lel {X;} be a D-dimensional stationary sequence with unit Fréchel
margins and multivariate extremal index 0(7). For each fived 7 = (11,...,7) (74 >
0, d=1,...,D) define the (univariate) stationary sequence {V;(7) = maxq74X;q: 0 >
1}. Then 6(T) is the (univariate) extremal index of the sequence {Vi(T)}.

Proof For each u > 0 and ¢ > 1, P{V;(7) < u} = P{Xiy < u/74 ¥ d}, thus for
MY :=max{Vi(1),...,V,(T)} we have

P{Mann}:P{Mm <n/r,...,M,p <n/tp} . (2.1)
Similarly, for the associated sequence {‘A/Z(T)} we have

P{MY <n} = P{M,; <n/m,...,Mup < n/mp} . (2.2)
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Since unq = n/74 satisfies (1.3), by assumption, both (2.1) and (2.2) converge, as
n — oo, to H(T) and [:](T) respectively, and these limits determine 6(7) via (1.5).
Hence, §(7) is the extremal index of the sequence {V;(7)}. 0

Next, we define an My process. Let {Z;;, { > 1,—00 < i < 0o} denote an array of

independent unit Fréchet random variables, and consider the process defined by

Y;d:max max agde“_k (23)
£>1 —oco<k<oo ’

for nonnegative constants {asmq, £ > 1,—00 < k < 00, 1 < d < D}, satisfying

> ama=1 ford=1,....D. (2.4)
{=1k=—cc
For any set of indices 7 = 1,2,...,n and positive constants {y;g, 1 <1< n, 1 <

d < D} (where possibly y;4 = 400 for some ¢ and d), we have

P{Yii <y, 1<i<n, 1<d< D}

= P{Zé,i—k < Jid
Qgkd

forﬁZl,—oo<k<oo,1§i§n,1§d§D}

. . ym—l—k,d
= PZ;, < min min ——-—
’ 1-m<k<n—-m 1<d<D Apkd

= exp l—z > max max —%d_| (2.5)

/=1 me—oo 1-m<k<n—-m 1<d<D Ym4k,d

, L>1, —oo<m<oo}

iFrom (2.5), it can be seen that P"{Yiy < nyiq, 1 <i < n, 1 <d < D} is indepen-
dent of n, so the finite-dimensional distributions of {Y;} are maz-stable (also called
multivariate extreme value). Resnick (1987) and Galambos (1987, Chapter 5) gave
general surveys of multivariate extreme value distributions — in particular, there are a
number of characterizations of multivariate extreme value distributions which rely on
approximations similar to (2.5) (cf. Deheuvels, 1978, de Haan and Resnick, 1977, and
especially Pickands, 1981). Following de Haan (1984), discrete-time processes whose
finite-dimensional distributions are max-stable are known as max-stable processes, and
there are a number of characterizations of these. We shall focus particularly on a
characterization due to Deheuvels (1983) and its generalization to the multivariate

case.

If the process (2.3) is restricted to a single value of £ and a single index d, then it is a
moving maximum process. By allowing d to range over 1, ..., D and by also maximizing
over independent processes indexed by ¢, we obtain mazima of multivariate moving

maxima, or M, for short.



Now we turn to the first of our two main tasks in this section, which is to establish
conditions under which the problem of extremes in multivariate stationary processes

may be reduced to the case where the process being studied is max-stable.

The principal assumption is that the finite-dimensional distributions of the origi-
nal process { X} lie in the domain of max-attraction of a stationary process {Y; =
(Ya,....Yip), ¢ = 1,2,..., }. Specifically, if r > 1,0 < y;g < 0o fori =1,...,r, d =
I,..D,and 0 < upy <ocoforn>1, 2=1,...,r, d =1,..., D are constants such that

Unig /M — Yiq as n — oo, then we assume

lim P" { X <tpjg, 1 <i<r, 1<d< D} =P{Yyy <y, 1<i<r, 1<d< D},
(2.6)

If such a process {Y;} exists, then it is necessarily max-stable.

The assumption that a max-stable limiting process exists is of course a new assump-
tion and not a consequence of the fact that all the one-dimensional margins of { X;} are
max-stable. Nevertheless, it seems natural to make such an assumption in studying the
extremal behavior of such sequences. Similar assumptions have been made in previous
papers by Smith (1992), Perfekt (1994), Yun (1994) and the statistical treatment of
Smith et al. (1997).

