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Summary

The solvency of an insurance company depends critically on the size and frequency

of large claims. Assessment of insurance risk therefore depends on accurate modelling

of the distribution of large claims. In this paper, insurance claim data obtained from a

large company are analysed to determine the distribution of tail values. It is shown that

the distribution is indeed extremely long-tailed. A Bayesian computation is made of the

predictive distribution of the total loss likely to be incurred by the company over a future

one-year period. The data set contains two outliers, the only two claims in the data which

represent losses of an entire facility. There are thus some grounds for treating these as

members of a separate population. However, if these two observations are omitted, the

�tted distribution is still very long-tailed and the predictions of total loss are still high.

Further, the fact that the data consist of a mixture of di�erent types of claim is taken into

account through a hierarchical model framework, and it is shown that the assessed risk is

smaller if this feature is taken into account. Finally, we consider the e�ect of possible trends

in the data. There is a peak in the number of claims corresponding to the worldwide crisis

in the insurance industry of the early 1990s. This is statistically signi�cant when modelled

as a quadratic time-trend, but this does not appear to be a reasonable basis for future

extrapolation. A better approach is via a random e�ects model to incorporate year-to-

year variation. This is successfully incorporated within the hierarchical model, but there is

little evidence of any persistent trend, and the assessed risk is little di�erent if year e�ects

are taken into account than in the case where year e�ects are omitted. The whole paper

is presented as a demonstration of the merits of combining established models for extreme

values with modern statistical techniques including Bayesian inference, hierarchical models

and Monte Carlo sampling.
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1 Introduction

The viability of the insurance industry depends on probabilistic calculations of risk.

Although the majority of claims fall within the scope of standard actuarial calculations,

there are a small number of very large claims for which current actuarial practice does not

have a satisfactory answer. For such claims, it is essential to have as accurate a character-

isation as possible of the probability distribution of very large values. This is particularly

the case when there is no a priori limit on the size of claims which may be entertained, as

is typically the case in the reinsurance industry. The issue has come into particular focus

in recent years with a series of environmental disasters such as Hurricane Andrew and the

Mississippi 
oods, and consequent �nancial failures in the insurance industry.

In this paper, the distribution of very large claims, and its consequences for overall

losses, are examined with reference to a large data set obtained from a well-known inter-

national company. To protect the con�dentiality of the source, the data are coded so that

both the units of money and the exact time frame covered by the data are not revealed,

but apart from that, the data are actual claims, over a 15-year period, above a threshold

level set at 0.5 units of currency. The units of currency have been adjusted for in
ation.

There are a total of 425 claims classi�ed into one of seven types. Fig. 1 presents the

data graphically in a number of ways. Fig. 1(a) depicts the time (horizontal axis) and

amount (vertical axis) of all the individual claims. Fig. 1(b) is a cumulative (CUSUM)

plot of numbers of claims against time, without taking account of the sizes of claim. This

looks like a straight line, indicating no evidence of any trend in the frequency of claims.

Fig. 1(c) is a similar plot based on cumulative sizes of claim up to any particular time.

This is distorted by the presence of two very large claims, both of which occurred in year

8, corresponding to which there is a jump shift in the plot, but other than that this plot

is also linear in appearance. Fig. 1(d) is explained later.

One issue that arises is the distinction between \claims" and \losses". A catastrophic

event, such as a hurricance, may result in a number of claims but it would not be reasonable

to treat these, for statistical purposes, as independent random variables. In the industry,

it is usual to aggregate claims from a single cause into \losses", which are e�ectively

independent. In the present data set, there is no direct indication of when di�erent claims

correspond to the same loss. There is indirect evidence in that the date associated with

any particular claim is the date on which the original loss occurred, not the date on which

the claim was �led, so there are reasonable grounds for thinking that claims of the same

type originating on the same day are in fact due to a common loss and should therefore be

aggregated. In fact, when the data are aggregated in this way, the total number of claims

