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Abstract

In the characterization of multivariate extreme indices of multivariate stationary processes,
multivariate maxima of moving maxima processes, or M4 processes for short, have been intro-
duced by Smith and Weissman. Central to the introduction of M4 processes is that the extreme
observations of multivariate stationary processes may be characterized in terms of a limiting
max-stable process under quite general conditions and a max-stable process can be arbitrarily
closely approximated by a M4 process. In this paper, we derive some additional basic proba-
bilistic properties for a finite class of M4 processes of which each contains finite range clustered
moving patterns, called signature patterns, when extreme events occur. We use these properties
to construct statistical estimation schemes for model parameters.

Keywords: multivariate extremes, extreme value theory, max-stable process, multivariate ex-
tremal index.
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1 Introduction

Univariate extreme value theory studies the limiting distribution of the maxima or the minima of a
sequence of random variables. In many circumstances, extreme observations appear to be clustered
in time. For example, large price movements in stock market, large insurance claims after a disaster
event, heavy rainfalls etc., are lasting a time period. Although the extreme events are short relative
to the duration of the whole time series, they do potentially cover several time points, so we need a
model for this type of clustering. However, neither univariate nor multivariate extreme value theory
is adequate to describe this kind of clustering of extreme events in a time series.

Max-stable processes, introduced by de Haan (1984), are an infinite-dimensional generalization
of extreme value theory which does have the potential to describe clustering behavior. The limiting
distributions of univariate and multivariate extreme value theory are max-stable, as shown by Lead-
better, Lindgren and Rootzén (1983) in the univariate case and Resnick (1987) in the multivariate
case. One of the most important features of max-stable processes is that it does not only model
the cross-sectional dependence, but also models the dependence across time. Parametric models for
max-stable processes have been considered since the 1980s. Deheuvels (1983) defines the moving
minimum process. Pickands’ (1981) representation theorem is for multivariate extreme value distri-
bution with unit exponential margins, but is translatable to multivariate extreme value distribution
with unit Fréchet margins by the reciprocal transformation g(x) = 1/x, x > 0. Similarly, a moving
minimum process can easily be translated into a moving maximum process, and vice versa. For this
reason, a moving minimum process or a moving maximum process can simply be regarded as an
MM process. Davis and Resnick (1989) study what they call the max-autoregressive moving average
(MARMA) process of a stationary process. For prediction, see also Davis and Resnick (1993).

In the study of characterization and estimation of the multivariate extremal index introduced
by Nandagopalan (1990), Smith and Weissman (1996) extend Deheuvels’ definition to the so called
multivariate maxima of moving maxima (henceforth M4) process. Smith and Weissman (1996) argue
that under quite general conditions, the extreme values of a multivariate stationary time series may
be characterized in terms of a limiting max-stable process. They also show that a very large class of
max-stable processes may be approximated by M4 processes mainly because those processes have the
same multivariate extremal indexes as the M4 processes have (Theorem 2.3 in Smith and Weissman
1996).

Since an M4 process involves many parameters, and models cross-sectional dependence and time
dependence simultaneously, it is very important to have a good understanding of the behavior and
probabilistic properties of M4 processes when we apply M4 processes to real data modeling. The
paper aims to provide some insightful understanding for a class of finite M4 processes.

The paper is organized as follows. In Section 2, we re-define M4 process introduced by Smith
and Weissman (1996). The main results for deriving an explicit extremal index are quoted. The
finite M4 process is defined and some basic distribution properties are illustrated. In Section 3,
we study clustered events, especially those large observed values of the process. The meaning of
signature patterns is defined and illustrated in an example graphically. Probabilistic properties of
those clustered events are proved. Finally, concluding remarks will be given in Section 4.
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2 The model and some basic distributional properties

The definition of an M4 process is

Yid = max
l

max
k

al,k,dZl,i−k, d = 1, . . . , D, −∞ < i < ∞, (2.1)

where {Zli, l ≥ 1,−∞ < i < ∞} are an array of independent unit Fréchet random variables with
distribution function F (x) = e−1/x, 0 < x < ∞. The constants {al,k,d, l ≥ 1,−∞ < k < ∞, 1 ≤ d ≤
D} are nonnegative constants satisfying

∞∑

l=1

∞∑

k=−∞
al,k,d = 1 for d = 1, . . . , D. (2.2)

For this process, we have

Pr{Yid ≤ yid, 1 ≤ i ≤ r, 1 ≤ d ≤ D}
= Pr{Zl,i−k ≤ yid

al,k,d
for l ≥ 1,−∞ < k < ∞, 1 ≤ i ≤ r, 1 ≤ d ≤ D}

= Pr{Zl,m ≤ min
1−m≤k≤r−m

min
1≤d≤D

ym+k,d

al,k,d
, l ≥ 1,−∞ < m < ∞}

= exp
[
−∑∞

l=1

∑∞
m=−∞ max

1−m≤k≤r−m
max

1≤d≤D

al,k,d

ym+k,d

]
.