Fix 7 = {n,...,7p} where each 0 < 7; < oo for each d. Let {u,q4, n > 1} denote
a sequence of thresholds such that n{l — Fy(u,¢)} — 74. In view of the unit Fréchet
assumption, one choice is u,q = n/74. Let @, = (Up1,...,u,p). For 1 < j <k < n,
let Bf(un) denote the o-field generated by the events { X,y < u,q, J < ¢ <k}, and for

each integer ¢ let
oy =sup {|[P(AN B) — P(A)P(B)|: A€ Bf(u,), B€ By, (u,)} (2.7)

where the supremum is taken not only over all events A and B in their respective
o-fields but also over k such that 1 < k& < n —{. As in Nandagopalan (1994), the

mixing condition A(w,,) is said to hold if there exists a sequence {t,, n > 1} such that

t, — 00, ty/n — 0, aps, — 0asn — oco. (2.8)

Assuming A(u,,), we can find a sequence {k,, n > 1} such that

k, — 00, kytn/n — 0, kyay,,, — 0 as n — oo. (2.9)
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Also let r, = [n/k,]| (here |-] denotes integer part). The process from ¢ = 1 to
n is effectively broken up into k, nearly independent sections of length r,, and by
making detailed assumptions about the exceedances of u,, within a block of length r,,,
Nandagopalan (1994) was able to characterize the extremal index in terms of a limiting
exceedance point process, so generalizing results which had been earlier obtained for

univariate process by Hsing et al. (1988).

An alternative approach to the extremal index is due to O’Brien (1987), which leads

to the following multivariate generalization:

Lemma 2.2 Suppose (2.7)-(2.9) hold. Then

X
(9(7'): hmP{Xngund, 2§I§Tn, 1<d<D ‘ mgx( ld) >1} (210)

Alternatively, if we assume

rn D X
lim lim Z Z P {Xid > Und max < ld) > 1} =0, (2.11)
T—00 N—00 und

i=r d=1

then (2.10) is equivalent to

X
f(7) = lim limP{Xidgund,Qgigr,1§d§D‘m5LX< 1d)>1}. (2.12)

T—00 N—00 und

Proof. Our assumption A(wu,,) is slightly stronger than the “asymptotic independence
of maxima” for a one-dimensional sequence made by O’Brien, and it is readily verified
that r, as we have defined it satisfies the same properties as O’Brien’s p,. The result
(2.10) then follows from O’Brien’s Theorem 2.1 applied to the process {Vi(7), ¢ > 1}
of Prop. 2.1. The extension to (2.12) under the assumption (2.11) is immediate (cf.
Section 2 of Smith, 1992). O

We now come to our main result:

Theorem 2.3 Suppose A(w,,) and (2.11) hold for { X}, so that the multivariate ex-
tremal index HX(T) is given by (2.12). Suppose also the same assumptions hold for
{Y,} (with the same t,, k, sequences). So the mullivariate extremal index HY(T) is
also given by (2.12) with Y,y replacing X;q everywhere. Then GX(T) = HY(T).



Remark. If the A(u,,) condition holds for both X and Y but with respect to different
{t,} sequences, say {t/ } for X and {t!} for Y, then we just define ¢,, = max(¢/, ")
and corresponding k,, so as to satisfy (2.9) for each of the two a4, sequences. So there
is no loss of generality in assuming that the {¢,} and {k,} sequences are common to

the two processes.

Proof. Since both GX(T) and HY(T) are given by (2.12), it suffices to show that, for

each r,

X
limP{Xidgund,Zgigr,1§d§D‘m§LX< 1d)>1} (2.13)

is unchanged when X;; is replaced by Y,; everywhere.
However we can write (2.13) as limy—oo{(Pu1 — Pn2)/(1 — P,3)}, where

Pnl — P{XZdSUnChQSZST,lSdSD},
P’IL2 - P{degund71§Z§r71§d§D}7
Pn3 = P{de Sunda 1§d§D}

By the assumption of convergence to a max-stable process, P, — ¢; for j = 1,2,3,

some ¢; > 0. Then the limit in (2.13) is (log ¢2 — log é1)/(— log ¢3).