is only reduced from 425 to 393, it seems unlikely that the analysis which follows would

be substantially di�erent if the claims/loss distinction was ignored completely. Losses of

the same class or type such as �re, 
ood, liability etc. which can occur on the same day

may be correlated if they are known to be at the same site or in the same region if the loss

is weather related. Frequently a reinsurer will not have a full description of the data from

the primary insurer and will be working with aggregated losses. In the following analysis,
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Fig. 1: Plots of raw data. Plot(a) shows the time and magnitude of all 425 claims above

the base level 0.5. (b) and (c) are CUSUM plots based respectively on the number of

claims and the total amount of claims above 0.5. (d) shows a mean excess over threshold

plot.
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claims of the same type on the same day were aggregated, so the analysis which follows

is based on the reduced set of 393 losses. We shall continue to refer to these as \claims"

because most of them are single claims, and we reserve the word \loss", at least in the

present paper, to refer to the total loss su�ered by the company over a speci�ed period of

time.

Within this framework, a number of questions arise:{

(a) What is the probability distribution of the claims, with particular reference to the

very large claims?

(b) Is there any trend towards rising or falling claims, or any seasonal variation which

might a�ect our assessment of the probability distribution?

(c) What is the in
uence of the two very large claims (henceforth called outliers)?

(d) Is there any signi�cant di�erence in the distributions associated with di�erent types

of claim?

(e) What are the implications of all these issues for the overall risk on the company?

With reference to the two outliers, there is of course a reason for concern in any case

where some observations are much larger than the rest of the sample. (For the record, the

largest �ve claims are 776.19, 268.00, 141.95, 131.05, 95.76.) There is particular concern

about the use of extreme value methods, which we are going to apply in the rest of the

paper, when there is a possibility that these represent some separate process (for example,

the distinction between normal wind speeds and hurricanes). In the present case, these

concerns are well-founded, because the two largest claims are the only ones in the data

set which represent \total losses", i.e. when a complete unit was lost. Ideally one would

like to do a separate analysis of claims resulting from total losses, but with only two such

claims available, this is not practicable. The two outliers will therefore be combined with

the rest of the data for most of the analysis, but their separate origins do need to be borne

in mind in interpreting the results.

The remainder of the paper aims to answer questions (a){(e). Section 2 discusses the

probability distribution of large claims with particular reference to Pareto and generalised

Pareto tail approximations. One conclusion from this is that the distribution of claims

is indeed very long-tailed, even without the two outliers. An alternative version of the

method is also given, by which one can better assess the stability of parameters across

di�erent thresholds, and which also provides a basis for trend-testing.

Section 3 then considers the total loss su�ered by the company (i.e. the total over

all claims, not \total loss" in the more technical sense of two paragraphs ago) on the

assumption that this is the quantity of direct interest to the company. In particular, we

aim to answer the question \How large a reserve would be needed to cover all losses in a
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particular year, with probability 1=N?" for various values of N . This analysis is based on

a Bayesian calculation of the predictive distribution, using Monte Carlo simulation.

Section 4 extends the analysis to consider both the e�ect of di�erent types of claim,

and of possible trends resulting in di�erent distributions for di�erent years. There is

evidence in the data that both e�ects are important, but it is diÆcult to be de�nitive

about this because of the small number of large claims of any given type or in any single

year. However, an alternative approach which allows both type-of-claim e�ects and year

e�ects to be taken into account is via a hierarchical Bayesian model, and this is developed

in Section 5. The comparison between di�erent models, and their consequences for the

assesed risk of a very large loss, are developed in some detail.

Finally, Section 6 presents a summary and conclusions.

2 The Distribution of Very Large Claims

Although the main analysis in this paper is Bayesian, our initial analyses are from a

classical (frequentist) perspective. This serves partly to show what is possible using known

extreme value techniques, and also to highlight some of the limitations of those techniques

which we shall seek to overcome using a Bayesian viewpoint.

