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Abstract

In recent years, a very large literature has built up on the human health e�ects of

air pollution. Many studies have been based on time series analyses in which daily mor-

tality counts, or some other measure such as hospital admissions, have been decomposed

through regression analysis into contributions based on long-term trend and seasonality,

meteorological e�ects, and air pollution. There has been a particular focus on particulate

air pollution represented by PM10 (particulate matter of aerodynamic diameter 10 �m

or less), though in recent years more attention has been given to very small particles of

diameter 2.5�m or less. Most of the existing data studies, however, are based on PM10

because of the wide availability of monitoring data for this variable. The persistence of

the resulting e�ects across many di�erent studies is widely cited as evidence that this is

not mere statistical association but indeed establishes a causal relationship. These stud-

ies have been cited by the United States Environmental Protection Agency (USEPA) as

justi�cation for a tightening on particulate matter standards in the 1997 revision of the
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National Ambient Air Quality Standard (NAAQS), which is the basis for air pollution

regulation in the United States.

The purpose of the present paper is to propose a systematic approach to the regression

analyses that are central to this kind of research. We argue that the results may depend

on a number of ad hoc features of the analysis, including which meteorological variables

to adjust for, and the manner in which di�erent lagged values of particulate matter are

combined into a single \exposure measure". We also examine the question of whether the

e�ects are linear or nonlinear, with particular attention to the possibility of a \threshold

e�ect", i.e. that signi�cant e�ects occur only above some threshold.

These points are illustrated with a data set from Birmingham, Alabama, �rst cited

by Schwartz (1993) and since extensively re-analyzed. For this data set, we �nd that the

results are sensitive to whether humidity is included along with temperature as a meteo-

rological variable, and to the de�nition of the exposure measure. We also �nd evidence of

a threshold e�ect, with the greatest increase in mortality occuring above 50 �g/m3, which

is the long-term average level permitted by the current NAAQS. Thus, on the basis of this

data set, the need for a tighter NAAQS is not established.

Although this particular analysis is focussed just on one data set, the issues it raises

are typical in this area of research. We do not dispute that there is a reasonable level of

evidence linking atmospheric particulate matter with adverse health outcomes even within

the levels permitted by current regulations. However, the impression has been created

by some of the published literature that such associations are overwhelmingly supported

by epidemiological research. Our viewpoint is that the statistical analyses allow di�erent

interpretations, and that the case for tighter regulations cannot be based solely on studies

of this nature.

Keywords. Generalized additive modeling, linear regression, model selection,

PM10, Poisson regression, threshold e�ects, cubic splines.

1 BACKGROUND

A major focus of air pollution research in recent years has been the health e�ects of

small particles in the atmosphere, PM10 or PM2:5. The epidemiological evidence comes

from two kinds of studies: time series studies and prospective studies. Prospective studies,

the best known of which are the Harvard six-cities study (Dockery et al. 1993), the Amer-

ican Cancer Society study (Pope et al. 1995b) and the Adventist Health Study (Abbey

et al. 1999), follow a �xed group of individuals over a long time span, monitoring health

indicators (primarily, date of death) as a function of lifestyle factors such as smoking, and

exposure to air pollution as derived from ambient monitoring stations in each of the cities

covered by the study. Time series studies, in contrast, are usually concentrated within

a single city, focus on a particular health outcome (e.g. daily deaths from nonaccidental

causes among the population aged 65 and over), and are based on identifying associations
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between short-term uctuations in the health outcome with corresponding short-term uc-

tuations in the pollutant of interest. Because the data are typically derived from public

data sources, there have been many more studies of the time series type than of the

prospective type, and an impression has been built up in some of the literature that the

weight of evidence is overwhelmingly in favor of causal relationships. For example, Pope

et al. (1995a) reviewed around 80 published papers, most published within the decade

1985{1995, most concerned with levels of pollution which are common in modern cities

in developed countries, and which showed an association between particulate air pollution

and a very wide range of health outcomes. For the present paper, we consider only time

series studies; the prospective studies which have been published raise numerous questions

of their own, but these are quite di�erent from the questions considered here.

The statistical methods used in time series studies typically involve linear or Poisson

regression, with covariates based on long-term trend and seasonality, meteorology, and

particulate and other ambient air pollutants. The methods are described in more detail in

section 3. The overall avor of most of the results is that after allowing for possible con-

founders as represented by the trend, seasonal and meteorological variables, there remains

a clear statistically signi�cant signal based on particulate air pollution. Nevertheless, some

authors, including Styer et al. (1995), have drawn attention to possible inconsistencies in

these results.

The purpose of the present paper is to examine these kinds of methods in relation to

one particular data set, from Birmingham, Alabama. This city was studied for mortality by

Schwartz (1993) and for hospital admissions by Schwartz (1994). These studies were based

on Poisson regression models with covariates allowing for seasonal trends, meteorology

and PM10, and found a statistically signi�cant e�ect due to PM10. The mortality study

was repeated by Samet et al. (1995), who developed new estimators and computational

algorithms for �tting the models, but who adopted the same data and models as Schwartz.

They essentially con�rmed the numerical correctness of Schwartz's results, but they did

not consider the e�ect of alternative modeling strategies.

Another study of Birmingham data, over a largely di�erent time period, was by Roth

and Li (1996). They collected data on mortality and morbidity, PM10 and other pollutants

(O3, SO2, CO). They �tted a wide variety of models based on di�erent ways of handling

the trend/seasonal and meteorological factors, di�erent exposure measures for PM10 (e.g.

one-day readings over various lags, three-day averages, etc.) and di�erent combinations of

pollutants. With mortality as response, they �tted 2,400 di�erent models of which only

seven showed statistically signi�cant PM10 coeÆcients, and three of these were negative.

It is not clear exactly what this kind of comparison means since many of the models being

compared are very similar, so the results will be highly correlated. Moreover, Roth and Li

did not make any attempt to identify a \best" model in any sense. Nevertheless, the result

underlines the sensitivity of claims of statistical signi�cance to model selection. They

also found substantial variation of the PM10 coeÆcients from year to year. Putting all

their results together, Roth and Li claimed that there was no evidence of any relationship

between particulates and mortality in Birmingham.
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The paper by Roth and Li helped draw our attention to the importance of di�erent

exposure measures of PM10, a theme which is developed at some length later in sections

3 and 5. Apart from that, the results of the present paper have been derived entirely

independently of Roth and Li.

We should also draw attention to the very recent study by Clyde (2000), which used

Bayesian model averaging techniques to form an independent view of some of the issues

discussed in the present paper.

For the present study, we have reconstructed the data from their original sources,

and have developed independent methods of analysis. We focus particularly on the e�ects

of model selection, di�erent exposure measures, and on possible nonlinear relationships

between particulates and mortality.

2 BIRMINGHAM DATA

To construct a data set for this problem, three sources have to be combined: mortality,

meteorology and PM10. The limitations of the present data set are mainly dictated by the

availability of PM10 data.