Now do the same thing with Y;; replacing X;; everywhere. Let Qn1, Qn2, Qns
denote the probabilities for the Y process corresponding to P,1, P,2, P,3 for the X
process. By max-stability, Q7. — ¢; for 5 = 1,2,3, and so the limit of {(Qn —

Qn2)/(1 — Qn3)} is also (log ¢g — log ¢1)/(—log ¢3). This completes the proof. O

As a result of Theorem 2.3, we may confine our subsequent attention to the study of
stationary max-stable processes, where there is again no loss of generality in assuming
unit Fréchet margins. We now turn to a detailed examination of these processes. When
D =1, Deheuvels (1983) obtained an interesting characterization of such processes in
terms of moving maxima of the form (2.1). It should be noted that Deheuvels was
studying min-stable processes and a moving minimum representation, but his results
may be translated into our present form by taking reciprocals of all random variables
involved. For the remainder of this section, we follow the same steps as in Deheuvels’

paper to establish a similar result in the multivariate case.

As in Theorem 2 of Deheuvels (1983), for any n we may approximate the joint

distribution of {Y;, 1 <i < n} arbitrarily closely by a relation of the form

Yid = max aidek7 1 § ) § n, 1 § d § D (214)

—oo<k<oo



where {41} are nonnegative constants and {Z;} are independent unit Fréchet. The

following two lemmas are the same as Deheuvels’ Lemmas 1 and 2.

Lemma 2.4 [f the representation (2.14) exists, then without loss of generality we may

assume that the sequence

{ Sk ,1§z‘§n,1§d§D} (2.15)
2oim1 2od=1 idk

is distinct for each k.

Lemma 2.5 [fthere are two representations of form (2.14), one with constants {cqy }
and the other with constants {Biar}, and if each of these representations salisfies the
conclusion of Lemma 2.4, then there exists a bijective mapping v : £ — 7 such that

Biak = Qidu(k) Jor all 4,d, k.
Proofs See Deheuvels (1983). O

Theorem 2.6 Suppose the sequence {Y; = (Yiq, 1 < d < D)} defined by (2.14) is
stationary on the index i. Suppose for each (i,d) the points {c,q, —00 < k < oo} are
distinct, and that there exists a sequence 1 < ny < ng < ---, increasing to infinity,
such that the values in (2.15) are distinct for each n = ny. Then there exists a bijective

mapping v : L — 2 such that, for anyi > 0,1 <d < D, —oo < k < 00, g, = QOdut (k) -

Proof This follows Theorem 3 of Deheuvels (1983). For each n, the sequences {Y;, 1 <
i <n}and {Y;, 2 <7 <n+1} areidentical in distribution by stationarity. By Lemma
2.5, there exists a bijective mapping v, : Z — Z such that Qip1,dk = O du, (k) for 1 <o <
n, 1 <d < D and all k. By the assumption that the {a;4, —00 < k < oo} sequences
are distinct for each ¢ and d, it follows that v, is unique. Moreover, v,41(k) = v, (k) so
that, by letting n — oo along the subsequence {n;}, we get a limit v (independently

of n). It follows that a;y1,4% = a; d.uky for all 7,d, k, and hence the result follows. O

As in Theorem 4 of Deheuvels (1983), it can easily be seen that the process (2.14),
with aar = @ogeir) for some bijection v, is stationary and max-stable so long as
S aggr < oo for each d. Define an equivalence relation p ~ ¢ for p, ¢ € Z if there
exists ¢ € Z such that p = v'(q); this partitions Z into equivalence classes, some of
which may be finite and others infinite. By reordering within each equivalence class,

we obtain the following result.



Theorem 2.7 If Yy is given by (2.14) with cuar = qggyi(ry for some bijection v, and if

i Coar < 00 for each d, then there exists a decomposition Y;q = max(R;q, Siq) where

R,y = max max amqZei—g.
el —oo<k<oo ’
S;¢ = max max bpgZ, . 2.16
: (€F 0<k<N, ik (219

where I and F are two subclasses of indices £, all the {Z;;} and {Z};} are mutually

independent unil-Fréchet random variables, and Z;, = 7}, n, for each l;n.

Proof As in Theorem 5 of Deheuvels (1983). O

Although our final result is a direct multivariate generalization of Deheuvels (1983),
our interpretation is a little different from that of Deheuvels. The process {S;;} is a
maximum over periodic sequences, and therefore in principle, a perfectly predictable
process. It seems reasonable to assume that in most applications such components do
not occur, and we therefore eliminate them from further study. With trivial changes of
notation, and renormalization, the process { R;;} reduces to the My process introduced

in (2.1). From now on, we take this as the main process of interest.

