Modeling financial time series data as
moving maxima processes

Zhengjun Zhang and Richard L. Smith
Department of Statistics
University of North Carolina
Chapel Hill, NC 27599-3260
2001 NBER/NSF time series conference
Raleigh, NC. USA

September 21, 2001

Abstract

Studies have shown time series data from finance, insurance and environment
etc. are fat tailed and clustered when extremal events occur. In order to character-
ize such extremal processes, max-stable processes or min-stable processes have been
proposed since the 1980s and some probabilistic properties have been obtained, but
applications are very limited due to the lack of efficient statistical estimation meth-
ods. Zhang (2001) have shown some probabilistic properties of the processes and
proposed a series of estimation procedures to estimate the underlying max-stable
processes, i.e. multivariate maxima of moving maxima processes. This work illus-
trates how to model financial data as moving maxima processes. Examples will be
illustrated with GE, Citibank, Pfizer stock index data.

1 Introduction

There have been many attempts to characterize the possible limits for multivariate ex-
treme value distributions with unit Fréchet margins. Examples include the point pro-
cess approach of de Haan and Resnick (1977), de Haan (1985) and Resnick(1987), and
Pickands’s (1981) representation theorem. Although there are well-developed approaches
to model univariate extremal processes, problems concerning the environment, finance
and insurance etc. are multivariate in character: for example, floods may occur at dif-
ferent sites along a coastline; the failure of a portfolio management may be caused by
a single extreme price movement or multiple movements. Here multivariate extreme
modeling is essential for risk management.



Davis and Resnick (1989) studied what they called the max-autoregressive moving
average (MARMA ((p, ¢)) process of a stationary process { X, } which satisfy the MARMA
recursion,

Xy = 01 Xu 1 VooV Xy V 2o N O 2 1 N N 07

for all n where ¢;,0; > 0,1 < i < p,1 < j < ¢q and {Z,} is i.i.d. with common
distribution function F'(z) = exp{—oxz'}. The case ¢ = 1 is unit Fréchet. For any
given {¢;},{0;}, the corresponding process is a max-stable process. A naive estimation
procedure for ¢;, ,;’s when ¢ = 1 is given in Davis and Resnick(1989).
Deheuvels (1983) defined what he called the moving minimum (MM) corresponding
process as
T, = min{6; 7, _,, —00 < k < 00}, —00 < n < 00,

where 0 > 0, and {Z;} is i.i.d. exponential 1. If T, is MM, then X, = 1/T, is a
MARMA process with p = 0 and ¢ = co. If a MARMA(p,q) X,, is causal, a process
is called causal if there exist non-negative constants a; such that meox(aiZn,i) < 00 a.s.

and X,, = m;iox(aiZn_i), then T,, = 1/X,, is MM.

Smith and Weissman (1996) extended this definition to a more general framework
which is more realistic and is called multivariate maxima of moving maxima (henceforth
M4) process. The definition is

Yie = max m}?Xazdez,i—k, d=1,---,D, (1)

where {Z;,l > 1,—00 < i < oo} are an array of independent unit Fréchet random
variables. The constants {ajq,! > 1,—00 < k < 00,1 < d < D} are nonnegative
constants satisfying

iialkdzlfordzl,...,D (2)

=1 k=—00

Notice that M4 processes deal with D dimensional random processes whereas M M pro-
cesses deal with univariate processes (D = 1). Although MM processes are only spec-
ified over one index there are possibilities to easily extend to over two indexes. The
main theorem of Smith and Weissman (1996) shows that any max-stable process with-
out deterministic component may be approximated arbitrarily closely by an M4 process.
Following de Haan(1984), (1) defines max-stable processes because for any finite number
r and positive constants {y;4} we have

Pr{Yi; < 9ia,1 <i<1,1<d< D}
:Pr{Zl,i,kgfﬁforlZl,—oo<k<oo,1§i§r,1§d§D}

= PI‘{Zlm < min min M,l >1,—0c0o<m< OO} (3)
’ 1-m<k<r-m 1<d<D %kd
= exp|— 2?21 Zoo max max —dkd |