(2.3)

Hence
Prn{Yid ≤ nyid, 1 ≤ i ≤ r, 1 ≤ d ≤ D} = Pr{Yid ≤ yid, 1 ≤ i ≤ r, 1 ≤ d ≤ D}.

A process satisfying these conditions for all r ≥ 1 is called max-stable (de Haan 1984). The main
result of Smith and Weissman (1996) was to characterize the conditions under which the multivariate
extremal index – introduced by Nandagopalan (1990) – for a general stationary process could be
approximated by one from an M4 process. First, they proved that under suitable mixing conditions,
the multivariate extremal index from a stationary time series could be calculated from that of a max-
stable process with the same limiting distributions for any finite-dimensional multivariate extremes.
Second, they argued that any max-stable process in D dimensions could be approximated with
arbitrary accuracy by one of M4 form. The latter result is a direct generalization to multivariate
processes of a result due to Deheuvels (1983), whose own representation is the D = 1 case of (2.1). If
we further simplify the process by omitting the ‘maxl’ part of the definition, we get the even simpler
representation

Yi = max
k

akZi−k,

with {Zi} independent unit Fréchet, a process known as a ‘moving maxima’ (MM) process. Thus
the M4 process may be considered a generalization of the MM process to a fully multivariate setting.

Since in practice estimating an infinite number of parameters will generally be too ambitious a
task, usually we content ourselves with concentrating attention on l = 1, . . . , L and−K1 ≤ k ≤ K2 for
some finite numbers L, K1 and K2. Here L corresponds to the maximum number of different observed
moving patterns when extreme events happen. Those moving patterns are known as signature
patterns. We give an example to show what they are after we define our finite M4 processes. The
constants K1 and K2 characterize the range of the sequential dependence. A finite dimensional M4
process can be written as follows:

Yid = max
1≤l≤L

max
−K1≤k≤K2

al,k,dZl,i−k, d = 1, . . . , D, (2.4)
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where
∑L

l=1

∑K2
k=−K1

al,k,d = 1 for d = 1, . . . , D.
Under model (2.4), it is possible that a big value of Zlk dominates all other Z values within a

certain period of length K2 + K1 + 1 and creates a moving pattern, i.e. Yid = al,i−k,dZlk for i close
to k. A moving pattern is known as a signature pattern. Figure 1 shows two different signature
patterns in a simulated M4 process.
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Figure 1: A demonstration of an M4 process. Plot (a) is a simulated 365 days data set. Plots (b) and
(c) are partial pictures drawn from the whole simulated data showing two different moving patterns,
called signature patterns, in certain time periods when extremal events occur.

A single value of l corresponds just to a single signature pattern, but it seems unrealistic in a
real data generating process to assume that a single signature pattern would be sufficient to describe
the shape of the process every time it exceeds some high threshold. For example, stock market
variation resulting from an internal or external big market price movement will last a certain period
and form certain moving patterns, such as increasing pattern, decreasing pattern, or up and down
pattern, etc. By allowing many values of l, we accommodate the feature that a real process may
have different types of signature behavior. On the other hand, there are cross-sectional dependencies
among different variables under study. For example, a portfolio contains many financial assets,
and they are correlated. Motivated by these and other examples in insurance and finance as well
as environmental engineering, it would be fair enough to say M4 process is very useful to model
extremal cross-sectional dependencies and serial temporal dependencies.

The above analysis suggests that there are strong dependencies and moving patterns among those
large observed values during corresponding time periods. Actually, this kind of phenomenon occurs
an infinite number of times if our observed sequence is from i = −∞ to i = ∞. These phenomena
will be shown theoretically and illustrated using examples in Section 3.