Deheuvels (1983, 1985) made a further simplification, reducing the process to a
single sequence of moving maxima (equivalent to fixing / = 1 in (2.3)). This could
be misleading, however: while such processes are certainly of interest as special cases,
there is no reason to assume in general that the reduction to a single component is
valid, and Deheuvels himself remarked that the set [ in (2.16) cannot, in general, be

reduced to a single element.

To summarize the two main conclusions of this section: under the mixing conditions
A(u,) and (2.11), applied to both X and Y, and the assumption (2.6) about the joint
convergence of pointwise maxima over i.i.d. realizations, we deduce that the limiting
joint distributions of maxima are taken from a multivariate max-stable process, where
without loss of generality we assume unit Fréchet margins. Second, any such max-
stable process may be approximated arbitrarily closely by one of the forms given in
Theorem 2.6. Under the further assumption that the degenerate {S;;} component is

absent, we deduce the representation (2.3) as the main object of further study.

3 The Extremal Index of an M, Process

In the univariate case, the extremal index of a moving maximum process has been

studied in detail in a recent paper of Weissman and Cohen (1995). They also considered
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an extension to moving maximum processes with random coefficients, and (in their
Prop. 3.1) to a process consisting of pointwise maxima over independent processes.

Thus for the special case of (2.3) with ¢ = 1, the extremal index is given by

maXxg MaxXyg GrpdTd

()= 3.1
() >k MaXq agdTy (3.1
For the double sequence (2.3), we have the following result.
Theorem 3.1 The extremal index of {Y;} defined by (2.3) is given by
>, Mmax; maxy GorqTy
o(t) = (3.2)

Ez Zk maXq derdTd

Proof. Let w, = (n/m,...,n/74), then it follows from (2.5) (applied to ¢ = n = 1)
that

1
F(u,)=P{Y1<wu,} =exp l——ZZm}X agded] . (3.3)
L
Similarly,
1
P{M, <wu,} =exp l—g Zg:;l_mrgkeg;_m max agded] , (3.4)
where M, now stands for the vector of componentwise maxima from Y,....,Y .

For fixed ¢, let by, = maxy amqra and note that by (2.4) Y, by < oo. Indeed we
have 37, 3 p bk < 30 g Yoq GekdTa = YogTa- S0 0Ty, MaX)_pm<k<nom ok is bounded
for all n by >, bs, which is summable in ¢, while Lemma 3.2 below shows that
n Tty MaXi_m<k<n—m bex — maxy by, for each £. It then follows from the Dominated
Convergence Theorem that

) < _ _
lim P{M, < u,} =exp Zm}fmxmfx dTa| - (3.5)

n—00
£

By (3.3) and (3.5), the limit of log P{M,, < u, }/nlog F'(u,) is the desired result (3.2).
O

Lemma 3.2 Let by > 0 for each k =0, +1, £2,..., and suppose >, by, < co. Then

&
Am 2,3, b= maxhe (3.6)
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Proof. Suppose by is maximized when k = K (not necessarily unique). Break the sum

in (3.6) into three smaller sums:
PP DRI AL S DI, < D D S

The middle sum is exactly bx. It therefore suffices to show that each of the two outer
sums tends to 0. The treatment of the two sums is the same, so we just give the

argument for the first sum.

Break the sum up into two further terms, one for which m < 1 — K —+/n, the other
for 1 = K —y/n <m < 1— K. The second of these is at most bx /y/n, so tends to 0

as n — oo. The first term is bounded by

L > > b (3.8)

n m<l1—-K—/n 1-m<k<n—-m

However for any given k the number of times by appears is 0 if ¥ < K + /n, otherwise
at most n. Therefore the sum (3.8) is bounded by > k4. /7 bx, and this tends to 0 by
summability of by. O

The numerator and denominator of (3.2) are each of the form of a dependence
function for multivariate extremes (Pickands 1981), and is therefore a convex function

OfTESD7
SD:{(yh---’yD)iinO, ZyZ':l}.

We may restrict attention to the simplex Sp in view of the relation #(ct) = () for
all ¢ > 0, as is of course obvious from (3.2). Thus a general representation is of the

form ()
olr) = fo(r) 7

where f; and f, are dependence functions on Sp with f; < f,. It is not clear whether

(3.9)
any further restrictions on f; and f; are needed to ensure that (3.9) is a valid expression
for the multivariate extremal index, but we have been unable to find any.

