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1. TYPES OF NONREGULAR PROBLEM

Maximum likelihood estimates, as every student of Statistics learns, have a number of propertics
which make them desirable in large samples. They are consistent, asymptotically efficient and
asymptotically normally distributed, with covariance matrix approximated by the inverse of either
the observed or the Fisher information matrix. These results, along with the asymptotic normality of
the score statistic and the asymptotic chi-square distribution of the log likelihood ratio statistic, may
be considered the classical results of finite-parameter regular estimation theory.

Yet there are many "nonregular” problems for which these results fail to hold. These problems are not
mere mathematical pathologies, constructed so ds to impress upon the student the need for utmost
rigour at all times, but include many examples derived from serious and important applications.
Examples are the estimation of some distributions widely used in reliability and survival data
analysis, mixtures of distributions, testing for a shift in the underlying parameters of a model (change-
point problems), and testing for certain structures in regression or contingency table analysis. Indeed,
nonregular problems, in the broadest sense, are so pervasive that they may be considered one of the
major concerns of current work in theoretical statistics. As Weiss and Wolfowitz (1974, p.9) remarked,
“the term 'regular’ for the conditions under which the maximum likelihood estimator is efficient is
more of a mathematical trick than anything which truly corresponds to the ordinary connotation of
the word regular."

A review of this nature must necessarily be selective, and I confine myself entirely to finite-parameter
problems, though even this excludes such classics as the Neyman-Scott problem (Cox and Hinkley
1974, p. 329) and Lindsay’s beautiful work on mixture models with an unspecified number of components.
Most of the examples concern independent, identically distributed observations, though there are some
extensions to regression and simple time series models. The gencral theory of inference in stochastic
processes, however, is much too broad to be covered here. I have also omitted any coverage of
population size estimation (sce for example Pickands and Raghavachari 1987, Raftery 1988) largely
because I do not feel qualified to comment.

Having thus eliminated most of the problems my audience wanted to hear about, I consider three broad
classes of nonregular problems. The first (Sections 2 and 3) concerns distributions such as the threc-
parameter Weibull, in which the range of the data is a function of unknown parameters. The second
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(Section 4) concerns problems in which the parameters set is bounded, especially testing whether the
parameters lie on the boundary of the parameter space. The third (Section 5) is all about testing
problems in which some parameters are not identifiable under the null hypothesis. The best known
example so this type are change-point and finite mixture problems, but there are many others and new
ones are being discovered all the time. Finally, in Section 6 some examples of multivariate reliability
and extreme-value distributions are given, the most complicated of which feature all three types of
nonregularity in the same problem.

2. UNKNOWN ENDPOINT PROBLEMS

This section is concerned with problems in which one endpoint of the range is an unknown parameter.
Such problems fail to satisfy Cramer's (1946) regularity conditions, though more general results such as
Daniels (1961) (see also Williamson 1984) on asymptotic efficiency, and LeCam (1970) on asymptotic
normality, show that the real issue has to do with discontinuities in the likelihood of its first two
derivatives, rather than the endpoint problem as such. For instance, the three-parameter lognormal
distribution is regular in the sense considered here, though there are still some practical difficulties
with maximum likelihood estimation (Hill 1963, Griffiths 1980).

Following Smith (1985), consider the model with density
f(x;0,0)=(x —9)“’1g (x-6;0), x>0 2.1)

in which 00, 6 is an unknown location parameter, g a known function satisfying g (y ;0) = c(¢) as
y 10 for some ¢ (¢) > 0, and ¢ a vector of unknown parameters. An example is the three-parameter
Weibull model

f(x;6, 00 = ac %x-6)*" expl-{(x - 6)/c)%], x >6, 2.2)
for which ¢ = (o,0); 6>0, 0>0.

The following results apply to (2.2), and more generally to a wide class of distributions satisfying (2.1).

Consider first the case in which ¢ is known. It is readily checked that the Fisher information for 6 is
finite when a>2, and then maximum likelihood estimation is regular. For a=2, the maximum
likelihood estimator is asymptotically both normal (Woodroofe 1972) and efficient (Weiss and

1 1
Wolfowitz 1973), but the rate of convergence is O{ (7 logn ) 2} instead of O(n ?). For 1<a<2 it has an
extremely complicated limiting distribution described by Woodroofe (1974) but is not asymptotically
efficient. For 0<o<1 the likelihood is maximised by the sample minimum, which has the well-known
Weibull limiting distribution (exact if the parent distribution is Weibull) but this has no optimality
properties except when a=1, when the sample minimum has an asymptotic sufficiency property
(Weiss 1979). That the last result holds only when a=1 is clear from the results of Janssen and Reiss
(1988) on the asymptotic loss of information, incurred when restricting estimation to a finite number of
lower order statistics. Asymptotic efficiency results are much harder to establish. Akahira (1975)