2.1. PM10 data

The sampling period is January 1, 1985 through December 31, 1988, the same as in

Schwartz (1993). During this period, PM10 data are available from the USEPA's aero-

metric data base for 13 monitors in or near the city of Birmingham. The 13 monitors do

not necessarily represent di�erent locations: when the type of monitor or the method of

measurement changes, this is treated as if it were a di�erent monitor.

For the �rst seven months of 1985, data from three monitors are available, but they

are only collected every six days (the same sampling days for each monitor). Data of this

nature are of limited use for studying daily mortality e�ects. However, from August 1985

onwards, there was usually at least one monitor collecting daily data, though not without

some missing values.

A number of exposure measures have been used in previous studies. By an exposure

measure we mean some function of present and previous days' pollution levels which is

taken as an independent variable in the regression analyses. For example Schwartz and

Dockery (1992a) used the average of current day's and previous day's TSP (total suspec-

nded particulates, the older measure of particles before PM10 became standard); Schwartz

and Dockery (1992b) used just the previous day's TSP; Pope et al. (1992) used �ve-day

averages of PM10, and Styer et al. (1995) used three-day averages including the current

day. For Birmingham, Schwartz (1993) used three-day averages of PM10 excluding the

current day, i.e. today's exposure measure consists of the average PM10 for yesterday,

the day before yesterday, and the day before that. As will be seen, the results are highly
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sensitive to the choice of exposure measure, and in section 3 we consider the implications

of this for our overall scienti�c assessment of the results.

One point, that came to light well after our initial work on the Birmingham data set

was completed, is that not all of the PM10 monitors are equally relevant to the study of

mortality in Birmingham. Clyde (2000) drew attention to this feature and concentrated

most of her analysis on data based on the monitor in the city of Birmingham, ignoring

other nearby monitors which had been included in earlier studies. The present study uses,

as alternatives, the average over all available monitors or the data from Birmingham alone,

but it appears that the strongest associations are obtained using the monitoring data from

Birmingham alone, so the main results are expressed in terms of that monitor.

2.2. Mortality data

Daily mortality data were available from the National Center for Health Statistics

for 1985{1988. The data were classi�ed in four ways: by gender (male/female), by race

(black/non-black), by age (under 65/65+) and by cause of death (respiratory/cancer/

circulatory/other disease/accidental). Although some of our work has been concerned with

di�erent age groups or with di�erent causes of deaths, we have found that the strongest

evidence of a PM10-mortality association exists within the 65 and over age group, when all

nonaccidental sources of mortality are combined into a single overall death count. From

now on, therefore, we consider only that outcome variable.

2.3. Meteorological data

The Birmingham meteorological data for this study came from the U.S. National

Climatic Data Center in Asheville, North Carolina. The data are publicly available through

the ftp address ftp.ncdc.noaa.gov/pub/data/fsod/fsod ascii.13876. This lists daily data at

the BIRMINGHAM MUNI AP site, for which the WBAN number is 13876, and it is

located at 33.57 oN and 86.75 oW at an elevation of 191m.

Although many meteorological variables are available on a daily basis, those actually

adopted are those listed in Table 2.1. Further rationale will be provided in section 3 for

the choice of these particular variables.

tmax: daily maximum temperature (oC)

tmin: daily minimum temperature (oC)

mntp: mean of tmin and tmax

dptp: average daily dew point temperature (oC)

mnsh: average daily speci�c humidity (g/kg)

tg30: larger of (tmax{30) and 0

mnshsq: square of mnsh

Table 2.1: List of meteorological variables
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2.4. Data summaries

Summary statistics for some of the main variables are in Table 2.2. Here \mort" is

mortality in the 65+ age group excluding accidental causes. The variable \pm10" refers

to daily readings and \pmmean" to three-day averages. Daily values were obtained either

from the Birmingham monitor alone (these are denoted pm10B or pmmeanB in the table)

or from averages over all available monitors. Three-day averages were obtain by averaging

the corresponding one-day values | if one or two of the one-day values was missing in any

three-day period, the three-day average was based on the two days or one day remaining.

Variable mean SD min 10% 25% 50% 75% 90% max
tmax 23.39 8.61 {3.3 11.1 17.2 24.4 31.1 33.3 38.3

tmin 10.65 8.91 {12.2 {2.2 3.3 11.1 19.4 21.1 25.6

mnsh 9.31 4.89 0.8 3.1 4.9 8.7 14.0 16.2 18.3

pm10 47.23 23.77 8.0 21.0 29.0 44.0 59.3 79.0 163.0

pmmean 46.89 18.96 13.0 24.2 33.0 44.7 57.8 72.0 137.1

pm10B 50.56 26.42 8.0 21.0 30.0 46.0 66.0 87.0 163.0

pmmeanB 50.08 21.22 11.0 25.3 33.7 48.0 62.3 78.3 146.7

dptp 10.54 9.32 {19.1 {2.9 3.3 11.8 19.1 21.5 23.5

mort 15.06 4.25 3.0 10.0 12.0 15.0 18.0 21.0 32.0

Table 2.2: Selected summary statistics

Table 2.2 may be compared with Table 1 of Schwartz (1993), who gave a similar table

for the data he used in his study. Apart from obvious transformations such as Fahrenheit

and Celsius temperature scales, the meteorological data appear to be the same. The mean

deaths reported in Schwartz's study are a little lower than ours (e.g. Schwartz obtained

17.1 for mean daily nonaccidental deaths over all age groups; we obtained 19.8) which may

have been due to his taking a slightly smaller geographical area. The deaths data used in

the current study are for Franklin County, which includes Birmingham, whereas it appears

that Schwartz used only data from the city of Birmingham. In the case of PM10, there is a

strange discrepancy in the number of days' data: Schwartz reported 139, 332, 262 and 354

days' data for respective years 1985, 1986, 1987, 1988, whereas our counts are 139, 332,

319 and 341 for the Birmingham monitor. We have no explanation for the extra 60 days'

data in 1987. So far as we can tell, Schwartz's data set included other monitors besides

Birmingham, though personal enquiries with Dr. Schwartz have failed to establish this

de�nitively.

Despite these discrepancies in data sources, we do not believe that they are responsible

for discrepancies in the results. For the most part, when models similar to those of Schwartz

are also �tted to the present data, the results are very similar to those of Schwartz. The

real points of di�erence are in the models being �tted, not in the data.
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Plots of the data (see section 3) show that the largest part of the variability in the

data is due to systematic seasonal and time trends, which do not appear to be directly

related to either particles or meteorology. Schwartz concluded that these trends appear

to follow a two-year cycle (based on four years' data), and modeled the cyclical trend by

including 24 sine and 24 cosine terms in the regression equation, together with a linear

trend term and an indicator variable for year. His principal �tting method was Poisson

regression, using the generalized estimating equations approach developed by Liang and

Zeger (1986). Numerous variants on this technique, including corrections for overdispersion

and autocorrelation, robust estimation, least squares regression and nonlinear regression

for the temperature and PM10 components of the model, were used but apparently without

greatly a�ecting the conclusions. The results consistently showed a statistically signi�cant

PM10 e�ect. In Schwartz's papers this has often been characterized in terms of the relative

risk associated with an increase in PM10 levels of 100 �g.m
�3. A typical result for this is

1.11, with 95% con�dence interval of (1.02,1.20). Samet et al. (1995) obtained an exactly

equivalent result based on re�tting the same model as Schwartz to the same data, but

without further consideration of model selection.