Consider, for example, the case D = 2. Then we may identify 7 = (7, 72) =

(w,1 —w) for w € [0,1], and define §(w) = fi(w)/f2(w), where

filw) = zg:mkaxmax{agklw, am2(1 —w)},
folw) = %:Zk:maX{azklw, ama(l —w)} . (3.10)
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Both of these are special cases of the general form

g(w) = Zmax{cﬂw, cia(l —w)} (3.11)

J

with coefficients {c;1}, {¢;2}. Suppose the indices are restricted to 1 < 5 < .J and
ordered so that {d; = ¢j2/(¢j1 + ¢j2)} are increasing with j. Then we easily see that
g (w) = —Zcﬂ —I—ECH in d; <w <dj,
i>j i<j
and that ¢'(w) has a positive jump ¢;1 + ¢jo at each d;. Together with ¢(0) =
>ici2, g(1) = 3, ¢ji, these properties establish a 1-1 correspondence between any
continuous piecewise linear convex function on [0,1] and the coefficients {¢;1}, {¢;a}-
Moreover, an arbitrary continuous convex function may be approximated arbitrarily

closely in this way.

Consider the implications for f; and f; given by (3.10). If {asq} are non-zero
only for £ > 0, and monotonically decreasing in k, then we have the following: if

0 <w <wy <1 then

filw2) = fi(wn) = %:Zk:(azm + ans) , (3.12)
filw2) = filwr) = D (amr + aws) , (3.13)

£

where in (3.12), the summation is over all pairs (¢, k) such that wy < ama/(am +am2) <
wy, and in (3.13), the summation is over all ¢ such that w; < asw2/(aw1 + awz) < wo.

The former summation includes the latter and so it follows that

So(w2) = fa(wr) = fi(wz) = fi(wr) (3.14)

whenever wy > wy and all four derivatives in (3.14) are defined. It is clear from the
construction (3.11) that the converse is also true: if f; and f; are convex functions
satisfying (3.14), then we can approximate each by a representation (3.10) in which
{asq} is decreasing in k > 0 for each ¢ and d. Note, in particular, that in this case

f2 — f1 must be convex.

In general, however, there is no reason to assume that the {asq} are restricted to
k > 0 or satisfy any monotonicity relationship, and by relaxing these restrictions we
can easily construct examples for which f; — f; is not convex. Our conjecture is that

arbitrary dependence functions may appear in (3.10), and more generally (3.9), subject

only to f1 < fa.
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4 Estimation

Suppose now we have a set of data from a D-dimensional stationary process, and that
we are interested in estimating the extremal behavior of the sequence. In particular,
we have the problem of estimating the multivariate extremal index. The results of
Sections 2 and 3 imply that we might try to do this by assuming that the high-level
exceedances of the process are described by an M, process. We now consider ways in
which we might estimate the coefficients {amq} in (2.5). As in previous sections, we
assume that the marginal distributions of the process are unit Fréchet. In practice,
a separate estimation of the marginal distribution, followed by appropriate pointwise
transformation, would usually be required to achieve this, but we shall not consider

that aspect of the problem here.

Suppose we fix some sequence of (univariate) thresholds {u,}, and suppose we
monitor all exceedances of u, in any of the D components. Also let {r,} denote a
sequence of integers such that r, — oo, r,/u, — 0. A key result to estimation is that,
for sufficiently large n, all the exceedances of u, within a block of length r, are with
high probability caused by a single very large value of Z; ;. We make this precise as

follows:

Theorem 4.1 Suppose Y; 4 is defined by (2.5) and {u, } and {r,} are as just described.
Let I(r,u) denote the set of all (i,d) pairs, 1 < i <r, 1 <d < D, such that Yiq > u.
Then, given that I(r,,u,) is non-empty, the probability that there exists a single (L,.J)
pair such that

Yia =ariyga 721y for all (e,d) € I(r,,u,) (4.1)

tends to 1 as n — oo.

Proof. First note the following elementary fact which we state without proof: if
for each n > 1, {Ey,, kK € K} is a countable set of independent events such that
limy, oo >op P{Ern} = 0, and if F,, = UpEy,, G, = Up Upzr (Ern N Epy,), then
P{G, | F.} — 0. In words, if at least one of the events {F,x, k € K} occurs, then

with probability tending to 1 as n — oo, it is the only one.