M==00 1 m<k<r—m 1<d<DYm+kd



This is (2.5) of Smith and Weissman (1996) and we have
Pr'{Yig <nyig, 1 <i <11 <d< D} =Pr{Yig <y, 1 <i <1 <d< D}

which is independent of n, so the finite-dimensional distributions of {Y;} are max-stable
(also called multivariate extreme value).
Recently Hall, Peng and Yao (2001) discussed moving maximum models

Y; = supf{a;_iZ;, —00 <i< oo}

where the distribution of Z; is assumed either F(z]f) = exp(—z?) or the generalized
Pareto distribution F(z]6) = 1 — (14 2)7%. Then for a finite number of parameters, they
choose (0, a(m)) to minimize

Da(O.a) = [~ T Fluin{a, "
max(i, 1) < j < min(i +m, k) }|0])%w(y)dy,

where the integral is over y = (y1,...,y;) € RY and

n—k
G(y) = (n— k)_l ZI(nH_lgyj for 1<j<k) (5)

i=1
and w is a nonnegative weight function. We state their main theorem as follows.
Theorem 1.1 Under conditions

e I has support on the positive half-line, and is in the domain of attraction of a Type
IIT extreme value distribution.

e cach a; is nonnegative and, for some e € (0,7), 0 <> . a; © < oo.

then

sup |PI'(YY1)k S yla"'ayk* S yk|Y177Yn)_Pr(}/i S yla"'ayk S yk)| —0 (6)

—00<Y15eens Y <OO

where Y is defined by

Y =sup{a;_iZ;, —oo <i < oo}

a;—; and 0 are solutions of (4) and Z¢ has distribution function F(.|8). Moreover, if
m > Cy(logn)? for Cy sufficiently large, the rate of convergence in (6) is O,(n~1/2+9)
for all 6 > 0.



Our present work on the estimation of M4 processes is somewhat parallel to Hall et al.
(2001)’s work. In contrast to the bootstrapped processes which Hall et al. (2001) used to
construct confidence intervals and prediction intervals, we directly construct parameter
estimators and prove their asymptotic properties.

In practice we usually have [ =1,---, L and —K; < k < K, for some finite numbers
L, K; and K,. When an extreme event occurs or when a large Zj; occurs, Yiq o a; ;4
for ©+ = k, i.e. if some Zj, is much larger than all neighboring Z values, we will have
Yia = ai—r a2y for i near k. This indicates a moving pattern of the time series, call it
signature pattern. Hence L corresponds to the maximum number of signature patterns.
And K, and K, characterize the range of the sequence dependence. K; + K5 + 1 is the
order of maxima moving processes. We will focus on the finite dimensional M4 process,

Yvid = Imax max aldel,ifka d = 1, T ,D, (7)
1<I<L —K <k<K>
WhereZlL:1 ZkKi_Kl g =1ford=1,---,D.

Under model (7), it is easy to obtain the finite distribution of {Yj4, 1 <i <r, 1 <
d < D} from (3). The goal is to estimate all parameters {a;4} under the constraints that
the parameters are nonnegative and the summation is equal to 1 for each d =1,..., D.

Due to the degeneracy of the multivariate joint distribution function of the M4 pro-
cesses, the method of maximum likelihood is not applicable in this instance. We are
going to develop estimators based on the joint empirical distribution function.

The model can be rewritten as

Y, = max max apZi—k
1<ISL —K1<k<K>
= maX bl max ClkZl,i—k: (8)
I<ISL  —K <k<K»
where b; is the weight of I’s signature pattern and such that >, b, =1 and >, ¢ = 1 for
each [. In section 2 we illustrate procedures to estimate ;s first and then to estimate b;s
after ¢;;s are obtained. In section 3 we illustrate how to estimate a;s directly. In section
4 we give two examples. The first example is to show the effectiveness of the estimating
procedures when applying to an M4 process and a mixed process of M4 and Gaussian
noise. The second example is to demonstrate how we model multivariate financial time
series as M4 processes.