3 LINEAR REGRESSION ANALYSIS

3.1. Background

All analyses of the relationship between atmospheric pollution and human health

outcomes rely on regression analysis in some form, but there are many variations in the

precise methodology adopted. Since one of the purposes of this paper is to highlight how

di�erent approaches to the analysis may lead to very di�erent conclusions, we begin with

a brief overview of the main \issues" which arise in this kind of analysis, and how they

have been resolved by earlier authors, before describing our own approach.

One of the �rst papers to discuss methodological issues in depth was the analysis by

Schwartz and Marcus (1990) of London data from the 1960s. They highlighted such issues

as

� correcting for long-term trends and seasonal variation,

� correcting for meteorological confounding,

� correcting for confounding by other atmospheric pollutants (in the case of particulate

matter, the comparative e�ect of SO2 is of particular interest),

� whether there is evidence of a nonlinear or \threshold" e�ect in the pollution-

mortality relationship,

� the e�ect of autocorrelation in the residuals.

As interest in the subject developed, so did the methods become better �xed. Samet

et al. (1995) considered a general structure of the form

log�
t
=
X

�
j
x
jt
; (3:1)
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where �
t
is the mean level of deaths on day t and the covariates fx

jt
g include terms

representing trend and seasonality, meteorology and air pollution. Some of the models

included nonlinear terms in the meteorological and air pollution variables. The obvious

probabilistic model associated with (3.1) is a Poisson model in which the death count on

day t is Poisson with mean �
t
, but Samet et al. (1995) rejected that because the data

exhibit both overdispersion and autocorrelation. Instead, they proposed an \iteratively

weighted and �ltered least squares" (IWFLS) approach. In spite of their caution on this

point, however, subsequent authors have often used Poisson maximum likelihood without

�nding overdispersion or autocorrelation to be of major concern.

Subsequently Samet et al. (1997) presented a more detailed analysis of one particular

data set from Philadelphia, which included the use of smoothing splines to represent the

long-term trend and seasonal components. In some analyses they also applied smoothing

splines to nonlinear e�ects of meteorology and air pollution. In this analysis, they did

not �nd any evidence of autocorrelation, which may have been because the smoothing

splines approach is more sensitive to the true shape of the long-term trend than some

of the approaches adopted in earlier papers. They considered synoptic approaches to the

meteorological modeling, in which the weather variables were used to de�ne a �nite number

of states representing typical weather scenarios, these states being then used as covariates

in the analysis. However, their conclusion was that the synoptic approach is inferior to

the more usual regression approach based on temperature and dewpoint as continuous

covariates. Finally, they considered the joint e�ects of particulate matter and four other

atmospheric pollutants (SO2, NO2, O3 and CO), without �nding strong evidence that

particulate matter was the sole causative factor, as some other authors had claimed.

In a di�erent and more exploratory spirit, Styer et al. (1995) also considered models of

the form (3.1) as well as alternative linear regression models in which some of the nonlinear

terms were represented nonparametrically as sample paths from stochastic processes. A

particular feature of their approach was to examine the consistency of regression models

�tted on either a seasonal or a monthly basis. For example, in analysis of data from

Cook County, Illinois (in e�ect, the city of Chicago), they found a signi�cant PM10 e�ect

when modeled as a single linear term, but when interactions between PM10 and season

were considered, they found strong interaction, with the PM10 e�ect strong only in the

fall. Such an odd conclusion is hard to reconcile with a strict causal interpretation. They

also found no PM10 e�ect at all in an analysis of data from Salt Lake County, Utah.

On the other hand, Smith et al. (1999), re-analyzing the Chicago data using smoothing

splines for the long-term trend, did not �nd the same strength of evidence for a seasonal

interaction, which serves to highlight again the sensitivity of the results to di�erent methods

of analysis. There is also a question left open by the Styer et al. analysis, of whether �tting

entirely separate regressions on a seasonal or even monthly basis is simply over�tting, with

inevitable diÆculties for interpretation of the results.

For the present analyses, we consider both Poisson maximum likelihood analyses based

on (3.1), and a simpler approach based on ordinary linear regressions of the form

y
t
=
X

�
j
x
jt
+ �

t
; (3:2)
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where y
t
is some transformation (e.g. log or square root) of daily death count on day

t, and f�
t
g are independent normal random errors with mean 0 and common variance

�
2. Experience with both Birmingham and other data sets has shown that models based

on (3.2) lead to virtually equivalent results to (3.1) after due allowance is made for the

transformation. The square root transformation is natural in view of the well-known result

that for Poisson random variables, this is variance stabilizing | if z
t
is Poisson with mean

�
t
then y

t
=
p
z
t
has mean �

t
� p

�
t
and variance approximately 1

4
regardless of the true

value of �
t
.

We now turn to detailed speci�cation of individual components of the model, using

the Birmingham data to illustrate how the model is constructed in practice.

3.2. Trend and seasonality

Year

W
ee

kl
y 

m
ea

n

1985 1986 1987 1988 1989

0

50

100

150

200 Deaths x10

PM10

Figure 3.1. Weekly means of the daily nonaccidental death counts among the 65+ pop-

ulation in Birmingham (top plot) and weekly PM10 means (bottom plot), together with a

scatterplot smoother for each.

Fig. 3.1 shows weekly deaths and weekly PM10 averages plotted throughout the four-

year period, with a smoothed curve to represent the long-term trend (�tted by lowess

in S-PLUS). The plots show clearly that there are seasonal e�ects, but also that they are

irregular from year to year. For example, each year the deaths peak in the winter, but in

1985{6 and 1987{8, the peak occurred in February, whereas in 1986{7 the peak occurred

at the beginning of January. These facts, which are almost certainly due to epidemics
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rather than the e�ects of either meteorology or air pollution, highlight the need for careful

modeling of the trend. Another feature of Fig. 3.1 is that PM10 appears to peak in the

summer, so a na��ve regression of mortality on PM10 might well lead to a negative e�ect

(in fact, the correlation between the two series of weekly totals in Fig. 3.1 is {0.1) but

of course this is also highly misleading given the number of other factors likely to explain

seasonal variability.

To model the seasonal e�ect, Schwartz (1993) cited the well-known tendency of epi-

demics to follow a two-year cycle, and modeled the trend as such, using 24 sine and 24

cosine basis functions. The B-spline approach of the present paper is based on represen-

tations of the form

f(t) = �0 +

KX
k=1

�
k
B

�
K

T
(t� �

k
)

�
; 0 � t � T; (3:3)

where f(t) is the trend at time t, �
k
= T

K

�
k � 1

2

�
is the k'th \knot", and B(�) is the

B-spline basis function, see e.g. Green and Silverman (1994).