Now let us apply this to the case where K = {(¢,7), { > 1, —00 < j < o0} and

Ey; ;. 1s the event

mfxag7i+j7ng7j > u,, somei€ {l,...r,}. (4.2)
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If we define ¢, = maxg ay 4 then the probability of the event Ej ;, is

| ! ! (4.3)
—exp{ —— Mmax Cp;4; ¢ N — Mmax Cpit;. )
p w, 121, Lit] w1910 Lit]

However it follows from the proof of Theorem 3.1 that
% %: z]: [DAX Crigj = %: maxcy,j < %: ZJ: ey < D. (4.4)
But w,/r, — oo and so
;ZP{EM@} =0 (Z—n) — 0. (4.5)
f n

The result then follows from the elementary fact stated at the beginning of this proof.
O

This result gives us an intuitive feeling for how to estimate processes of this type.
Our point of view is that the original observed process X is in the domain of max-
attraction of a max-stable process Y, and that the process Y may be closely approx-
imated by an My process. Suppose, first, the process is in fact a univariate simple
moving maximum process, i.e. Y; = maxy a;Z;_; for some sequence {ar}. Suppose
without loss of generality that the maximum of aj is ag. Then in each block of length
r,, with probability very close to 1 we will observe the following: either there are
no exceedances of u,, or the exceedances form a characteristic signature pattern with
Yi+r = (ar/ao)Y; for all sufficiently small indices k. In this way, it is in principle possi-
ble to read off any number of a;/ag values from a single large excursion. We can then

determine ag and hence each of the a; from the condition Y, a; = 1.

Of course, in practice we would not expect to see a single signature pattern near each
high-level exceedance, and this explains intuitively why the simple moving maximum
process does not appear realistic for practical applications. However, the M3 process
(i.e. maxima of moving maxima in one dimension) is much more realistic. In this case,
there are a countable number of “signatures”, indexed by ¢, where the frequency of the
0’th signature is ", age. In practice we would not try to make the signatures identical
to the observed excursion patterns, but would use some version of cluster analysis to
classify the observed excursions into a finite number of clusters. Within each cluster,
we would then pick out a characteristic shape of the cluster, and identify this with
the {as/amn} values for the £’th cluster. Exactly how best to do this, and how many

clusters to adopt, is a topic for future research.
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The extension of this to the My process is as follows. Fix a high threshold w,, and
divide the process into blocks of length r,, where r, = o(u,). An “excursion” is said
to occur whenever Y;; > u, for at least one (¢,d) pair within a block. According to

Theorem 4.1, each excursion follows very closely one of the signature patterns
Yj+k7d = aLdeLJ, k = 0, :|:1, :|:2, ceey d = 1, ,D (46)

for some (L,.J). By observing the ratio of each excursion to its maximum, we obtain
the values of {asq/ maxy 4 asmq} for each £. Moreover, the relative frequency of the £’th
signature pattern is proportional to Y, max,asg. By classifying the observed excur-
sions into a finite number of clusters, and associating with each cluster a characteristic
signature pattern, we obtain an approximation to the whole process as an M, process.
We can then use the coefficients in this approximation to compute the multivariate

extremal index via (3.2).

The approach that has just been outlined is “model-based”: even though it need
not be reduced to any finite-parameter model with a fixed number of parameters, it
does rely on the model (2.3), which in most cases is only an approximation to the true

model under study.

An alternative approach is to try to exploit directly the formula (3.9), in which
6(T) was expressed as a ratio of two multivariate extreme value dependence functions.
A key point here is that, by Prop. 2.1, 6(7) is the univariate extremal index of a
sequence {V;(7)}, so for fixed 7 it can be estimated by univariate methods such as
those proposed by Smith and Weissman (1994). This can be repeated on a fine grid of

values 7; € Sp, thus obtaining a discrete approximation to the function 8(7).

For clarity, let us demonstrate these ideas by means of a bivariate process. So,

suppose X; = (X;1, Xi2), and define V;(w) = max{wX;, (1 —w)Xi2} for 0 < w <1

and 7 =1,...,n. Then, since X; is max-stable,
u u 1
P{Vi(w) <u}=F <w . w) exp [ ” A(w)] (u>0),

where A(w) is the dependence function, introduced by Pickands (1981). The function
A(w) is convex on [0, 1], A(0) = A(1) = 1, bounded above by 1 and below by max{w, 1—
w}.