2 Estimation based on two steps

When we plot the time series of an M4 process, we expect to have L signature patterns on

the plot. Zhang (2001) shows that Yt+n+lﬁj&+[{ o = Cl—K+m infinitely many times
2 1

in —oo <t < oo for each m € {0,1,..., K; + Ky}, if Y; follows an M4 process. These

. a]. — .
values ¢, lead to estimates of LRy dm , 1 <1 < L. But these estimates
’ aj,— gy ta;,— Kk 41+ Fa K,

are only defined if M4 model really is an exact model for the process. However, if the




M4 process is viewed as an approximation to a max-stable process, rather than an exact
model, such estimators do not make sense since we would not expect to have any two

Y, . . i
values of ttm are the same. Example 1 in section 4 shows the existence of
Yi+Yeip1++Yer kor Ky

such phenomenon. As an example, we consider an M4 process with 3 signature patterns
here. Figure 1 shows three different significant patterns (points fall onto 3 horizontal
lines) which correspond to L = 3. As we have already seen, the plots give accurate
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Figure 1: A demo of multiple signature patterns.

estimates of the ratios. When L = 1, we can get all the exact values of a;. But for
L > 1 we cannot. Even for L = 1, we have assumed that the model assumptions are
exactly satisfied, not something we would expect to use in practice. Also, the whole
method presupposes that the margins are transformed into unit Fréchet margin and this
wouldn’t be exact in practice, either. We need to develop estimation procedures to obtain
estimates of a; in a more practical way. We will study this in section 3.

We now assume that the model assumptions are exactly satisfied but L is greater
than 1. )

It follows immediately from (3) that P(Y; <y;) =e » and

L 2+ K,
Ciiem Cla—m
P(Vi <y, Ya <o) =expl— Y b Y max(—", =) (9)
=1 m=1-K, Y Y2

where ClLKy+1 = 0, Cl—K;—-1 = 0

These results tell that if we only consider the marginal distribution function it makes
no sense to our estimation problem since it has no parameter at all. Through the whole
work, we now project each original observed process into a bivariate process. And all the
theories and methods are developed under the bivariate process.

Let Ay = (0,21) x (0,2}), -+, Ar—1 = (0,2_1) x (0,2, _,) be different and define

_ 1 —
Xu, =~ ;uj (Y, Yisn) (10)



Since we consider finite order moving process, we can choose pairs (Y}, Y/,;) from the
observed process such that those pairs form an 7.i.d time series sequence. For example,
let Y/ =Y1,Y) = Y5, Yy = Y v k43, Y4 = Y 4 Kpi4, - - -, and so on. Then by the strong
law of large numbers, we have

Ta, 5 P(A;) = P(Y] < 2;,Y] < ). (11)

In fact, it is not necessary to insist on the pairs (Y}, Y}, ;) being independent if we use
all pairs (Y;,Y;11), by strong law for M-dependent sequences we also have

X, =5 P(4;) = P(Y) < 2j,Y2 < %), (12)
Now let
L s c c
exp[— > b Z ”m, l;,m)]:)_(Aj,jzl,---,L—l (13)
I=1 m=1- Tj J

then we can construct parameter estimators by solving a system of linear equations

ZlL 1 bl Z2+Kl K> max(q;—zma qi—{m) = - log(XAl)
i | _ (14)
B max(See ) = log(X,, )
21:1 bl =1
We have
Theorem 2.1
R Ki+K>+1
Vi —b) <5 NO,D(S+ Y (Wi +Wi)D"),
k=1
where R
/b\l by dn/m dlz/,u2 dl,Lfl/,U/Lfl
£ b'g b= b.2 D= d21./u1 d22./,u2 d2,L71./,uL71
/I;L br, dL,l/Ml dL,2/M2 dL,L—l/ML—1

pi = Pr(Ys < 1Yy < 2y), w; = Pr(Y7 < 1Y < min(x;,x;)), the elements of X:
Oij = Hij — Hilly,

wy =Pr(Y) < 1,Yy <, YVipp < 1,You, < 5) — pitty, fii = pi- and the dy.s are elements
of the inverse of the matriz constructed from (14).