1

established that the optimal rate of convergence is O(n ) whenever 0O<o<2, and Ibragimov and
Has'minskii (1981) established very general results on the construction of asymptotically efficient
estimators, but they are complicated and depend on the specified loss function. The situation is rather
simpler if we restrict to a=1, a case which covers the uniform and exponential distributions as well as
most cases of truncated distributions. Some examples of optimal estimation in this case are the papers
of Akahira (1982, 1988). Another line of attack has been generalisations of the Cramer -Rao
inequality for the variance of unbiased estimators (Kiefer 1952, Polfeldt 1970, Vincze 1979, Akahira
and Takeuchi 1987).
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Smith (1985) generalised these results to problems of the form (2.1) in which ¢ as well as 6 is unknown.
In this case the key result is an orthogonality result (in a sense different from, but related to, the
orthogonality property studied by Cox and Reid 1987) which essentially asserts that estimation of
and ¢, when the true o is less than 2, are asymptotically independent in the sense that neither one is
affected by ignorance of the other. Thus the asymptotic distribution of the joint maximum likelihood

estimates, when 1<a<2, was established as a product of Woodroofe's limiting distribution for 8 and

the usual asymptotic normal distribution (constructed under the assumption 6 known) for ¢ . Broader
results along these lines, for instance using other than maximum likelihood estimates for 6, are
possible.

An alternative approach, given in Section 5 of Smith (1985), is first to order the data X, .4<..< X . ,;,
and then estimate ¢ by maximising

2 logf (Xn N ;Xn.l, ¢) 23)
=2

This estimator of ¢ is consistent for all a>0 and asymptotically efficient when 0<a<2. Proof of this
proceeds via an asymptotic comparison of (2.3) with the ordinary log likelihood for ¢ when 6 is
known.

As a point of practical strategy, bearing in mind that o is usually unknown, my advice would usually be
to start by treating the problem as a regular estimation problem, searching numerically for a local
maximum of the log likelihood. If this fails, or leads to an estimate with G < 2, then it would be
appropriate to switch to the more specialised techniques just described. Note, however, that there is
another reason why maximum likelihood could fail, described in Section 3.5.

3. ALTERNATIVES TO MAXIMUM LIKELIHOOD

This section continues the discussion of Section 2, but is now focussed on alternative approaches to
estimation.

3.1 Maximum product of spacings

Cheng and Amin (1983) d4efined a general method of estimation as follows. Let Xy,.., X, beiid.

with distribution function F (x,0), where © is an unknown parameter vector. For given ©, define
Y,=0, Yy4+1=1, Y;=F (X, . {,©) and thence

A 1/(n+1)
G = {n (Yi‘Yi-l)} :
t=1

Thus G is a normalised product of spacings of uniform order statistics, under ©. The idea is to choose ®
to maximise G.

The method avoids some of the difficulties of maximum likelihood, since G is always bounded so
there cannot be singularities. Cheng and Amin showed, for the kinds of problems discussed in Section 2,
that the MPS estimate has all the usual asymptotic properties of maximum likelihood when a>2 but
also does well when 0<2: if © = (8,¢) then ¢ is still efficiently estimated while the estimator of 0

has properties which appear comparable with those of Section 2, though this last point has still not
been completely settled. An advantage of the method is that it avoids the need to discriminate
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explicitly between the cases a>2, a<2 though this would still be necessary to form confidence
intervals for 8. Ranneby (1984) independently discovered the MPS method, though without pointing
out its usefulness for nonregular problems. Titterington (1985) gave it an interpretation as a grouped
likelihood. This was developed further by Cheng and Iles (1987), who argued that both maximum
likelihood and MPS estimators could be considered as approximations to a grouped likelihood
estimator, but that only MPS is valid when a<2. For more on grouped likelihood, see Section 3.4.

3.2 Bayesian estimation

There has been litte general discussion of Bayesian methods in the non- regular context. Dawid (1970)
proved asymptotic normality of Bayes estimates when o>2, but truly nonregular results do not seem to
be available. Note, however, that Bayesian ideas underline the construction of many asymptotically
efficient estimators, as in the work of Akahira and Ibragimov-Has'minskii cited in Section 2.