For fixed w, define now MZV; = max{ V41 (w),..., Vi(w)} (0 <7<y <n). For r and

u large, since f(w) is the extremal index of {V;(w)},

P{M(KT < u} ~exp [—2 A(w)@(w)] .

16



In fact Mov:r is itself asymptotically max-stable, so that P{Mgfr <u} =exp [—%Ar(w)]

where A,(w) — A(w)f(w) as r — .

Let u, be a threshold level and define N,(w) = >, 1{Vi(w) > u,}, the num-

ber of exceedances over the level u,. Fix r = r,; let & = [n/r] and let Z,(w) =
Ele 1{M(‘;_1)7,7j7, > u,} be the number of blocks of size r which have at least one
exceedance.

Since KN, (w) = n [1 —exp{—iA(w)H ~ LAw) and BEZ,(w) ~ LFA(w)f(w),
the ratio f(w) = Z,(w)/N,(w) is a reasonable estimator for #(w). For this estimator to
be consistent, one has to choose r = r,, properly and w,, — oo such that n/u, — oo, so
that 7, (w) and N, (w) will be quite large. This is the “blocks approach” to extremal
index estimation considered by Smith and Weissman (1994), and they gave conditions
to ensure its consistency as an estimator. However they also discussed an alternative
runs approach, which they ultimately argued to be superior to the blocks approach.
In the runs approach, the definition of N,(w) is the same, but the exceedances over
the threshold wu,, are grouped into clusters, where a new cluster is deemed to begin
whenever there is a run of r, consecutive values below the threshold. Then Z,(w) is

the number of clusters in which there is at least one exceedance over the threshold u,,.

Using either the blocks or the runs approach, we can estimate fy(w) = A(w) by
fg(w) = u,Ny(w)/n, and fi(w) = A(w)f(w) by fl(w) = u, Z,(w)/n. The ratio of the
two, f1 (w)/fg (w), is a crude estimator of #(w). In Section 6 we shall use the notation

le, flR for the blocks and runs, respectively.

For the problem of estimating a bivariate dependence function, Pickands (1981)
suggested that the estimate should be modified to as to ensure that it was a convex
function of w. Pickands’ proposal was to evaluate an estimator A(w) at a finite number
of points {w;}, and then to define a new estimator A(w) as the greatest convex minorant
of A(w) Smith, Tawn and Yuen (1990) proposed various more sophisticated methods
of making A a convex function. We follow Pickands here. Thus, fl(w) and fQ(w)
are evaluated at a finite number of values of w = w; = j/m, j =0,1,...,m, and are

then replaced by their greatest convex minorants f; (w) and fg(w). We then define
é(w) = f1(w)/f2(w)-

Examples of this method will be presented in Section 6.
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5 Examples

In this section, we show two bivariate examples. The first one is simple, with £ = 1

The second example is an M, with £ =1, 2.

Example 5.1. Let {{ : 2 > 1} be a unit-Fréchet iid sequence and define X;; = ¢;

and X;» = max(&;,&,41)/2. Hence the random vector X; = (X1, Xi2) is max-stable

with unit-Fréchet margins. Specifically for ™! = 7' + 23! and w = u/x; one has

P{Xﬂ < il?l,Xz'z < l’z} = P{fz < min(x1,2$2), fz’+1 < 21’2}
— exp [—%{max(w, (1 —w)/2) + (1 — w)/2)
= exp —%A(w)]
= P{max(wXi, (1 —w)X;2) <u}
= P{Vi(w)<u}, 0<w<1, u>0. (5.1)

The function fi(w) = A(w) on [0,1] is convex, as discussed before. We note that

P{Mg”rn <wu,}= P{Jwgm < min(u/w, 2u/(1 —w))} P{&+1 < 2u,/(1 —w)}

= exp . max(w, (1 — w)/?)] cexp[—(1 — w)/(2uy,)] . (5.2)

n

If we let u,, — 0o as n — oo, the second factor of (5.2) tends to 1. So we can identify
the function fi(w) as max(w, (1 —w)/2) and hence the extremal index function #(w) is

given by

() Alw) _ {1/2 0<w<1/3 (53)

 falw) 2w0/(14w) 1/3<w<1

(see Figure 1). It is easy to see that for our stationary sequence, clusters of exceedances
(at least in one coordinate) are either of size 1 or of size 2. Suppose (n/7,n/72) are the
threshold levels, i.e.,w = 7 /(11 +72) and u,, = n/(m1 4+ 7). f & > n/m but & < 2n/m,
then a cluster of size 1 is observed. If {; > max(n/71,2n/73) then the cluster is of size

2.