The key decision in (3.3) is the number of knots K, which controls the smoothness of

the curve | the smaller K is, the smoother the curve. General considerations are that K

should be large enough to pick up the kind of irregular seasonal behavior which we saw

in Fig. 3.1, but not so large that the seasonal e�ect could be confounded with the PM10

e�ect. Since air pollution episodes frequently last for several days and possibly as long

as two or three weeks, the latter consideration suggests that the frequency of knots f�
k
g

should be no greater than about one per month.

3.3. Meteorological variables

On the selection of meteorological variables, there is again a diversity of views in the

literature. Most authors agree on the need to include temperature and some measure of

humidity and many also include pressure. For example, Styer et al. (1995) used tempera-

ture, speci�c humidity and station pressure, together with their one- and two-day lagged

values, while Samet et al. (1995, 1997) based their analyses on temperature and dewpoint,

the latter being another way to measure the e�ects of humidity. For Birmingham, Schwartz

(1993) considered temperature and dewpoint as candidate meteorological variables, though

the main model he �tted did not use dewpoint. Our own investigations suggest that it is

highly desirable to include at least one of speci�c humidity and dewpoint in the model,

along with temperature.

The main variables examined in the current study are daily maximum and minimum

temperature, and one measure of humidity (either dewpoint or speci�c humidity). One

might expect that the mortality vs. temperature relationship would be nonlinear (decreas-

ing at low temperatures, increasing at high). This could be modeled using a quadratic or

higher-order polynomial, or alternatively through a piecewise linear model of the form

f(x) = �1x+ �2xI(x > x0); (3:4)
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where x is temperature, I is the indicator function and x0 is some threshold. Preliminary

analysis suggested that an e�ective way to deal with nonlinearity was through a model of

the form (3.4) for x = tmax, with x0 = 30 oC. This motivated the de�nition of the variable

tg30 in Table 2.1.

The question also arises whether the e�ect of speci�c humidity should be nonlinear

and for this we �nd that a quadratic �t is good. Further details are given below.

Finally, all the meteorological variables were lagged up to 4 days to allow for e�ects

that may persist over several days. The lag is indicated with a suÆx; for example, tmax2
means tmax lagged two days, and mnshsq0 means the lag 0 (in other words, today's) value

of mnshsq.

3.4. Selecting the meteorological and trend model

The �rst step of the analysis is to �nd the best �t to the data using just the trend and

meteorological variables: later, we add terms involving PM10 individually to ascertain the

signi�cance of those terms.

For trend and seasonality, the approach taken here is �rst to �x K, the number

of spline basis function for the trend, and then to select meteorological variables. The

method of selection is backward selection using tests at signi�cance level 0.1 to determine

which variables to omit from the model. The results are repeated for several values of

K, and using three transformations of daily death count (square root, logarithmic and no

transformation) to determine y
t
in (3.2). A scale correction was applied to ensure that

the mean squared error results are directly comparable (Atkinson 1985, p. 86). Models

are then compared by AIC. Results are in Table 3.1. Also included in this table are the

corresponding results based on Schwartz's (1993) sine-cosine representation of the trend.

The results of Table 3.1 show convincingly that the square root transformation per-

forms best among the three transformations considered, and also that K = 12 is best

among the values of K considered. Although AIC is just one of several model selection

criteria we could have considered, others lead to essentially the same conclusion. The

results for K = 0 are included following a suggestion of the referee, who asked whether

the whole of the seasonal variation could be modeled as a function of meteorology. The

answer is no, though surprisingly, K = 0 performs second best (after K = 12) of the

various values in Table 3.1. As a further check on this conclusion, signi�cance tests for the

alternative hypothesis K = 12 have been performed against the null hypothesis K = 0,

using common sets of meteorological covariates to make the models nested. In every case

tested, the result is signi�cant with a p-value of the order of .01{.03. Thus we conclude

that K = 12 is the best.
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In previous analyses of Birmingham, Smith et al. (1998, 1999) have used larger values

of K so the present analysis represents a departure from that. As a further assessment,

Fig. 3.2 shows the �tted smoothed trends by the B-spline method for three values of

K = 48; 24 and 12, in this case �tted without meteorological components (otherwise

these curves are diÆcult to compare visually). The curves for K = 24 and K = 48 show

numerous local uctuations which seem likely to be spurious. This therefore provides some

visual con�rmation of the AIC-based results.

So far, although we have selected meteorological variables by backward selection, the

class of meteorological variables considered for variable selection has remained �xed. How-

ever, other issues which arise in these analyses include whether humidity is best represented

by speci�c humidity or dewpoint, or whether humidity variables should be included at all.

To test this, Table 3.2 shows AIC values for the best model in four classes, (a) using tem-

perature variables only, (b) using temperature plus linear terms in speci�c humidity, (c)

using temperature variables plus dewpoint temperature, (d) using temperature variables

plus linear and quadratic terms in speci�c humidity. All the models were obtained by

backward variable selection of meteorological variables, with a �xed K = 12 knots for the

B-spline representation of trend. As judged by AIC, model (d) is clearly the best of these.

This highlights the need to include humidity as well as temperature.

Model AIC df

(a) tmax1, tmin3, tg301 4022.46 15

(b) tmin0, tmin3, tg301, mnsh0, mnsh2, mnsh3 4016.67 18

(c) tmin3, tg301, dptp2, dptp3 4016.59 16

(d) tmin3, mnsh0, mnsh1, mnsh2, mnsh3, mnshsq0, mnshsq1 4007.64 19

Table 3.2: Best meteorological models in four classes

3.5. Adding particulate matter to the model

As remarked already, previous authors have used a variety of exposure measures for

PM10. For example Styer et al. (1995) used three day averages including the current day,

while Schwartz (1993) used three day averages excluding the current day. In the following

discussion, we attempt to be systematic in searching for a suitable variable or variables

to represent PM10. We de�ne variables pm0, pm1,..., pm4 to represent the one-day PM10

reading lagged up to 4 days, and we used pmmean with appropriate lags to represent three-

day means. Thus pmmean0 denotes the average of pm0, pm1 and pm2, while pmmean1
denotes the average of pm1, pm2 and pm3. The �ve-day average was also considered but is

not reported since in no model was it found to be statistically signi�cant. The analyses in

this subsection are based on the same meteorological variables and B-spline basis functions

as previously, but the analysis is restricted to the period August 3 1985 { December 31

1988 for which there is an almost continuous series of monitoring data.
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Variable Estimate Standard error t statistic

(i) pmmean0 .00136 .00082 1.65

(ii) pmmean1 .00192 .00082 2.34

(iii) pm0,...,pm4 .00108 .00130 0.83

(iv) pm0, pm1, pm3 .00117 .00106 1.10

(v) Poisson version of (ii) .00098 .00040 2.44

(vi) Poisson version if (iv) .00057 .00052 1.10

Table 3.3: Parameter estimates and standard errors due to PM10 in the model based on

temperature plus linear and quadratic terms in speci�c humidity.