From the practical side Smith and Naylor (1987) presented a case study of the three-parameter
Weibull distribution and concluded that Bayesian methods coped better than classical likelihood
techniques with the highly unusual form of the log likelihood. In that case, however, the evidence
was for a>>2 and a different problem from the nonregularity arising when 0<2 ( Section 3.5). The
utility of Bayesian methods in the genuinely nonregular case has still to be explored.

3.3 Conditional and fiducial methods

For a pure location, or location-scale, model, the exact conditional method of Fisher (1934) is

applicable. This method, which is operationally equivalent to Bayesian estimation with a suitable

invariant prior, is not affected by the nonregularity of the problem. The extension to nuisance
1

parameters, however, is not so easy. One could substitute a 7 2 - consistent estimator for ¢ and then the
asymptotic properties of estimation of 6 would be unaffected, by the orthogonality results mentioned in
Section 2, but Fisher's conditional distribution is no longer exact. Smith (1987) succeeded in applying
the Cox-Reid (1987) technique to the three-parameter Weibull distribution, but with uncertain results.
Ariyawansa and Templeton (1986), considering (2.2) and related models, proposed using Fisher's

method to condition on® and G, where 6 and G are equivarient estimators of 0 and 6. Thus they
obtained the joint conditional density of (X ; - 8 )/G (i=1,...n - 2) and maximised that to estimate a.

However, the motivation for this is undlear since ® and& are not ancillary for o.. Another objection to
their proposal is that, having estimated o by & say, they substituted & in Fisher's conditional

density of @ ,G ) in order to obtain interval estimates for 8 and 6. This ignores the estimation error in
a. Overall, the application of conditional methods to nonregular problems is still a largely
unexplored area.

3.4 Grouped Likelihood

Barnard (1967) and Giesbrecht and Kempthorne (1976) argued for a grouped likelihood approach,
avoiding singularities. The motivation for this, very briefly, is that in the real world all data are
rounded and so a grouped likelihood is really the correct likelihood function to use. Cheng and Iles
(1987) took this as the starting point of their comparison of maximum likelihood and MPS methods.

A practical difficulty with grouped likelihood methods, when the grouping interval is not
automatically specified by the data, is that the results can be sensitive to the choice of grouping
interval. Nevertheless the idea can be recommended as a general technique for getting reasonable
estimates in non-regular problems. Some recent examples include:

(a) Change-point problems. Matthews and Farewell (1985) used a grouped likelihood approach to
estimate the change point in a hazard function.
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(b) Transformations. Atkinson (1985) made a detailed study of Box-Cox transformations, but
encountered difficulties with transformations of the icon

y = {(y +|,L)"-1}/K

with % and p both unknown; the difficulty arises from the constraint y +p>0. Atkinson, Pericchi and
Smith (1989) gave a theoretical explanation for the difficulties of maximum likelihood estimation
and proposed a grouped likelihood alternative.

(c) Time Series. A series of papers culminating with Lawrance and Lewis (1985) has proposed time
series models with exponential and other non-normal marginal distributions. These models feature
discontinuities in their conditional densities, and Raftery (1985) reviewed the implications of that
from the point of view of non-regular estimation. Smith (1986) proposed a grouped likelihood
approach in this case, but even the grouped likelihood is highly multimodal. In this case the
nonregularity points to a difficulty with this class of models - do the discontinuities in the conditional
densities correspond to physical features that one might reasonably expect to find in the data? If not,
then the appropriateness of the model is very much in doubt.

3.5 The embedded model problem

The example studied by Smith and Naylor (1987) really illustrates a different kind of nonregularity in
(2.2), close in spirit to the problems to be encountered in Section 4. If we write

o= Va, 0=u-yo (3.1)

then as o = <o the density (2.2) tends to

l exp {ﬂ = exp[ﬂl)}, ~oco L X < oo (3.2)
v L 4 Y

which is the Gumbel or Type I extreme value distribution for minima. Thus, if the data would be well
modelled by (3.2), one would expect a degeneracy in the likelihood of (2.2) as & = <o, or equivalently
as © =@ =—co . A similar problem has long been known in the case of the three parameter lognormal
distribution.

Recently Cheng and Iles (1989) have formalised this property by postulating the existence of an
"embedded model" which arises as a limiting case of the original model. In the Weibull case (3.2) is
the embedded model. In the lognormal case the embedded model turns out to be a normal distribution.
Cheng and lles proposed procedures for discriminating between the original and embedded models.