Under model (2.4), it is easy to obtain the finite distribution of {Yid, 1 ≤ i ≤ r, 1 ≤ d ≤ D}. It
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follows immediately from (2.3) that

Pr(Yid ≤ y) = e−1/y, (2.5)

Pr(Yid ≤ yid, Yi+1,d ≤ yi+1,d) = exp
[
−

L∑

l=1

K2∑

m=−K1−1

max
{al,m,d

yid
,
al,m+1,d

yi+1,d

}]
, (2.6)

Pr(Y1d ≤ y1d, Y1d′ ≤ y1d′) = exp
[
−

L∑

l=1

K2∑

m=−K1

max
{al,m,d

y1d
,
al,m,d′

y1d′

}]
, (2.7)

where al,K2+1,d = 0, al,−K1−1,d = 0, al,K2+1,d′ = 0, al,−K1−1,d′ = 0.

The results show that the marginal distribution function contains no information about the time
series dependence of the process, but the bivariate distributions of {Yid, Yi+1,d, 1 ≤ d ≤ D} depend
on all the parameters of the process and therefore it is reasonable to try to estimate the parameters
from these joint distributions.

3 Events of clustered observations and their probabilistic proper-

ties

3.1 The case of L = 1 (single pattern)

Consider now a simplified model,

Yid = max
−K1≤k≤K2

akdZi−k, d = 1, . . . , D, −∞ < i < ∞, (3.1)

which is corresponding to the case of L = 1 (single pattern).
For any fixed d, define the event Ad,t at time t by

Ad,t =
{

asdZt+K1 = max
−K1≤k≤K2

akdZt+K1+s−k for s = −K1, . . . , K2

}
(3.2)

The event of Ad,t is equivalent to Yt+K−1+s,d = asdZt+K1 for s = −K1, . . . ,K2. These equations can
be put into one equation, i.e.

(Ytd, Yt+1,d, . . . , Yt+K1+K2,d) = (a−K1d, a−K1+1,d, . . . , aK2d)× Zt+K1 .

We can immediately see that the values of (a−K1d, a−K1+1,d, . . . , aK2d) completely determine
the values of (Ytd, Yt+1,d, . . . , Yt+K1+K2,d) when an extreme event Ad,t occurs. The values of
(a−K1d, a−K1+1,d, . . . , aK2d) then determine the moving pattern (up or down) of the process. The
moving pattern formed by (a−K1d, a−K1+1,d, . . . , aK2d) is called a signature pattern.

It is clear that Pr(Ad,t) > 0, t ≥ 1. The following probability can be calculated directly though
the calculation is not short – see detail in Zhang (2002).

Pr(Ad,t) =
1

[1 +
K1+K2∑

j=1
( min
1≤i≤j

a−K1+i−1,d

aK2−j+i,d
+ min

1≤i≤j

aK2−i+1,d

a−K1+j−i,d
)]2

. (3.3)

For Pr{Ad,tAd,t+m}, it is clear that Pr{Ad,tAd,t+m} =
[
P (Ad,t)

]2 if m > K1 + K2.
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Suppose 1 ≤ m ≤ K1 + K2, then from the definition of Ad,t, we get

a−K1+m,dZt+K1 ≥ a−K1dZt+m+K1 , (3.4)

but from the event Ad,t+m, we get

a−K1dZt+m+K1 ≥ a−K1+m,dZt+K1 . (3.5)

The equations (3.4) and (3.5) imply a−K1+m,dZt+K1 = a−K1dZt+m+K1 which is true with probability
0, thus

Pr{Ad,tAd,t+m} =

{[
P (Ad,t)

]2 if m > K1 + K2,

0 if 1 ≤ m ≤ K1 + K2.
(3.6)

Recall that a sequence of events {Bn} is said to occur infinitely often (i.o.) or infinitely many times
if Pr(lim supn Bn) = 1. The mnemonic notation is {Bn, i.o.}. The following lemma tells that Ad,t

occurs infinitely often.

Lemma 3.1 Under model (3.1), for each d and its entire process we have Pr{Ad,t, i.o. } = 1, or
equivalently

Pr
{
Ytd = a−K1dZt+K1 , Yt+1,d = a−K1+1,dZt+K1 , . . . , Yt+K2+K1,d = aK2dZt+K1 , i.o.

}
= 1,

which implies

Pr
{ Yt+m,d

Ytd + Yt+1,d + · · ·+ Yt+K2+K1,d
= a−K1+m,d, m = 0, . . . , K1 + K2, i.o.