Table 3.3 shows the coeÆcient, standard error and t statistic for several di�erent

ways of introducing PM10 into the model of Table 3.2(d). These are based on one-day or

three-day averages computed using the Birmingham monitor alone, as discussed earlier.

It should be pointed out that a number of other combinations of the PM10 variable were

considered | single-day values, two-day averages and three-day averages at various lags |

but no single variable produced as strong an association as pmmean1 here, for which the t

statistic is 2.34, a signi�cant result if the model selection aspect of the analysis is ignored.

Row (iii) shows the e�ect of putting in each of the �ve single-day variables pm0,...,pm4

and using the sum of the �ve coeÆcients along with the standard error of that sum as a

measure of the overall PM e�ect. Measured this way, the overall e�ect is weaker than in

row (ii), and not statistically signi�cant. However within this analysis, pm2 and pm4 were

not signi�cant, the remaining statistically signi�cant coeÆcients being pm0 with a negative

coeÆcient, and pm1 and pm3 with positive coeÆcients. Therefore, row (iv) repeats the

analysis of row (iii) but based just on pm0, pm1 and pm3. Again it does not show a

statistically signi�cant result. Finally, rows (v) and (vi) repeat the analysis of rows (ii)

and (iv) but based on the Poisson regression model (3.1). The coeÆcients in this case are

not directly comparable with those based on model (3.2) because the transformation of y

is di�erent (y
t
in (3.2) is taken as square root of elderly nonaccidental deaths) but the two

sets of results may be compared by translating them into relative risks.

To calculate relative risks associated with the parameters in rows (i){(iv), the simplest

way to illustrate is by example. The mean deaths per day are 15.055. Suppose the model

of row (ii) holds and consider the e�ect of a 10 �g/m3 rise in PM10. According to the

coeÆcient, this should lead to an increase of 10 � :00192 in mean square root of deaths.

Thus the estimated relative risk is (
p
15:055 + :0192)2=15:055 = 1:010 and an associated

approximate 95% con�dence interval is (1.001, 1.018) after applying the same calculation to

both endpoints of a 95% con�dence interval for the coeÆcient. In contrast, the estimated

relative risk based on model (v) is e:0098 = 1:010 with 95% con�dence interval (1.002,

1.018), virtually the same. Similarly, the estimated risk for model (iv) is 1.006 with 95%

con�dence interval (.995, 1.017) and these are identical to the estimates based on model

(vi).
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Table 3.4 shows the results comparable to Table 3.3 in which the meteorological mod-

eling is based on Table 3.2(a), i.e. temperature alone. This table was calculated because

one of the conclusions from Schwartz's (1993) analysis was that it does not make any dif-

ference whether humidity is included or not in the model (though Schwartz used dewpoint

rather than speci�c humidity in making the assertion). Whether the di�erences between

Tables 3.3 and 3.4 are of any practical signi�cance is a matter for debate, but it can be

seen that the coeÆcients in Table 3.4 are uniformly higher than in Table 3.3. In other

words, omitting humidity may have had the e�ect of inating Schwartz's estimates.

Variable Estimate Standard error t statistic

(i) pmmean0 .00158 .00085 1.87

(ii) pmmean1 .00217 .00088 2.46

(iii) pm0,...,pm4 .00163 .00132 1.23

(iv) pm0, pm1, pm3 .00139 .00108 1.29

(v) Poisson version of (ii) .00111 .00043 2.61

(vi) Poisson version if (iv) .00070 .00053 1.32

Table 3.4: Parameter estimates and standard errors due to PM10 in the model based on

temperature alone.

If these analyses are repeated using average PM10 values from all the monitors rather

than just the values from the Birmingham monitor, the PM coeÆcients are uniformly

smaller. For example, the Poisson coeÆcients from rows (v) and (vi) of Table 3.3 become

.00088 and .00049 (instead of .00098 and .00057), while those from Table 3.4 become .00100

and .00058 (instead of .00111 and .00070). Thus, the decision to use just the Birmingham

monitor has had the e�ect of increasing the estimated e�ects compared with earlier analyses

based on this data set.

Variable CoeÆcient S.E. t statistic
tmin3 {.00270 .00330 {0.82

mnsh0 {.03309 .01315 {2.52

mnsh1 .00748 .01422 0.53

mnsh2 {.00807 .00682 {1.18

mnsh3 .00792 .00698 1.13

mnshsq0 .00184 .00070 2.61

mnshsq1 {.00068 .00072 {0.94

pm0 {.00070 .00039 {1.77

pm1 .00074 .00039 1.89

pm3 .00053 .00034 1.55

Table 3.5: Individual coeÆcients and standard error, Poisson model with individual co-

eÆcients for single-day PM10 e�ects
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Tables 3.5 and 3.6 give detailed regression results under the Poisson model for rows

(vi) and (v) of Table 3.3. In Table 3.5, the coeÆcients of pm0, pm1 and pm3 are all near

statistical signi�cance, the coeÆcient of pm0 being negative and the other two positive.

When the three coeÆcients are added, the combined result is positive but not statistically

signi�cant, as is reected in the RR results in rows (iv) and (vi) of Tables 3.3 and 3.4. It

would appear that the reason why the analysis with pmmean1 is the only one to give a

statistically signi�cant result is because this choice of exposure measure excludes the e�ect

of day 0 which is negative.

An incidental comment about Tables 3.5 and 3.6 is that several of the meteorological

variables do not appear signi�cant here. However, the original meteorological variable

selection was done without any PM terms present; we have not chosen to drop parameters

which became insigni�cant at this stage of the analysis.

Variable CoeÆcient S.E. t statistic
tmin3 {.00351 .00281 {1.25

mnsh0 {.03815 .01116 {3.42

mnsh1 .01947 .01195 1.63

mnsh2 {.01047 .00578 {1.81

mnsh3 .01089 .00595 1.83

mnshsq0 .00249 .00060 4.15

mnshsq1 {.00148 .00061 {2.41

pmmean1 .00098 .00040 2.44

Table 3.6: Individual coeÆcients and standard error, Poisson model based on three-day

averages of PM10

The di�erences among the estimates from the di�erent models do not appear to result

from whether we use normal or Poisson regression, which lead to very similar estimates

for the relative risk, but on which variables are included in the regression. The most

substantial source of discrepancy arises from whether we choose to use pmmean1 as the

single most signi�cant measure of the pollution e�ect, or estimate separate one-day values

as in Table 3.5. There is no clear-cut judgement about which is the right model, but it

is important to understand that the conclusion is sensitive to this judgement. The latter

model may be thought of as a crude form of \distributed lag" model, in which the time-

dependent shape of the response curve is assumed a priori unknown, and ultimately we

feel that models of this form are likely to be the way forward with this kind of analysis.