Note: the limiting covariance matrix is singular because »," b, = 1.
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3 Direct Estimation

The methods developed in previous sections may be just the ideal. In practice we may
not be able to estimate the ratios accurately as stated in the previous section, especially
when the data are with error or the process is a mix of M4 and noise. In this section,
we will develop methods which can be applied to estimate a;, directly. The estimators
are the solution of the system of nonlinear equations.

p ~ P _
S S, max(fie, Bz — —log(Xa)
Yh T ma (T, ) — —log(¥a,)
L 24+ K, a1 ara- _ _ v
\ Zl:l Zm:l_K2 maX(mLX(K1+:;2+1) ’ x,Lx(KH—Zz-H)) N 10g(XALX(K1+K2+1))

For the simplicity, consider now the case of L = 1 and study the structure of the
bivariate distribution function

2+ K1
A1 -—m G2 m
P(Y1 <y1,Ys < yp) = exp[— Z max(—=, =] (15)
e Y1 Y2
where ag,11 = 0,a_k,—1 = 0. Now define
Ka—1
q(z) =a g, + Z max(za;, aj41) + Tak,, (16)
Jj=—Ki
then P(Y; < 1,Y; < x) = exp[—q(x)/z].
As an example, consider the process
1 1 11
S/i - _Zif 7_Zif 7_Zi;_Zi
max(3Zi-2, g 21, g% 3 %)

In this case, ¢(x) is as in Figure 2. The plot tells at each change point the slope of
the ¢(x) changes to a larger value and is eventually 1. Each change point corresponds to
a ratio of two adjacent parameters. The plot also enable us to choose a finite number of
points such that we can draw piecewise straight line and hence determine the parameter
ratios and solve for their values.

The following proposition gives a sufficient condition that we can determine all pa-
rameter values from the ¢(z) function.

Proposition 3.1 If all (KIJ“;(QH) ratios Z—], are distinct, the model is uniquely identified
J
by q(x).
Zhang (2001) has studied general cases on ¢(x) and some complicated models. The

following results are restrict to the case of L = 1. The proofs and more general cases can
be found in Zhang (2001).



A typical q(x) picture
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Figure 2: A demo of ¢(x) and its slope ¢'(z) and ratio change points.

We define

a A, —
arg, + max(ag, 1, §)+max(af(z 2, —2)

AKy—2

a_ a_
+ max(a, s, ) oot max(ag,, — 55) + = = b(a)

then we have ¢(x) = xb(x). Let Y1,Y5,--- .Y, be observed values and
3( — log(— ZIY<1 Yiii<a))

then g(z) = 2b(z).
Suppose the solutions of

.

ag, + max(ag, 1,ax ) + max(ag, 2aaK2 -)

T+ max(ar, s, B22) 4o+ max(a_,, S0E) 4 S8 G (r)

arx, + max(ag,_ 1,‘; )+max(cw(2 2, L)

-~
-2

I;in ) +-t max(alea a_K1+l) + = bw(xm)

Tm Tm

+ max(ag, 3,

(17)

(18)

(19)

are a,. This is equivalent to C,,a, = b, in matrix notations where C,, is uniquely



determined by a,. The elements of C,,, are either 1, mi or 1+ mi And the solutions of

(157¢ QKo —1
ar, + max(ag,-1,~2)+ max(anx,-s, —2—)
aRy—2

+ max(ag, 3, —2 ) + -+ max(a g, a_;?“) + a;fl = b(zy)

(20)
ag, + max(ag, 1, %) + max(ag, 2, M;in_l)
+ max(aKQ,g,, a%f) R maX(a,Kl, a_;(wllﬂ) + a;:: = b(xm)
are a.
Theorem 3.2 Suppose the model is identifiable from x, ..., x,,, where these values are

different from the ratios of true parameters, then the solutions of (19) converge to the
solutions of (20) almost surely. i.e. 3 = a and C, == C.