}
= 1. (3.7)

Proof. Let {t1, t2, . . . , } be a subsequence of {t ≥ 1} such that ti+1 − ti > K1 + K2, i ≥ 1, then
{Ad,ti} is an independent sequence of events. Since Pr(Ad,ti) > 0, by the Borel-Cantelli lemma for
independent events, we get

Pr
{

Ad,t, i.o.
}

= Pr
{ ∞⋂

t=1

∞⋃
n=t

Ad,n

}
≥ Pr

{ ∞⋂

i=1

∞⋃

n=i

Ad,tn

}
= 1,

and this completes the proof. 2

This lemma shows that there are an infinite number of time periods within which the process is
driven by a single extreme jump. For example, a real-world interpretation might be that a flood in a
certain region and a certain time period is caused by a specific hurricane. The strengths of different
hurricanes are different and the costs are different. Or, we say they follow different patterns.

Lemma 3.1 also shows that the values of all coefficients can be obtained by observing certain
proportions among the observed processes.

The following two theorems show how those proportions give the exact value of all coefficients.

Theorem 3.2 Under the model in (3.1), for each d and its entire process, if

Pr
{ Yt+m,d

Ytd + Yt+1,d + · · ·+ Yt+K2+K1,d
= cmd, i.o.

}
= 1

for m = 0, . . . , K1 + K2, then cmd = a−K1+m,d, and those {Ytd, . . . , Yt+K1+K2,d} define the events
Ad,t if Yt+m,d/(Ytd + Yt+1,d + · · ·+ Yt+K2+K1,d) = cmd for all m = 0, . . . , K1 + K2.
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Remark 1 The theorem says, for example when m = 0, there is only one constant c0d = a−K1d such
that (3.7) is true. On the other hand, if Yt+m,d/(Ytd + Yt+1,d + · · ·+ Yt+K2+K1,d) = cmd is true for
one m, it is true for all m.

Proof. We only prove the case of m = 0. The proofs for other values of m are similar.
Define random variables

Ttd = sI(Ytd=at−s,dZs),

where I(.) is an indicator function. Notice that t−K2 ≤ s ≤ t + K1 and Ttd is uniquely defined for
each t and hence for all t because Zs has an absolutely continuous distribution. The event Ad,t gives

Ttd = Tt+1,d = · · · = Tt+K1+K2,d = t + K1.

Suppose that

Ytd

Ytd + Yt+1,d + · · ·+ Yt+K2+K1,d
= pd (3.8)

occurs infinitely many times for pd 6= a−K1d, and pd ∈ (0, 1). Then Ttd, Tt+1,d, . . . , Tt+K1+K2,d must
follow one of the following two cases.

(1) Ttd = Tt+1,d = · · · = Tt+K1+K2,d = t + K, for some K ∈ {−K2,−K2 + 1, . . . ,K1 − 1},

(2) Ttd, Tt+1,d, . . . , Tt+K1+K2,d contain at least two different values.

For case (1), we have Ytd = a−KdZt+K , Yt+1,d = a1−K,dZt+K , . . . , Yt+K1+K2,d = aK1+K2−K,dZt+K = 0
since K1 + K2 −K > K2, but aK2+1,d = aK2+2,d = · · · = 0. This is a contradiction to Ytd > 0 for all
t.
For case (2), define

S1 = {j : Ttd = Tt+j,d, j = 1, . . . , K1 + K2}, S2 = {j : Ttd 6= Tt+j,d, j = 1, . . . ,K1 + K2}.

Then (3.8) can be written as

(1− pd)Ytd −
∑

j∈S1

pdYt+j,d =
∑

j∈S2

pdYt+j,d. (3.9)

Then the random variables on both side are independent and continuous. Consequently, the proba-
bility of observing (3.9) is zero.

Both cases have shown contradictions when pd 6= aK1 . So c0d = a−K1d and those {Ytd, . . . ,

Yt+K1+K2,d} define events Ad,t, therefore the proof is completed. 2

Remark 2 The equation (3.8) cannot be true even for two different t values – say t1 and t2. Suppose
it can be true for t1 and t2. Then we will have the following equation:

Pr{ Yt1d

Yt1d + Yt1+1,d + · · ·+ Yt1+K2+K1,d
=

Yt2d

Yt2d + Yt2+1,d + · · ·+ Yt2+K2+K1,d
= pd} > 0 (3.10)

which in turn implies (3.8) will occur infinitely many times – a contradiction to the results in Theorem
3.2.
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The following theorem tells that the range cannot be over K2 + K1 + 1 numbers in order to get
infinitely many ratios which are equal to a constant.