In the Weibull case the reparametrisation which combines (3.1) with y= -1/« avoids the embedded
model problem, since the resulting Generalised Extreme Value model is well-bechaved near y=0. In
this case Hosking (1984) reviewed tests for 7y =0 against alternatives 7y # 0, but the nonregularity

when y<-§ of course remains.

3.6 Regression

The main model considered so far, in which observations are independent with common distributed
satisfying (2.1) suggests many generalisations such as autoregressive models with (2.1) defining the
innovations distribution, or regression models. The latter have been studied in Smith (1989). Suppose
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4
Y = qu ﬂ] + w;, 1£isn (3‘3)
i=0

where [xi]-) are known covariates, {Bj} unknown regression coefficients and {w; } independent random
errors with density satisfying (2.1) with 8 = 0. We fix x j, = 1 so that B is the constant in the
regression; then there is no loss of generality in assuming

lej = O, J = 1’ 2’ seey p' (3'4)

n accordance with the preceding results when a>2 the problem is regular and I advocate maximum
likelihood estimation. For O <2, the problem is nonregular and the construction of asymptotically
efficient estimators seems to be an even harder problem than in the situation of Section 2. To avoid
these difficulties, Smith (1989) proposed the following solution generalising the estimators based on
the sample minimum at the end of Section 2. Choose By, .., B, to solve

min Z O - Ex;j Bj) Sabiy— zx,-j ﬁj > (), each i. (3.5)
i J i
One motivation for (3.5) is that it is the maximum likelihood estimators of B, ..., Bp when f is the
exponential density; however, it is proposed for general f in the class (2.1). An argument based on the

duality theorem of linear programming shows that, if we exclude a particular pathological case, the

solution of (3.5) is such thaty; = 2 Xij Bj on a set of indexes i€J, of cardinality p +1, such that the

J
convex hull of the vectors

{(xIII] =11 B )1 iE:]}

includes the zero vector. This assumes (3.4). For example if p =1 the solution corresponds to a straight
line joining exactly 2 points, whose x;; values lie on opposite sides of 0, such that the straight line

passes under all the other points. The pathological case just referred to arise when there is a point on
the axis x;; = 0, such that the pair (x;1,y; ) lie below the convex hull formed by the other points. Then

there are infinitely many straight lines through this point solving (3.5).

Smith (1989) uses his representation to find the exact and asymptotic distributions of the estimators,
and also to study an estimator of ¢, generalising (2.3), which is based on the residuals excluding points
in J. Applications include extreme value problems with trends, a particular theme in hydrological
and air pollution data analysis.

3.7 Summary

The MPS, Bayesian and conditional methods all have interesting features, but none appears at the
present time to be a completely satisfactory alternative to likelihood procedures. This may change,
however, as their properties become more fully developed. Other possibilities which have not been
mentioned include the probability weighted moments methods of Hosking, Wallis and Wood (1985)
and the idea of robust methods in nonregular problems, on which a start has been made by Boente and
Fraiman (1988). The grouped likelihood idea is an all-purpose alternative. The embedded model
problem has been mentioned mainly because it is a different kind of difficulty which arises with,
amongst others, the three-parameter Weibull and lognormal distributions. Finally, Section 3.6 is a
start on developing more general procedures based on nonregular families. There is clearly much scope
for further developments of this nature.
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4. PARAMETERS ON THE BOUNDARY OF THE PARAMETER SPACE

A quite different form of nonregularity arises when the true parameter lies on the boundary of the
parameter space. Such problems have been considered by Chernoff (1954), Moran (1971), Chant (1974),
Shapiro (1985) and Self and Liang (1987). We follow Self and Liang, whose paper reviewed all the
earlier contributions.

It is assumed that the parameter space is a set € R, that the true parameter value is 8, and that
in the neighbourhood of 8 the set Q may be approximated by a cone, that is a set C such that if x€C
then g +a(x -6p) €C foranya>0. Self and Liang also assumed the classical Cramér conditions on

the family of distributions - existence and positive definiteness of the Fisher information matrix I (8),
uniform boundedness of the third-order derivatives of the log likelihood by a function of finite
expectation. Under these conditions they showed

(i) as sample size n =0, there exists a sequence of points é,, €Q which locally maximise the
1 -
likelihood function, such thatn (8, -6,) is 0(1) in probability,

1 a
(ii) the limiting distribution of n2(6,-0,) is the same as the distribution of the maximum
likelihood estimators © based on a single realisation of a multivariate normal Z, with mean 6 and
covariance 1'1(90), where the permitted range of Z isC -6 (i.e. C translated by 6).