Modern methods of extreme value analysis are based on exceedances over high thresh-

olds. Denoting the threshold by u, the conditional distribution of excesses over u is mod-

elled by the generalised Pareto distribution (GPD):{

PrfY � u+ y j Y > ug � 1�
�
1 +

�y

�

�
�1=�

+

; y � 0 (1)

(x+ = max(x; 0)) where � > 0 is a scale parameter and � a shape parameter. The GPD

is formally justi�ed as a limiting distribution, valid as u approaches the upper end of

the distribution of Y , in which case it is applicable to very wide classes of underlying

distributions of Y (Pickands 1975, Davison and Smith 1990). The three cases � < 0,

� = 0 and � > 0 correspond to di�erent types of tail behaviour. The case � < 0 arises in

distributions where there is �nite upper bound on the claims which are possible. Although

it might be thought that this case would apply (in the sense that no company has in�nite

liability), in practice we would expect to detect such a limit only if there was a tendency

for claims to cluster near the upper limit, which is not the case here. Therefore, we do not

consider this possibility further. The second case, � = 0, typically arises in cases with an

exponentially decreasing tail (in this case we take a formal limit � ! 0 in (1), resulting in

the exponential distribution 1� e�y=�). This arises, not only when the distribution of Y is

indeed exponential, but from many other common distributions such as gamma, Weibull,

normal, lognormal etc. Some of these distributions (e.g. gamma, lognormal) are quite

commonly used for actuarial data, so we might expect to �nd the estimated value of � close
to 0 in practice. However the third case, � > 0, is of more concern because this corresponds
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to a genuinely \long-tailed" distribution. This case arises whenever PrfY > yg � cy��

as y ! 1 for some positive constants c and �. This therefore corresponds to what is

usually called the Pareto tail (hence the terminology \generalised Pareto" to extend the

distribution to the cases when � � 0); the relation between � and � is � = 1=�. When

0 < � < 2 the distribution is also tail equivalent to an �-stable distribution.

A critical issue in practice is the selection of an appropriate threshold u. If this is set
too high, there will not be enough data over the threshold to calculate good estimates of �
and �. However we do not want u to be too low: there is no point in basing the estimates

on claims which are too small to be considered \large claims", and to do so could induce

a bias associated with lack of �t of the GPD.

One diagnostic device which has been developed (Davison and Smith 1990) is the

\mean excess over threshold" plot. For each possible threshold, we compute the mean

of all excesses over the threshold. For example, associated with threshold 100 there are

four excesses (676.19, 168.00, 41.95 and 31.05), and the mean of these is 229.3. Fig. 1(d)

shows a plot of mean excess over the threshold, plotted against the threshold itself, as this

runs from the minimum value 0.5 up to 80. If the data really follow a GPD, then this

plot should stay close to a straight line of slope �=(1 � �), provided � < 1. We can see

that over most of the plot, the mean excess over the threshold does indeed appear to rise

linearly, suggesting that the GPD may be a good �t over much of the range of the data.

The apparent exception to this is at the right-hand end of the plot, but in fact this is

not such a signi�cant matter because in this region there are very few data points | the

mean excess is computed from a very small number of exceedances and hence has a lot of

sampling variability. On the basis of this plot, the evidence in favour of the GPD seems

good.

The GPD is �tted to exceedances over a variety of thresholds in Table 1. The method

of �tting is numerical maximum likelihood. The main feature of this table is that, with the

exception of the last row based on just six exceedances, all the values of � are very large

(> 0:8), and some are in the range � � 1 for which even the mean of the distribution is

in�nite. (If 1

2
� � < 1 the mean of the claim size distribution is �nite, but the variance is

in�nite.) Thus we are clearly in the \Pareto tail" case, with a very long-tailed distribution.