Our �nding about pm0 should not be interpreted as meaning that the current day's

PM10 has a protective e�ect. It seems much more plausible that it is an artifact caused by

linear correlations among the di�erent variables. Nevertheless it seems to be a persistent

phenomenon. For example Roth and Li (1996) noticed the same thing, computing the pm0

coeÆcient separately for each year of data from 1988 to 1993, and in only one of the six
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years was it positive. However this has only a one-year overlap (1988) with the present

data set.

One diÆculty with including multiple PM10 e�ects in the analysis is that they magnify

the problems of missing data. Out of 1,247 days covered by the data, 147 had missing

single-day values, but a total of 300 are missing at least one of pm0, pm1 or pm3 and were

therefore omitted from the analyses just reported. There is no evidence that this has any

e�ect on the parameter estimates but it does mean that the degrees of freedom for error

are smaller, and it makes other kinds of calculations more diÆcult, e.g. serial correlations

among the residuals. For this reason and for better comparison with previously published

results, much of the subsequent discussion is still based on the model using pmmean1 as

the exposure variable. The variable pmmean1 is considered missing only if all three days

in a row are missing, which occurred only four times.

3.6. Diagnostics

For the normal linear regression model (3.2), the residual for day t is de�ned in the

usual way, as

e
t
= y

t
�
X
j

�̂
j
x
jt

(3:5)

where the �̂
j
are estimated coeÆcients. For the Poisson model (3.1), if �̂

t
is the estimated

Poisson mean for day t and if y
t
is the observed value, then we can de�ne the transformation

u
t
=

yt�1X
y=0

p̂
t
(y) +

1

2
p̂
t
(y
t
) (3:6)

where p̂
t
(y) = �̂

y

t
e
��̂t=y!, the �tted Poisson probability distribution for day t. The formula

(3.6) is intended as an approximation to the probability integral transformation, so that

u
t
are approximately uniformly distributed on [0,1]. By further transformation, we also

obtain approximately normal residuals, analogous to (3.5). For the following discussion,

we concentrate on the normal and Poisson models based on pmmean1, as in rows (ii) and

(v) of Table 3.3.

One issue that arises is overdispersion. If y
t
has a Poisson distribution, then the vari-

ance of
p
y
t
is approximately 1

4
. This should also apply approximately to the residuals in

(3.4) if the linear regression is a reasonable representation of reality. In the regression of

Table 3.3(ii), which we believe to be representative of all the regressions we have consid-

ered, the standard unbiased estimator of �2 is s2 = 0:269 with 1,222 degrees of freedom.

This represents an approximately 7.5% overdispersion, and is not statistically signi�cantly

di�erent from 0.25 based on the �
2 distribution of s2. Based on this, we conclude that

overdispersion is not a serious problem.

A second issue which sometimes arises in these kinds of analyses is the possibility that

residuals may be serially correlated. In the present case, the �rst few serial correlation
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coeÆcients of the residuals are {.016, {.017, {.017,.. These should be compared with the

standard reference point for correlation coeÆcients, 2=
p
N = :057. We conclude that there

is no evidence of serial correlation. For the normal-transformed residuals from the Poisson

model, the serial correlations are {.014, {.015, {.015,... which leads to the same conclusion.

Roth and Li (1996) did �nd signi�cant serial correlation in their residuals and ac-

commodated this with autoregressive models of order up to 4. However their modeling of

seasonal trend was less detailed than ours. In general, our experience with this and similar

data sets has been that if the model for trend is inadequate to pick up all the uctuations in

the underlying death rate, then this leads to signi�cant serial correlations. One advantage

of the B-splines approach is that it seems to model trend suÆciently accurately to make

autoregressive models unnecessary.

A third diagnostic issue is whether the assumed distribution (normal or Poisson)

adequately �ts the data. There is no contradiction in testing both distributions because

the Poisson distribution for large enough mean would be hard to distinguish from a normal

distribution, a direct consequence of the Central Limit Theorem. However, so far we have

not presented any evidence that either distribution �ts the data.
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Figure 3.3. Probability plot for standardized residuals under (a) normal model, (b)

Poisson model.

A standard method of deciding whether residuals follow a normal distribution is as a

probability plot of the order statistics against their expected values. This is done in Fig.
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3.3(a) for the OLS regression model and Fig. 3.3(b) for the Poisson regression model. In

Fig. 3.3(a), the residuals are �rst standardized to have variance 1, while Fig. 3.3(b) is

based on the normal-transformed version of the residuals from the Poisson model. In both

plots the data are close to the solid line which is evidence that the model is indeed a good

�t.

The �nal \diagnostic" issue we consider is whether the estimated PM10 coeÆcient

varies from year to year or from season to season. Roth and Li (1996) found signi�cant

variations from year to year in the case of Birmingham. The possibility of seasonal variation

was not investigated by them, but other studies of similar data sets have shown that it

can be important, e.g. Styer et al (1995).

We con�ne our discussion here to the model based on pmmean1, since in this case

there is only one parameter to vary. Suppose the model of Table 3.6 is �tted, but with

separate pmmean1 coeÆcients for each year or for each season. Table 3.7 shows the results.

There is some slight suggestion of a variation in the PM coeÆcient both from year to year

and from season to season, but in neither case is the variability statistically signi�cant

when measured by a deviance test (deviance statistics 0.8 and 1.9 respectively for yearly

and seasonal interactions, each with 3 d.f.). The one possibly interesting conclusion is

that the PM10 e�ect does appear to be substantially weaker in the summer than in the

other seasons, and it would be interesting to see whether this conclusion is sustained over

a longer time span in Birmingham or in other cities with a similar climate.

CoeÆcient S.E. t value

(a) Variation by year

1985 0.00037 0.00108 0.35

1986 0.00074 0.00057 1.28

1987 0.00126 0.00062 2.03

1988 0.00115 0.00074 1.54

(b) Variation by season

Spring 0.00110 0.00057 1.92

Summer 0.00050 0.00058 0.86

Fall 0.00111 0.00053 2.11

Winter 0.00106 0.00058 1.84
Table 3.7: Variation of the pmmean1 coeÆcient by year or by season, for the model of

Table 3.10

In summary, we have examined the �t of the linear regression models for four possible

departures from the underlying assumptions: overdispersion, serial correlation, lack of �t

of the distribution and seasonal or annual variation in the coeÆcients. In no case do we

�nd any reason to reject the original assumptions.
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4 THRESHOLD EFFECTS

A critical question for the whole particulates-mortality debate is whether there exists

a threshold below which there is no e�ect. This question can only be addressed through

some form of nonlinear modeling. Schwartz (1993, Fig. 6) estimated a smooth nonlinear

curve for the PM10-mortality relationship but did not calculate any con�dence band. Here,

we re-visit this question from three alternative points of view.

The �rst new analysis is based on a simple piecewise linear regression function for the

dependence on particulates. An early example of such analysis was that of Ostro (1984),

who used it to examine the possibility of a threshold in data from London.