Although the representation in (ii) makes clear the structure of the solution, there is still much work
to be done to obtain explicit results. The simplest case is when C-0y is of the form (0, e) X {(-e0,20)}P 1,
so that only the first component of 8¢ lies on the boundary. Then the asymptotic distribution is a
mixture of two multivariate normal components, one corresponding to Z1>0 and the other to 21<0. Here
Z is the first component of Z. The case when two components of 6 lie on the boundary was also

considered by Moran, Chant, and Self and Liang, but in this case Self and Liang represented it as a
mixture of four components which are not multivariate normal. Cases with more than two components
on the boundary lead to even more complicated mixtures.

A similar representation also applies to the asymptotic distribution of a likelihood ratio statistic.
Consider the problem of testing 6€Q( against 6€Q, where Qg is a subset of Q and Qg is its

complement in Q. Let Cgand C7 denotes cones approximating Qq and Qjrespectively. Let; denote
the likelihood ratio statistic for testing g against Q. Then

(iii) the limiting distribution of -2logk;, when 6 is the true parameter value, is the same as the
distribution of the likelihood ratio test of 8€C() against 6€C based on a single realisation of a

multivariate normal Z with mean 6 and covariance I'l(eo).

In regular cases (no parameters on the boundary) it can easily be seen that this representation leads to
the well-known asymptotic chi-squared distribution for the likelihood ratio statistic. In nonregular
cases it leads to a variety of results depending on the numbers of test parameters and nuisance
parameters on the boundary. Some of these lead to mixtures of chi-squared distributions, some to much
less tractable solutions.

As previously mentioned, these results assume the Cramér conditions on the family of distribution, in

particular, existence of the Fisher information matrix. In Section 6 we shall see some examples where
this condition is not satisfied.
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5. HYPOTHESIS TESTS INVOLVING PARAMETERS NOT IDENTIFIABLE

Suppose we have a model indexed by (vector) parameters (£,0). We want to test
Hg: § = &y against H; : E#§. The difficulty arises when some or all components of 8 are not

identifiable when H) is true. Examples arise in many contexts, such as mixture and change-point

problems, model identification in time series analysis and econometrics, and categorical data analysis.
For such problems the standard results, such as the asymptotic chi-squared distribution of the log
likelihood ratio statistic, are genreally false, and the correct results depend very much on the precise
problem being investigated.

Davies (1977, 1987) has presented a general approach to such problems. It is my opinion that Davies'
approach deserves to be better known and understood, but that it nevertheless falls a long way short of
being a complete solution to such problems. In numerous specific cases, better results are available, but
overall this is an area still awaiting a general theory. An earlier review, with somewhat similar
aims and conclusions to this, is that of Berman (1986).

5.1 Davies' Approach

Suppose & is p-dimensional and that, when Hy is true, 6 liesina set ® € R9. Suppose 5,,(0) is a test
statistic for Hg valid for given 6€® and sample size n. For example, 5$,(8) could be twice the log
likelihood ration. Suppose, as n =, we have

S5, S (5.1)
in the sense of weak convergence on @ . Then it is possible to base a test of Hy on max{S,, (0) : 0€8}. The

limiting distribution is then calculated from the limiting process S .

Davies' results were confined to the case g = 1 and instances for which 5(8) is a continuous, one-
parameter stochastic process with differentiable sample paths. For such processes, the celebrated
Rice's formula stemming originally from Rice (1945) gives a good approximation to the tail
distribution of the maximum of S. This formula states that, under suitable regularity conditions, the
expected number of upcrossings of a curve ¢ (8) by {S (6), 0(a, b )} is given by

ME) = [ foC@EE @)+ |S© = cOlde, 62

where f, (0) 1 the density of §(0). Combined with the asymptotic Poisson character of the process
of upcrossings, we have for a high curve ¢ (8),

P{a<meax<b(s ®) - c(8) > O}z P{S(a) >c(a)} + M(c). (5.3)

Sometimes we want to work with |S |instead of S and then a similar expression for the lower tail
must be added to (5.3).

Davies (1977) considered the case p = 1, when S may generally be taken to be a continuous-parameter

Gaussian process with zero mean and constant variance (in the likelihood ratio case, via a signed
square root transformation). Let p(81, 63) denote the covariance functionof S and let

p11(6) = {82p /8921]91=92=9, assumed to exist.