Theorem 3.3 Suppose the model is identifiable from x, ..., x,,, where these values are
different from the ratios of true parameters, then

Ki+K>+1
Vn@—a) -5 NO,BD(S+ Y (W +Wi)D'B)
k=1

where B = (C'C)~'C, p; = Pr(Y; < 1,Y, < ), py; = Pr(Y1 < 1,Y5 < min(z;,z;)),

D= diag{#1 T ;%m}
4 Examples

In this section we give two examples. The first example illustrates a simulated M4 process
with two signature patterns where each pattern has order of 2 and we also add Gaussian
noise. In the second one, we study negative stock price returns of three stock products,
i.e. GE, Citibank and Pfizer.

Example 1. We perform two simulation experiments with the following two processes.

Y;' = rnax(.lZLi_l, .42171', .3522,2'_1, 1522’2) (21)
and
Y;' == max(.lZLi,l, -4ZI,ia .3522’2',1, 1522’2) + Nz (22)

where N; ~ N(0,.01) are 7.i.d.

We plot the ratios n:%ﬁ for both models. Plots in Figure 3 look almost exactly the
same. However, when a portion of the plot is magnified, as in Figure 4, we can see the
difference.

We now apply estimating methods developed in previous sections and list all results

in the following tables.
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Figure 3: The left plot is the ratios of +—Xi— at the threshold level 10 under the model

Yi+Yin
(21). The right plot is the ratios of Y-+Y1;?-+1 at the threshold level 10 under the model
12 12
(22).
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Figure 4: The left plot is the ratios around .3 with distance .01 at the threshold level 10
under the model (21). The right plot is the ratios .3 with distance .01 at the threshold
level 10 under the model (22).
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Table 1. Simulation results for model (21)

Parameter a1 a o az, 1 a2,
True value 1 4 .35 .15
Estimated value .0912 .3247 3747 2170
Variance (1.8365) | (26.5205) | (32.4965) | (7.0202)
Table 2. Simulation results for model (22)
Parameter ay,—1 ai,0 ag,—1 a2,0
True value 1 4 .35 .15
Estimated value .0958 3437 3477 2258
Variance (1.8592) | (27.2590) | (33.7253) | (7.0585)

The estimated values are based on a sample of size 10000. The variances are obtained
by evaluating the formula in Theorem 3.3 with the true values approximated by the em-
pirical values. These simulation experiments show that the effectiveness of the estimating
procedures proposed. Notice that the variance values are large. One main reason is that
we use the empirical distribution function as the first step to estimate probability. Then
we transform them into a logarithmic scale which results in a large variance since all
probability are less than 1, especially for those small probability values which correspond
to extreme events.

Example 2. In this example we model stock prices of GE, CITIBANK and Pfizer as an
M4 process. Parameter estimates are based on a multivariate time series of approximately
7000 days. We first plot the three time series and transform the negative returns into
Fréchet scale by first fitting all values above certain threshold(.02 is used in this study).
Further diagnostics are applied in order to apply M4 process modeling.

The underlying idea behind these analysis of Figure 8 is the point-process approach
to univariate extreme value modeling due to Smith (1989). Smith and Shively (1995)
introduced a number of diagnostic devices to examine the fit of the generalized extreme
value distributions. One idea is based on what we shall call Z-statistics

T,
Zy, = / As(u)ds

Tk—1

where T} denotes the time of the k’th exceedance of u. Ay(x) is given by

A(z) = (14 & T Hoy e

(o
the intensity of a nonhomogeneous Poisson process of exceedances of a level z. If the
model is correct, then 7y, Z,, ..., will be independent exponentially distributed random

variables with mean 1. The Z-statistics are an indication of how closely the exceedances
of a fixed level u are represented by a nonhomogeneous Poisson process, but they do not

11
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Figure 5: These figures show that there are extreme observations and the greatest drop
happened in the same day in all three time series, i.e. October 19, 1987, the date of the
Wall Street crash.
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Figure 6: The mean excess plot usually suggests whether a extreme value distribution
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bution fitting since the plot is contained in its corresponding confidence interval. The
other two are more doubtful since the plot goes outside the confidence bands, though
further analysis shows that the extreme value approximation is reasonable in this case
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Neg Daily Returns on Frechet scale
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Figure 7: The negative returns after transformed into unit Fréchet scale.
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test the generalized Pareto distribution assumption for the distribution of excesses over
the threshold. This can be done via W-statistics:

1
ng

Then Wy, W, ... are also independent, exponential random variables with mean 1, if the
model is correct. These techniques have been broadly used in model diagnostics, for
example, Tsay (1999), Smith and Goodman (2000).