We use the same idea, but for a sequence of thresholds. Consider the functions,

f1(x) =

�
x� u if x < u

0 if x � u
;

f2(x) =

�
0 if x < u

x� u if x � u
;

(4:1)

and consider a function of response variable y (typically, square root of daily deaths)

against PM10 level x of the form �1f1(x) + �2f2(x) plus other terms depending on other

covariates. Thus, the PM10 relationship is piecewise linear with a discontinuity in the

slope (though not the function itself) at a threshold u. For this analysis, the PM10 was

represented by pmmean1 and the other covariates were as in Table 3.6. Thus �1 and �2

represent slopes of the regression below and above the threshold.

Fig. 4.1 shows the resulting estimates of the PM10 e�ect, with pointwise 95% con�-

dence bands, for four possible choices of the threshold u. At u = 40, the results show no

evidence of a change of slope either side of the threshold. At u = 60 and u = 80, the esti-

mated slope is clearly higher above the threshold than below. The e�ect has disappeared

again by u = 100, but for this high threshold, the standard error of the slope above the

threshold is very large. Of the four threshold plots, only at u = 100 do the results below

the threshold provide nearly signi�cant evidence of an increasing slope in that region.

Fig. 4.2 shows an alternative treatment based on B-splines for the estimation of a

nonlinear e�ect. The results are expressed as relative risks, relative to the long-term mean

of PM10, which is 50.5. In other words, the relative risk for the level 50.5 is de�ned to be

1, and everything else is de�ned from that. To achieve this, we represent the PM10 e�ect

in the form

f(x) =

K

0X
k=1

�
k
fB

k
(x)� B

k
(�x)g ; (4:2)

in which x denotes the measured variable (here pmmean1), �x is the sample mean of all x

values (here 50.5), K 0 is the number of knots in the B-spline representation for f(x), and
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B1; :::; BK
0 are centered and normalized B-spline basis functions, analogous to (3.3). This

is then translated to relative risk via

RR =
(
p
15:055 + f(x))2

15:055
; (4:3)

analogous to the calculation following Table 3.3. Pointwise con�dence bands are calculated

by calculating a 95% con�dence interval on each f(x) from (4.2), and translating to relative

risks via (4.3). This leads to the plots in Fig. 4.2. Two plots are calculated, one using �ve

basis functions with knots at 20, 50, 80, 110, 140, the other using seven basis functions

with knots are 20, 40, 60, 80, 100, 120, 140.

 Threshold 40

pmmean1

0 20 40 60 80 100 120 140

-0.2

0.0

0.2

0.4

 Threshold 60

pmmean1

0 20 40 60 80 100 120 140

-0.2

0.0

0.2

0.4

 Threshold 80

pmmean1

0 20 40 60 80 100 120 140

-0.2

0.0

0.2

0.4

0.6

 Threshold 100

pmmean1

0 20 40 60 80 100 120 140

-0.2

0.0

0.2

0.4

0.6

Figure 4.1. Piecewise linear e�ects for mortality on three-day-averaged PM10, relative to

four di�erent thresholds, with pointwise 95% con�dence bands.

The con�dence bands calculated by this method are inevitably very wide, but they do

give a rough indication of the statistical signi�cance of the uctuations in the function. In

particular, the uctuations in the observed function below the mean �x do not seem at all

signi�cant, whereas the increase in RR observed above the level of 60 �g/m3 seems strong

enough not to be entirely accidental.
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(a): 5-knot spline
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(b): 7-knot spline
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Figure 4.2. Smooth nonlinear curve for the relative risk of mortality on three-day-

averaged PM10, computed using either a 5-knot or a 7-knot cubic spline, with pointwise

95% con�dence bands.

A third possible approach is a semi-Bayesian approach to \detection" of a threshold.

Suppose we re-�t the model based on piecewise linear functions (4.1), but with f1 having

coeÆcient 0 | in other words, we are now assuming that there is no PM e�ect below the

threshold u. Suppose, in (3.2), the vector of regression parameters conditional on a given

value of u is denoted �
(u), and the residual error variance is �2(u). If we assume a joint

prior density for u; �(u); �2(u) of the form

�(u; �(u); �2(u)) / 1

�2(u)
; 0 � u � umax; �

2(u)
> 0; (4:4)

with umax some prescribed upper limit on the values of u, then it may easily be veri�ed

that the marginal posterior density for u is of the form

�(u j data) / G(u)n�p; (4:5)

where n is the number of data points, p the number of regressors in the model (3.2), and

G
2(u) is the usual residual sum of squares after performing the regression for �xed u. This

approach begs the question of what is really an appropriate prior distribution for u (that

is why we call it only semi-Bayesian), but the posterior distribution based on (4.5) may

provide a useful indication of the information available in the data to support di�erent

values of u.
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Fig. 4.3 shows the posterior density for u calculated under this approach. This is

based on assessing (4.5) at discrete values u = 20; 22; 24; :::; 120 and normalizing so that

the integral of the posterior density is 1. The result shows a peak in the posterior density

near u = 65, but it is also noticable that the posterior density does not tend to 0 as u

approaches its lower endpoint (taken here to be u = 20 because of the very small number

of data points for which pmmean1 is below 20). In other words, the analysis provides

support for a threshold in the region 55{75 �g/m3, but it also shows that the possibility

of a threshold near 0 cannot be dismissed.

Threshold u

P
os

te
rio

r 
D

en
si

ty

20 40 60 80 100 120

0.005

0.010

0.015

0.020

0.025

Figure 4.3. Bayesian calculation of the posterior probability for the location of a thresh-

old.

In conclusion, the results of this section support the existence of a nonlinear e�ect

or a threshold above the current annual mean NAAQS of 50 �g/m3. None of the results

provide statistically signi�cant \proof" either that the e�ect is nonlinear or that there

is a threshold e�ect, if the question is formulated from the point of view of testing the

signi�cance of a nonlinear vs. a linear e�ect. However, we question whether that is the

right formulation. Much of the current controversy concerns whether there is signi�cant

evidence of an adverse health e�ect within the levels permitted by the current NAAQS, and

on the evidence presented here, for Birmingham, our conclusion is that there is not, even

without taking account of the selection e�ects associated with the choice of pmmean1 as

the variable of interest.
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5 GAM MODELING

As an alternative to the whole approach to regression taken in sections 3 and 4, the

data were also analyzed using the generalized additive model (GAM) approach of Hastie

and Tibshirani (1990). There were a number of reasons for pursuing this as an alternative

approach, among them, that GAMs form a exible class of models which automatically

incorporate nonlinear e�ects, and that the methodology of GAMs is di�erent from the

spline basis function approach taken in the earlier sections of the paper and therefore

provides an independent check on the results obtained through that approach.