Then by Davies (1977), equation (3.6), adapting Section 13.2 of Cramér and Leadbetter (1967), we have
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2 1 1
M(c) = o Ib exp{- g (6)} {—p11(0)}2 w[i)l:'de (54)
2t : {-p11(0))?

where Y(x) = exp(-x2/2) ~x [Tex (-2 2/2)dst.. Davies (1987) has suggested some quick sample-
| OXP g8 q

based approximations to (5.4).

Davies (1987) extended this to p>1. In this case S may be taken to be a chi-squared process, which is a
sum of squares of independent Gaussian processes. Here he gave a formula evaluating (5.2) in the case
of components with different covariance functions, thus generalising the identically-distributed
summands case which had been developed in great detail by Sharpe (1978), Lindgren (1980) and
Aronowich and Adler (1985, 1986). Detailed discussion of Rice's formula and its generalisations is due
to Belyaev (1968) and Marcus (1977). For broader reviews of extreme values in continuous-parameter
processes see Leadbetter, Lindgren and Rootzén (1983) and Leadbetter and Rootzén (1988). For a
different but non-rigorous approach, see Aldous (1989).

In cases where these formulae apply, they give simple and reasonably accurate approximations to the
tail probabilities of the test statistic.

5.2 Deficiencies in Davies' approach

(a) If g>1 then the limiting process is a random field, whose extremes are much less well understood
than those of a one-parameter process. Early papers in this area include Belyaev (1967) and Qualls
and Watanabe (1973). More recent references include Sigmund (1988), whose technique seems powerful
but restricted in the class of fields to which it applies, and Adler and Samorodnitsky (1987), whose
Theorem 2.1 provides a general bound for crossing probabilities of a Gaussian random field. With this
result we can get an approximation in the case p=1, g>1. Whenp and q are both >1 we need a theory
of chi-squared random fields, for which I am not aware of any results at the present time.

(b) For certain problems, especially those connected with change-points, the limiting process S has
non-differentiable sample paths. For extreme values in such cases see Chapter 12 of Leadbetter,
Lindgren and Rootzén (1983); however, the detailed results are confined to stationery Gaussian
processes. Alternatively, Leadbetter and Rootzén (1988) review diffusion processes. The best known
examples of this type all concern change-points, for which alternative methods have been developed
(Section 5.3). Some other examples where the Davies approach fails were given by Berman (1986).

(c) The integral in (5.2) or (5.4) may not be finite without an artificial restriction on the interval (a,b ) .
In this case an alternative scaling may be needed to obtain a limiting result.

A still-unresolved example of this difficulty was given by Hartigan (1985) and concerns the simplest
kind of mixture problem, for which

feE,8) = Cr)y %{(1 -E)e” 12 éc-(x-e)2 /2} o

and the null hypothesis is £=0. For fixed 60, Taylor expansion about £&=0 shows that the likelihood
ratio test may be based on

5, (6) = £ Z;OY{E 220}
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1
where Z;(6) =exp(X; 0 - 562) -1, X ; being the i 'th datum. Asn =, 50 S;; converges to a Gaussian

process with covariance function
1 1
p(61, 82) = {exp(61, 82)-1){exp(812)-1) " % {exp(852)-1) " Z. (5.6)

For this it can be checked that (5.4) is valid provided (4,b ) is a finite interval bounded away from
zero, butas 60 or *eo the integral blows up. This shows that the likelihood ratio test statistic tends
to e under the null hypothesis. Hartigan conjectured that the rate of growth is 0(log log n ) but neither
this not any limiting distribution have been proved.

There is a large literature on mixture problems, including the review paper of Redner and Walker
(1984) and the books of Titterington, Smith and Makov (1985) and MacLachlan and Basford (1988).
Nevertheless, this example shows that there are some quite fundamental problems still unresolved.

(d) Of course, one way to resolve all these difficulties is to use simulation or a bootstrap-type
technique, but this raises another question : why use a likelihod-ratio procedure in the first place?
The regular asymptotic optimality results do not go through and, in such cases where Bayesian
approaches have been developed, they appear to have been successful, though direct comparisons are
lacking in most cases.

5.3 Alternative methods for particular problems

In the absence of a fully satisfactory general theory, most of the individual problems in this field
have developed a substantial literature of their own. In this section I review some of these
development.