Threshold Number of Mean � �
Exceedances Excess

0.5 393 7.11 1.02 1.01

2.5 132 17.89 3.47 0.91

5 73 28.9 6.26 0.89

10 42 44.05 10.51 0.84

15 31 53.60 5.68 1.44

20 17 91.21 19.92 1.10

25 13 113.7 33.76 0.93

50 6 206.6 150.8 0.29
Table 1. Summary of generlised Pareto �ts.
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This method of analysing the extreme values has the advantage of being straightfor-

ward to implement, but there are a number of disadvantages when considering broader

features of the distribution, such as whether there are trends, a topic to which we return

in Section 4. An alternative approach, introduced by Smith (1989), is via a point process

representation of the exceedances. The idea is to view all claims exceeding a given level x
as a Poisson process of intensity

�x =

�
1 + �

x� �

 

�
�1=�

+

: (2)

It is assumed that this formula is valid over all x � u for some given threshold u| in fact a

more detailed description of the process allows for both \claim times" and \claim amounts"

in excess of u to be treated as a two-dimensional nonhomogeneous Poisson process. This

is equivalent to the GPD in the following sense: if (2) is valid for all x � u, and if Y
denotes an arbitrary exceedance of the process (i.e. an arbitrary claim bigger than u)
then (1) holds with � the same as in (2), and � =  + �(u� �). However, so long as the

model remains valid, the parameters �,  and � are independent of the threshold. Thus

the approximate equality of these parameter estimates over a variety of thresholds is one

indication that the model is �tting correctly.

Another, and more important, advantage of the point process formulation is that the

model extends easily to the case where the parameters �,  and � are not constants, but
dependent on time. In this case we write �t;  t and �t where t is time, and model the

point process of exceedances over x as a nonhomogeneous Poisson process of intensity

�t(x) =

�
1 + �t

x� �t
 t

�
�1=�t

+

: (3)

Applications of this include looking for trends in the data, and models including covariates.

For example, Smith (1989) allowed �t to vary with time to examine whether high-level

ozone exceedances in Houston had varied signi�cantly with time. Smith and Shively (1995)

extended this analysis by writing �t and log t as linear combinations of meteorological

covariates with unknown coeÆcients. This is important in the context of atmospheric

ozone, because it is well known that ozone production is highly dependent on the underlying

weather conditions. In the present paper, we shall use the model (3) to look for trends. So

far, the possible e�ect of di�erent covariates has not been taken into account, though the

idea of trying to use meteorological or other kinds of environmental covariates, as a means

of assessing to what extent environmental change could in
uence insurance claims (e.g.

the possibility of increased risk of 
ooding arising from global warming) would appear to

be an intriguing possibility.

The model (2) or (3) may be estimated by numerical maximum likelihood, as described

in Smith (1989). For numerical convenience, the parameter  is replaced by log in virtu-

ally all subsequent analysis. Table 2 shows the results applied to a number of thresholds.

One feature to note here is that the parameter estimates are very stable across di�erent
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thresholds, certainly as far as u = 10, in the sense that di�erences between successive

values of the parameter estimates are small in comparison with their standard errors. The

�ts for values above u = 10 show a sharp increase in the standard errors of log b and b�,
and therefore seem less reliable.

Threshold Number of � log �
Exceedances

0.5 393 26.5 3.30 1.00

(4.4) (0.24) (0.09)

2.5 132 26.3 3.22 0.91

(5.2) (0.31) (0.16)

5 73 26.8 3.25 0.89

(5.5) (0.31) (0.21)

10 42 27.2 3.22 0.84

(5.7) (0.32) (0.25)

15 31 22.3 2.79 1.44

(3.9) (0.46) (0.45)

20 17 22.7 3.13 1.10

(5.7) (0.56) (0.53)

25 13 20.5 3.39 0.93

(8.6) (0.66) (0.56)

Table 2. Estimation of the model (2) with constant �;  and �. Numbers in parentheses

are standard errors.