We observe throughout that the “observed” values are larger than the “expected”,
and therefore we conclude that the variables are dependent. We use the M4 process to
model that dependence. Table 3 contains partial information in these plots and other
diagnostic results.

Y. —u

W,
g F&nfu— pr )

log[l + &1, o
k

Series 1 Series 2 Lag FExpected Observed 2z statistics
Pfizer Pfizer 1 38.3 64 2
GE GE 1 16.1 31 2
CITIBANK CITIBANK 1 49.2 80 3
Pfizer GE -1 24.8 41 2
Pfizer GE 0 24.8 127 14
Pfizer CITIBANK -1 434 74 3
Pfizer CITIBANK 0 43.4 145 10
Pfizer CITIBANK 1 43.4 63 2
GE CITIBANK -1 28.2 49 2
GE CITIBANK 0 28.1 146 15
GE CITIBANK 1 28.2 48 2

Table 3. Mutual exceedance statistics. Tabulated are the names of the two series, the
lag by which series 1 leads series 2, and the expected and observed number of mutual
exceedances.

The last column shows the integer value of a z statistic calculated under a Poisson
assumption: only entries for which z > 2 are shown.

All the figures and the table suggest an M4 process fitting may be a good choice for
financial time series data with multivariate temporal dependence.

Figure 7 and 9 suggest that a model of 3 signature patterns. Two of these have order
of 2, corresponding to drops happened in two consecutive days, and the other one has
order of 1, which corresponds to a single drop.

We now use the following model to fit the data.

Yie = max(ay, 1 Zy,-1, a10Z1,,
a2,71Z2,i71; a2,022,i, (23)
Cl3,UZ3,i)

We summarize all the estimated values in the following table.
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Diagnostic plots based on z and w statistics

(a) Z-Plot for Pfizer (b) W-Plot for Pfizer
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(e) Z-Plot for Citibank (f) W-Plot for Citibank
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Figure 8: W-plots show a generalized extreme value distribution fitting is appropriate.
Some caution should be given since a few points, partly the result of Oct87 crash, are
away from the straight line.
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Exceedances on Frechet scale
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Figure 9: (i) All plots are based on Fréchet transformed exceedances of a high threshold
based on negative log returns ( so they represent price drops, not price rises); (ii) the
purpose of the plots is to look for dependence among neighboring values; (iii) the numbers
in parentheses show expected and observed numbers of simultaneous exceedances by the
two variables, where “expected” is calculated on an independence assumption.
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Table 4. Estimations for Moving Maxima Process Modeling
Parameter | a; 1 | aio | a21 | a2 as o
GE .0034 | .0026 | .0601 | .0267 | .9072
CITIBANK | .0017 | .0017 | .0692 | .0641 | .8632
Pfizer .0042 | .0016 | .0805 | .0377 | .8760

This table is constructed based on the probability properties of M4 processes. Es-
timating variance may not be appropriate since there are few observed values in one
pattern in every time series studied here. Threshold method or methods based on mul-
tivariate domain of attraction may be other choices to estimate all parameters. Zhang
(2001) have developed related theory and methodology.

5 Discussion

The methods described in this paper represent a completely new approach to the model-
ing of financial time series data. The main goal here is to propose an approach which can
efficiently model multivariate time series which are both spatial and temporal dependent.
The results obtained can be used in many ways. For example, results from example 2
can be used to compute VaR or to optimize the portfolio under VaR constraints. Studies
have shown financial data are fat tailed. They are not normally distributed. Compare
with traditional assumption of normality of underlying distribution. These results pro-
vide more information to risk managers who may be most interested in the situation
when an extreme price movement occurs what kind of risk the company is exposed to.
The methods described can be used to other fields, such as modeling insurance data,
environment data etc. Applications to VaR are being developed in future work which is
ongoing.
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