(a) Change-point problems. These problems have been intensively studied and have spawned a vast
literature which can only very briefly be covered here. The simplest problem concerns an independent
sequence X1, ..., X, , where X; ~N (y;, 1), and the hypothesis to be tested are

Hy © [y = .o = [
) N For some < g i = P et e et =

Then the square root of the log likelihood ratio statistic (James et al. 1987) is

max IiImS,,/n—S,,l |/{m(1—m/n)}lfj]

1<m<n G2

James et al. described approximations to the null distribution of (5.7) based on methods of sequential
analysis. Worsley (1986) has extended the method to a general exponential family and proposed a
direct computational method for the size of the test. Siegmund (1988) reviewed these and many
related developments which go back to Chernoff and Zacks (1964) and Hinkley (1970).

In these cases the direct approach just outlined seems superior to the Davies approach based on a
limiting stochastic process. There are related problems, however, relating to change-points in
continuous-parameter processes such as Poisson process (Kendall and Kendall 1980, Akman and Raftery
1986) and hazard functions (Matthews, Farewell and Pyke 1985). For these problems the Davies
approach seems to be needed, and reduces to calculating probabilities of the form

362



max Wo(t)
P Sbie e 638)
{“’S’S" (ta-nyp |

where 0 < t) <#7 <1 and Wy is a Brownian bridge on (0,1). For this process equation (5.4) is

inapplicable but direct calculations are due to Mandl (1962), Dirkse (1975), Kielson and Ross (1975) and
De Long (1981); see also equation (26) of James et al. (1987). A complication here is the restriction to fy

>0, t7 < 1 meaning that the change-point has to be bounded away from the endpoints - an instance of

problem (c) mentioned in the previous subsection. However, it appears that it is only with the direct
approach of Sigmund and Worsley that this difficulty is avoidable.

Alternatives to likelihood ratio and score-test procedures have also been proposed. For example Cobb
(1978) and Hinkley and Schechtman (1987) proposed conditional approaches, while Smith (1975) and
Raftery and Akman (1986) took a Bayesian line. Comparisons by James et al (1987) suggest that the
Bayesian approach has superior power when the change-point is near the middle of the time interval,
likelihood ratio procedures doing better only when the change-point is near the ends.

This brief review has concentated on testing for the existence of a change-point, which is only part of
the problem of inference. There are many other papers on estimating change-points. Overall, it
appears that the approach of Siegmund and Worsley is the most powerful for handling simple change-
point problems but there are many more complicated problems for which the Davies approach seems to
be required. In these cases the key formulae are (5.8) and the various approximate methods for its
evaluation.

(b) Certain structural problems in categorical data analysis are of the type being considered here. For
example Haberman (1981) considered a two-way table with cell probabilities of form

pij = explo+ B, + Y+ WKV )- (59

Under Hp :y =0 the parameters yi;, v; are not identifiable so we have a problem of the type being

studied. Haberman showed that the likelihood ratio statistic is cquivalent to a test based on the
canonical correlation, and hence that its limiting distribution is that of the largest root of Wishart
matrix. There is no obvious connection between this and the Davies approach.

More examples of models and tests of this form are contained in the paper and discussion of Anderson
(1984).

(c) Time series and econometrics are full of identifiability problems; see for example Sargan (1983) for
some of the nonregular asymptotics that can ensue. As an example of the Davies approach in this
context, consider the problem of testing whether the autoregressive and moving-average components of
an ARMA model have a common root. I consider here the simplest case, that of an ARMA (1,1) model
with known mean

X, -aXy1 =€p b€y .1 (5.10)

with |a |<1, |b [<1and (g, ) a sequence of independent N (0,1) variables. Under Hp :a =b, (5.10)
reduces to X;, = €, and we have a white noise sequence.

Consider first the case where b is known. By re-writing (5.10) in the form
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g=X. + ¥ @ - Hx,,

r=1

the "Conditional Least Squares" (Box and Jenkins 1976) estimator of 2 based on (X, ,1<n < N} is
obtained by minimising

N n-1
YK Y B X (5.11)
n=1 r=1

Here (5.11) is approximately twice the log likelihood. By minimising with respect to @ and
comparing with the case 2 =b we obtain the signed square root of the likelihood ratio statistic in the

1
=1 r=1

r-1 RN iy :
LX) hPAx

and the law of large numbers applied to the denominator shows that this in turn is asymptotically
equivalent to

- N n-1
Sa(b) = (I'sz)z ¥ 5% xpae el
r=1

n=1

An easy application of the Martingale CLT shows that S, (b ) is asymptotically N (0,1) for fixed b,
and that the limiting correlation of S, (b7 ), §;; (b ) is given by

pr, b2) = (1-b)} (1-b )} (1-byby)".
It is then easily checked that p satisfies the condtions required for (5.4) with
p11(0)=-b2)2,
Consequently Davies' approach is applicable provided we restrict b to a closed subinterval of (-1, 1).