Smith and Shively (1995) introduced a number of diagnostic devices to examine the

�t of this model. One idea is based on what we shall call Z-statistics: if �t(x) is given by

(3), let

Zk =

Z Tk

Tk�1

�s(u)ds (4)

where Tk denotes the time of the k'th exceedance of u (T0 = 0, assumed to be the starting

time of the observations). If the model is correct, then Z1; Z2; :::; will be independent

exponentially distributed random variables with mean 1. In practice we usually work

in discrete time (as here, where all claims of the same type on a single day have been

aggregated) so we replace the integral in (4) by a sum, but the exponential distribution

should still be approximately correct provided the inter-claim times are not too small.

The Z-statistics are an indication of how closely the exceedances of a �xed level u
are represented by a nonhomogeneous Poisson process, but they do not test the GPD

assumption for the distribution of excess over the threshold. This can be done via W -

statistics: with Tk the k'th exceedance time and Yk the corresponding value, let

Wk =
1

�Tk
log

�
1 + �Tk

Yk � u
 Tk + �Tkfu� �Tkg

�
:
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Then W1;W2; :::; are also independent exponential random variables with mean 1, if the

model is correct.

There are various plots we can do to decide whether these assumptions are in fact

supported by the data. These include:{

(i) Scatter plots of Zk or Wk against Tk. Systematic variation of the Z or W values with

time would indicate a trend not accounted for in the model.

(ii) Q-Q plots, i.e. arrange the Zk or Wk values in increasing order and plot them against

the expected order statistics under the exponential distribution. If the plot stays

close to a straight line through the origin of unit slope, we may conclude that the

exponential distribution is a good �t.

(iii) Serial correlation plots | an indicator of whether successive values of Zk or Wk are

in fact independent.

Fig. 2 shows all three of these plots computed for both the Z and W statistics, based

on all exceedances over threshold u = 5 and the parameter estimates from the homogeneous

model in Table 2. The choice of u = 5 was somewhat arbitrary, but following our earlier

remarks this seems a reasonable compromise between trying to �t the model to the whole

data set, in which case the truly large claims would not have such a strong in
uence, and

setting the threshold too high when the estimates become unstable. The time plots (a) and

(d) are shown together with a crude smoothed curve through the scatterplot, computed

using the SPlus lowess procedure. There is some concern about plot (a), since there seems

to be a slight dip in the curve around year 4 and a more prominent dip around year 11.

This could indicate an increase in the number of claims in those years (note that small Z
values mean small time intervals between claims, i.e. an increase in the rate of claims). In

plots (b) and (e), the points will lie close to the diagonal straight line if the model is correct.

The interesting thing to note here is that with the W -statistics, where there are two large

values corresponding to the two very large claims already discussed, the observed values

at the right-hand end of the plot are still only just above the expected values, suggesting

that these may not be outliers at all, but just the kind of values that would have been

expected under such a long-tailed distribution. The serial correlation plots (c) and (f),

shown together with nominal 95% con�dence intervals at 2=
p
N , where N is the number

of exceedances, show no cause for concern.

It is possible to re-�t both the GPD and point process models with the two outliers

omitted. For example, �tting the GPD with u = 5, we obtain b� = 6:83 (standard error

1.50), b� = 0:59 (0.20) compared with the earlier estimates of 6.26 and 0.89. The main thing

to note here is that the estimate of � has dropped quite a bit, though we still have a very

long-tailed distribution on our hands (e.g. the variance is still in�nite). Thus although the

estimates are changed somewhat if we remove the outliers, this does not explain away our

basic concerns about a long-tailed distribution. In the more complicated models developed
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Fig. 2: Diagnostic plots. (a){(c) show timeplot (with Lowess smoother), Q-Q plot and

serial correlation plot (with 95% con�dence limits) for the Z statistics. (d){(f) show the

same plots for the W statistics.
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later in the paper, the same comparison of results with and without the outliers will be

repeated a number of times, to indicate just how in
uential they are.