Let C denote the cluster size. Then if 11 < 75/2 (i.e., 0 < w < 1/3) then P{C =
2|C > 1} =1;if 71 > 72/2, then
P{%<&§i—§} T —Ty/2 Jw—1

P =1C >1} =1 = =
(C=10 =1 = lim 5 n %
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Hence, asymptotically

2 if0<w<1/3

“l if13<w<,

ﬂmozuz{ (5.4)

and the reciprocal of (5.4) agrees with (5.3).

One realization of the process is shown in Figure 2. The peaks form one signature

pattern.

Example 5.2. Let {Z;; : { = 1,2;¢ > —19} be two sequences of independent
unit-Fréchet random variables. This example is a bivariate maxima of moving maxima

as defined in (2.3).

For each ¢ = 1,2 and d = 1,2, we define a sequence of coeflicients {amnq : k =
0,+1,---,420} as follows:

ap = 0.0882933 x 0.7*;  Yraim = 1/2.
agpr = (1/6) x 0.5%; Yram = 1/2.
ary = 0.0396511 x 0.9 Yrane = 2/3.
agks = (1/9) x 0.5M%; Yrame = 1/3.

The process {X; = (X;1, Xiz) : ¢ > 1} is given by

Xy = max(maxy a5 21—k, Maxy dog Z2i—k)

X, = max(maxy aireZ1,i—k, MaXy dokal2i—k)-

The extremal index function is f(w) = fi(w)/ f2(w),we[0, 1], where fi, fy are depen-
dence functions given by (3.10)

filw) = maxy max (a1pw, axe(l — w)) + maxy max (agxw, azke(l — w))

folw) = Ypmax(a1pw, a1kl —w)) + 3 max (agkw, azke(l — w)).

(see Figure 3). One realization of {X;} is shown in Figure 4 (first 500 observations,
solid line for X1, dotted line for X;3). The peaks do indeed form two different signature
patterns. In particular, the peaks of {X;1} and {X;2} occur simultaneously.
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6 Simulations

We have run many simulations for both models, but report the results for Example 5.2.
In Figure 5 we show estimates of (w) evaluated at w; = j/m(; = 0,1,---,m) withm =
20, sample size n = 10°, threshold level u = 99.5 (the 99th percentile of the unit-Fréchet
distribution) and block and run size r = 40. The blocks-estimate g (w) = le(w)/fg (w)
is represented by points and the corrected-for-convexity version g = le(w)/fg (w) by
a dashdot line. Similarly, the runs-estimate éR(w) = flR(w)/fg(w) is represented by
points and the corrected-for-convexity version éR(w) = flR(w)fg(w) by a dotted line.
In this particular realization, the blocks-estimate is an over-estimate of  and the runs-
estimate is an under-estimate. A similar picture is seen in Figure 6, where the threshold
level u = 39.5 is the 97.5th percentile; here, the runs-estimate is clearly inferior with

respect to the blocks-estimate.

The main theme of this paper is not the performance of the blocks and runs es-
timators of the extremal index. However, we have run several simulations to check
sensitivity to block (or run) size r and to threshold level u. A sample of size n = 10*
was repeated 20 times. For each sample, the square root of mean square error (sqrmse)

was computed, and the average over 20 samples is given in Table 1.

For v = 39.5 (97.5th percentile), the runs estimator performs best when r = 10 or
20, while the blocks estimator is at its best when r = 40 or 60 (with similar sqrmse).
For u = 99.5, the performance is much poorer. A possible explanation is the lower
number of exceedances. Indeed, further simulations show that for n = 10°, u = 99.5 is
a better choice than u = 39.5. Due to the enormous computing time required, we did

not obtain Table 1 for n = 10°.

7 Discussion

In this paper, we have provided conditions under which the extremal index of a multi-
variate stationary time series may be calculated in terms of an equivalent max-stable
process (Theorem 2.3), and we have also provided a representation for a max-stable
process as a limit of My processes (Theorem 2.6). Our results on estimation are at
the moment less well developed, but we have outlined two approaches, one based di-

rectly on the representation as an My process, and the other based on estimating the
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numerator and denominator separately in (3.9). Examples have been provided of the
latter approach. There are clearly many possibilities for further research developing

alternative estimation procedures.
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