To sum up, Davies' approach certainly has the potential to be applied to a far wider range of problems
than it has in the literature so far. However, a number of alternative solutions exist for particular
problems and this demonstrates that it is not a universally applicable method.

6. MULTIVARIATE EXTREME VALUE AND RELIABILITY DISTRIBUTIONS

In this section I briefly review some recent work which encompasses all three types of nonregularity
considered in this paper.

Multivariate extreme value distributions (Resnick 1987, Smith, Tawn and Yuen 1989) generalise the
extreme-values stability property to higher dimensions: if X q, .., X , areindependent p - vectors

from a multivariate extreme value distribution and M ,, denotes the vector of componentwise maxima,

then a suitable location-scale transformation, applied separately to each component, reduces the
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distribution of M, to that of X 1. Such distributions are useful, for example, in studying the joint

distribution of floods at several sites, or of lifetimes of interrelated components in a reliability context.

The bivariate case has been studied in detail by Tawn (1988). Following a representation of Pickands
(1981), it is possible to transform the margins to unit exponentiality and maxima into minima, when we
get a representation

PX >x,Y >y} =expl-c+y)A @ /(x+y)}

for some convex function A on [0,1] satisfying A (0) = A (1) = 1. Tawn considered several parametric
models for A, the most successful being Gumbel's logistic model

ey el S e 1)

and an asymmetric extension

1
Aw) ={07d-w)Y +¢w'} + O@-¢Ow +1-0. 06,61, r=21) 62
Some non-regular problems asociated with these are:

(a) In (6.1), the Fisher information for r blows up as r =1; hence the problem of testing independence

(r =1) is not only one-sided (cf. Section 4 above) but also not solvable by standard central-limit theory.
In this case Tawn applied the theory of stable distributions to show that the results of Section 4
essentially still hold, but with a non-standard rate of convergence.

(b) If we apply (6.1) in a context with the marginal distributions are initially unknown, but follow a
generalised extreme value distribution then the nonregularity just mentioned must be combined with
the kind studied in Section 2. In this case Tawn was able to prove an orthogonality result analogous to
that described in Section 2.

(c) Model (6.2) introduces additional complications: independence may correspond to any of =0, ¢=0 or
r =1 so we have a degeneracy problem of the type considered in Section 5. This has still not been
resolved.

In spite of the compliations these ideas introduce, the main message of Tawn's paper is that
likelihood methods are applicable to these families, in contrast to the more ad hoc methods of Tiago
de Oliveira (1984) and others. Extensions to higher dimensions have been considered by Tawn (1989).

Crowder (1989a) considered the family
p .
PIT > fahnn s 28 ) = oxnle’ =16+ X EF" T 63)
1

for the joint distribution of survival times Ty, ..., T p,; herex=20,0<v<1and E,.j - 9 positive. The case

k = 0 reduces to a well-known multivariate Weibull family, the multivariate generalisation of (6.1),
but the case x > 0is new. Crowder proposed its use as a distribution for repeated measures analysis.

Crowder (1989b) has studied some of the nonregular aspects of this. Testing Hy : k=0 is within the

framework of Section 4, but in this case the score statistic turns out to be infinite if v < 1. Crowder
proposed a modified version of the score-statistic and established its asymptotic distribution. When 0
< v <1 this turns out to be stable with index v. Crowder also considers the test of Hy : v =0, in which

case ¥ is not identifiable and we again have a problem of the type studied in Section 5. In this case
Crowder showed that Davies' approach is applicable though it is not casy to evaluate (5.4) dircctly.
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7. CONCLUSIONS

The wide range of examples considered in this paper shows that nonregular problems are not mere
curiosities but arise in many practical contexts. The discussion of this paper has focussed on first-order
asymptotic results since in most cases these are the only ones available. Such studies as hae been
performed have suggested that such results may often given rather poor approximations in practice, so
that one should consider supplementing the theoretical results by direct calculation or simulation.
However, there are at least two reasons why I do not think that theoretical treatment of these
problems should be repalced entirely by simulation. The first is that in many of these problems the
asymptotic results is a fairly simple one, even though non-standard, and can therefore very usefully be
applied in the preliminary stages of an analysis, when precise computation of significance levels is not
too important. Simulation can be used later, if desired, when a specific model has been identified. The
sccond reason is that simulation tells us nothing about which estimator or test to use. In many cases the
nonregular theory points to something other than mechanical application of maximum likelihood
estimation.
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