Theorem 3.3 Under the model (3.1), for each d and its entire process

Pr
{ Ytd

Ytd + Yt+1,d + · · ·+ Yt+K2+K1+1,d
= cd, i.o.

}
= 0

for any constant cd.

Proof. Because Ytd and Yt+K1+K2+1,d cannot be written as functions of just one Zt, the ratio
Ytd/(Ytd + Yt+1,d + · · ·+ Yt+K2+K1+1,d) is a function of at least two different Zt’s. The proof then
follows by the same arguments as in Theorem 3.2. 2

Remark 3 Suppose a data set is generated from an M4 process without knowing the moving range
parameters K1 and K2. If too few summands are considered, we will observe more than L dotted
lines in the plot of the ratios. The idea is to start from denominator including two summands,
three summands, until there are no horizontal dotted lines are observed. The maximal number of
summands which give dotted lines are the number of signature patterns.

Theorems 3.2 and 3.3 and remarks tell that in order to estimate the parameter a−K1+m, we only
need to observe two equal values of

Yt1+m,d

Yt1d + · · ·+ Yt1+K1+K2,d
,

Yt2+m,d

Yt2d + · · ·+ Yt2+K1+K2,d

at time t1 and t2, where t2− t1 > K1 +K2, because these two points must be from those dotted lines
which are related to parameter values. We now turn to some examples to demonstrate applications
of the theorems.

Example 3.1 . For the following process

Ytd = max
(
a1dZt−1, a0dZt, a−1dZt+1

)
.

We have Pr(Ad,t) > 0 for each d and its entire process. Figure 2 demonstrates the behavior of the
process. Notice that the right figure contains an almost dark and solid horizontal line which is formed
by those points defined by Ad,t. The value of a−1,d can be read from the right figure. The interception
of the dark dotted line to the vertical axis is the value of a−1,d.

Example 3.1 has shown how to get the moving coefficients in each individual process, but we
are mainly interested in multivariate processes. In other words, we need to know how to distinguish
different processes. For example, we have two bivariate processes

{
Yi1 = 1

2 max(Z1,i−1, Z1,i),

Yi2 = 1
3 max(Z1,i−1, Z1,i, Z1,i+1),

(3.11)

and {
Y ′

i1 = 1
2 max(Z1,i−1, Z1,i),

Y ′
i2 = 1

3 max(Z1,i, Z1,i+1, Z1,i+2).
(3.12)
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Figure 2: Left figure is a time series plot of 150 observations of process Ytd =
max(a1dZt−1, a0dZt, a−1dZt+1) for some d. Right figure is a time series plot of ratios
Ytd/(Ytd + Yt+1,d + Yt+2,d) of 3000 observations. The value of a−1,d can be read from the right figure.
The interception of the dark dotted line to the vertical axis is the value of a−1,d.

Obviously, the joint distribution of {Yi2, i = i1, i2, . . . , ik} is the same as the joint distributions of
{Y ′

i2, i = t+ i1, t+ i2, . . . , t+ ik, −∞ < t < ∞}. But the joint distributions of the bivariate sequence
defined in (3.11) are different from the joint distributions of the bivariate sequence defined in (3.12).
For any given data set generated from either (3.11) or (3.12), when we plot ratios for each sequence
and observe the dotted lines, we can obtain values 1/2 and 1/3. But the plots do not tell that
data was generated from which of (3.11) and (3.12). This problem can be solved by comparing the
appearing locations of those dots between two horizontal dotted lines since there will be a location
shift if the data was not generated from (3.11).

However, if we consider ratio Yi−1,1/Yi,2, under model (3.11), this takes the value 3/2 with
positive probability. Under model (3.12), there is no such degeneracy. Similarly, if we consider ratio
Yi,1/Yi+1,2, under model (3.12), this takes the value 3/2 with positive probability. Under model
(3.11), there is no such degeneracy. So the model can be identified. Some other comparisons also
can be done in order to distinguish the models.

3.2 The case of L > 1 (multiple patterns)

Now consider the case of L > 1 and the model which is defined by (2.4). Define

Ald,t =
{

al,s,dZl,t+K1 = max
−K1≤k≤K2

al,k,dZl,t+K1+s−k for s = −K1, . . . , K2

}
(3.13)

for each l of the model in (2.4).