The GAM is de�ned by the equation

y
t
=
X
j

f
j
(x

jt
) + �

j
(5:1)

where x
jt
is the value of the j'th covariate on the t'th day. As in ordinary least squares,

Ef�
j
g = 0 and Varf�

j
g = �

2, but the f
j
terms are arbitrary functions with an f

j
modeled

for each covariate. We follow the procedure used in S-PLUS in which the nonparametric f
j

functions are modeled using the loess procedure (Cleveland and Devlin, 1988). A critical

parameter is the span, the fraction of the data set used for �tting each function value.

In contrast with earlier analyses, where days with missing values of covariates were

omitted from the analysis, we interpolated the PM10 series (by linear interpolation between

nearest available days) in order to have a complete set of data. Meteorological variables

were tmax, mntp (mean daily temperature, average of tmax and tmin) and mnsh. Lagged

values were included as in earlier analyses and the default span provided by S-PLUS

(0.5) was used for all variables except the time trend, after visual inspection of the plots

suggested that it provided satisfactory results. For the time trend, we also used a loess �t

with span 0.05, a somewhat subjective choice based primarily again on visual inspection of

plots. This leads to somewhat more irregular trends than in the earlier B-splines approach,

but doing this provides a further check on the robustness of the results. The trend e�ect is

a concommitant variable, and ideally, estimates of particulate e�ects should not be heavily

dependent on precise modelling of the trend as long as there is little bias in the trend

model. Experiments with span 0.10 produced almost no change in the results below and

no change in the conclusions we draw. The response variable was the same as before, i.e.

square root of elderly nonaccidental deaths.

The GAM stepwise algorithm identi�ed the following variables as signi�cant for the

basic model: lo(tmax1), tmax3, lo(tmax4), mntp2, mntp3, lo(mnsh), lo(mnsh1), mnsh2,

mnsh3, and a trend term, lo(time). Here lo(...) indicates that a loess nonlinear function

was �tted, while the remaining variables were all treated linearly. The dispersion parameter

for the Gaussian family was estimated to be 0.271, i.e. an 8% increase compared with the

value 0.25 that would be expected if the Poisson model were exact. This is consistent with

estimates of overdispersion found in section 3. The �tted trend e�ect is displayed in the

top left hand box of Fig. 5.1. Since this plot shows the trend e�ect after adjusting for all

other meteorology variables in the model, it does not exactly match the curves in Fig. 3.2.
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Figure 5.1. Estimated e�ects and 95% con�dence bands for 11 variables under the gen-

eralized additive model of section 5.
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When pm0, : : : ,pm4 are added to the basic model, the analysis of deviance table shows

a drop in deviance of 2.05 (F=1.51) with �ve degrees of freedom and an approximate p-

value of 0.18. Since this is not signi�cant, it suggests that subset selection is a potential

problem in identifying the proper combination of particulate variables to place in the

model. Similarly, when pmmean0 was entered in the basic meteorology model, the drop

in deviance was 0.89 (F =3.29) with a p-value of 0.07. This agrees with the result from

section 3. Only for pmmean1 (deviance 1.65, F=6.08, p-value .014) do we get a signi�cant

result.

A further analysis was performed using pm0, pm1 and pm3 as particulate matter

variables, to give results comparable with those in Table 3.5. An initial �t again showed a

negative coeÆcient for pm0 and positive coeÆcients for pm1 and pm3, with t values �1:09,
2.48 and 1.10 respectively. (Here the approximate t values were computed using standard

errors derived from the S-PLUS GAM plot function.) In further analysis, �rst pm3 and

then pm0 were dropped from the model, leaving pm1 as the only signi�cant variable, for

which the coeÆcient was .00164, standard error .00069, t value 2.37. The deviance was

1.39 with approximate F = 5.11 and p-value .024. (Because the F and t statistics are

based on di�erent approximations, the t value is not exactly the square root of F .) Thus

the results di�er somewhat from Table 3.5 in that with this version of the analysis, the

negative coeÆcient for pm0 is not statistically signi�cant. The conclusion from the analysis

based on one-day values is that only pm1 is signi�cant, and then only just so. The fact

that the negative coeÆcient for pm0 is no longer signi�cant supports the interpretation

that the relation is spurious and due to multicollinearity. With the richer GAM model,

the e�ect of pm0 is partially explained by the meteorology variables.

Once again the uncertainties associated with variable selection cast doubt on whether

any of the PM10-based variables are really signi�cant. The �nal �t for a model based

on pmmean1 is presented in Fig. 5.1, where the 11 �tted f
j
(x

j
) functions are plotted

along with their approximate pointwise 95% con�dence interval bounds. In this model,

we �t the PM10 e�ect with a loess term for pmmean1 in order to examine the question of

whether or not a threshold e�ect exists. The �tted response for mnsh clearly shows the

curvilinear relationship modeled by a quadratic term in Table 3.6. The other variables

showing evidence of nonlinearity are tmax1, tmax4 and mnsh1. The last panel in Fig.

5.1 shows the nonparametric �t for pmmean1 with the basic meteorological model. The

con�dence band seems to con�rm the conclusion that a linear �t is adequate. On the other

hand, the con�dence band is also apparently consistent with a hypothesized threshold of

around 60{70 since below this threshold the con�dence bands are consistent with the

underlying relationship being constant.
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6. CONCLUSIONS

The purpose of this paper has been neither to verify nor to disprove the notion that

there is a strong association between deaths and particulate matter, but rather, to show

that there are many possible interpretations of the data and no single conclusion is de�ni-

tive. We have given particular attention to the paper by Schwartz (1993) since this is the

one which has been most widely cited in the literature, though it should be pointed out

that by now there have been a number of re-analyses of data from Birmingham, including

those by Samet et al. (1995), Roth and Li (1996) and Clyde (2000), which have led to a

wide range of conclusions. The main ones from our own study are:

1. The models are highly sensitive to the de�nition of an \exposure measure" for

lagged PM10 values. Schwartz used pmmean1 as an exposure measure and our analysis has

con�rmed that the PM10 e�ect is signi�cant using this variable, but under other measures,

it is not signi�cant. In particular, when a combination of lags 0{4 was taken, the result was

not statistically signi�cant. It may well be that the apparently negative coeÆcient for lag

0 is spurious in some way, but the fact that its inclusion changes an apparently signi�cant

result into one which is not signi�cant shows that its inuence cannot be neglected.

2. On the question of whether the meteorology e�ects should include both temperature

and humidity or only temperature, our �nding is that humidity should be included, and

that in that case, the resulting PM10 coeÆcients are somewhat smaller than if humidity is

not included.

3. Even if we allow for pmmean1 to be taken as the exposure measure of interest,

there is little evidence that this has an e�ect at low levels; a threshold analysis suggests

that the main e�ect is above 80 �g/m3.

4. Further analysis of nonlinear e�ects through generalized additive models reinforces

the conclusion that the principal e�ect of pmmean1 is at the upper end of the range.

The broader implication for particulate matter and health is that in a typical data set,

there are many issues that need to be taken into account before a conclusion of a causal

e�ect can be drawn. Crude analyses that do not take into account possible alternative

interpretations of the data are of limited value in the context of a public debate over

pollution regulations.
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