Remark 4 We can define such events for all l simultaneously, but we don’t need them here.

Notice that Pr(Ald,t) > 0 for each d and its entire process, so by Theorem 3.2, for each m =
0, 1, . . . , K1 + K2, we have

Pr
{

Yt+m,d

Ytd+Yt+1,d+···+Yt+K2+K1
,d = al,−K1+m,d

al,−K1,d+al,−K1+1,d+···+al,K2,d
, i.o.

}
= 1. (3.14)
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We expect to have L horizontal dotted lines when plotting Yt+m,d/(Ytd + Yt+1,d + · · ·+ Yt+K2+K1 , d).
Those lines give estimates of al,−K1+m,d/(al,−K1,d + al,−K1+1,d + · · ·+ al,K2,d), 1 ≤ l ≤ L. Figure 3
shows three different signature patterns (points fall onto 3 horizontal lines) which correspond to the
case of L = 3. As we have already seen, the plots give accurate estimates of the ratios. When L = 1,
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Figure 3: A demo of multiple signature patterns. Left figure is a time series plot of 150 observations
of process Ytd = max1≤l≤3 max(al1dZl,t−1, al0dZlt, al,−1,dZl,t+1) for some d. Right figure is a time
series plot of ratios Ytd/(Ytd + Yt+1,d + Yt+2,d) of 3000 observations.

we can exactly get all the values of akd. But for L > 1, we cannot. What we get are the ratios
al,−K1+m,d/(al,−K1,d + al,−K1+1,d + · · ·+ al,K2,d), not the parameters themselves. Rewrite the model
as

Yid = max
1≤l≤L

max
−K1≤k≤K2

al,k,dZl,i−k

= max
1≤l≤L

bld max
−K1≤k≤K2

cl,k,dZl,i−k (3.15)

where bld is the weight of l’s signature pattern such that
∑

l bld = 1 for each d, and
∑

k cl,k,d = 1 for
each l and d.

Under the model (3.15), all cl,k,d can be estimated by looking into

Pr
{ Yt+m,d

Ytd + Yt+1,d + · · ·+ Yt+K2+K1,d
= cl,−K1+m,d, i.o.

}
= 1 (3.16)

for each d and the observed process, therefore we only need to estimate bld.
It is obvious that

max(al,0,dZl,i, al′,0,dZl′,i)
L= (al,0,d + al′,0,d)Zl,i, l 6= l′,

where L= means equal in distribution, and

Pr(al,0,dZl,i > al′,0,dZl′,i) = al,0,d/(al,0,d + al′,0,d),

and
Pr(al,0,dZl,i > al′,0,dZl′,i|max(al,0,dZl,i, al′,0,dZl′,i) > u) = al,0,d/(al,0,d + al′,0,d),
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where u is any large threshold value. Using these properties to the model (3.15), we can count the
frequency of different signature patterns from the observed sequence and get the estimates of bld and
eventually al,k,d.

4 Concluding remarks

In this paper, we have studied the behavior of the M4 processes. All the coefficients can be obtained
by looking at the ratios of observed values when the data are from an M4 process. Those ratios also
tell the numbers of signature patterns and the order of moving range. These results provide guidance
to real data modeling. For example, when data nearly follow an M4 process we may be able to apply
an M4 process modeling. The coefficients are obtained by looking into the ratios of observed values.

The results of this paper are to some extent pathological, because in practice we would not expect
to see repeated identities of the form of (3.14). We view the results as clarifying the role of signature
patterns in M4 processes, while serving as a warning against the over-literal interpretation of these
processes. For example, if an M4 process was observed with a small amount of added noise, the
relationships of the form of (3.14) would no longer hold, but it nevertheless still makes sense to
think of an M4 process as a possible approximation to the true multivariate extremal behavior of the
process. In a forthcoming paper (Zhang and Smith 2003), we develop practical estimation techniques
in more detail.

The use of M4 processes is a new approach to modeling the extremal behavior of multivariate time
series. There are clearly many other issues of such M4 processes that need to be studied. For example,
it can be used to study the cross-sectional tail dependencies of multiple time series. Zhang (2003) uses
(2.4) to construct a characterization and Gamma test of the asymptotic tail dependencies between
two random variables. The Gamma test has effectively detected the asymptotic independencies and
dependencies of all models using simulated examples.
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