The overall conclusion at this stage, however, is that with the exception of the possi-

bility that a trend might exist, the model (2) appears to �t very well.

3 The Predictive Distribution of Future Losses

Let us now assume that the model (2) is correct. What implications does this have

for future losses su�ered by the company?

The simplest way to deal with this issue is by simulation. Using the GPD, we can

simulate the values of all claims over the threshold u over a �xed period of time, say 1

year. By repeating the simulation many times, we obtain the distribution of future loss.

One objection to this approach is that it ignores all claims below the threshold. It

seems unlikely that this could in
uence the distribution of very large losses, but to accom-

modate the small claims, it is possible to do an independent simulation of claims in the

range (0:5; u). (Recall that the original data set is restricted to claims above 0.5.) For

this purpose a bootstrap simulation has been used: each simulated \claim" is obtained by

sampling with replacement from the distribution of existing claims in the range (0:5; u).
This method of simulation seems to work well for claims within a �nite range, but it would

not work for the whole of the distribution, because the bootstrap method can only produce

simulated claims within the range of the existing data set, and therefore could never allow

properly for future claims outside the range of the current data set. This is a well-known

diÆculty with applying bootstrap methods to extreme value problems.

There is a second and more fundamental diÆculty with the na��ve simulation approach.

We have estimated extreme value parameters �,  and �, but it is unreasonable to treat

these as known quantities, when they have in fact been estimated from a limited amount

of data with considerable uncertainty as represented by the standard errors. In particular,

the uncertainty of the parameter � could have major implications for the distribution of

extremely large losses.

We dwell on this point, for a moment, because this is one point where the approach

advocated in this paper di�ers sharply from the conventional actuarial approach. Conven-

tially, the estimation of an appropriate distribution for claim sizes is treated as a separate

problem from the calculation of future loss events. One of the main points of the present

paper is that these features cannot be separated but must be treated as components of a

single overall estimation problem.

The proposed solution is Bayesian. We calculate the posterior joint distribution of

(�; log ; �), assuming a prior distribution which is uniform over a very large set (e�ec-

tively, the whole of R3). The parameters are estimated by a Gibbs-Hastings-Metropolis
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simulation algorithm in which the posterior densities of the three parameters are estimated

by updating one at a time, perturbing each parameter by a small random amount and us-

ing a Hastings-Metropolis step to decide whether to accept or reject the perturbed value

(Smith and Roberts 1993). The predictive distribution of \future loss" is then averaged

over the posterior distribution of (�; log ; �). We iterate the Gibbs-Hastings-Metropolis

algorithm over a total of M0 cycles, and once everyM1 cycles we simulate one value of the

total loss. This gives a sample ofM0=M1 simulated values from the predictive distribution,

with which we form an empirical c.d.f. In all the examples in this paper we have taken

M0 = 106; M1 = 100 so we end up with a sample of 10,000 values from the predictive

distribution. Although no formal tests of convergence of the simulation algorithm have

been applied, inspection of data plots and comparisons of results from di�erent (indepen-

dent) simulations suggests that convergence issues are not in any sense a problem with

this procedure.

As an example, four independent runs were performed of the entire simulation, starting

from di�erent random number seeds. Fig. 3 shows the posterior densities (estimated

using the SPlus density routine) for the parameters �; log and �, plus the predictive
distributions of \total loss", from four independent runs of the simulation. There is little

variability between simulations. However, the posterior distribution of � shows that a

substantial proportion of the posterior distribution (about 38%) lies in the \extremely

long-tailed" region � � 1, while the estimates of loss associated with various

probabilities (Fig. 3(d)) serve to quantify the e�ect of the extreme long-tailedness of the

distribution on the losses of the company.

Up to this point, however, the analysis has all been based on an assumption of a

homogeneous process in which all the claims are e�ectively i.i.d. random variables. We

now look at this assumption a little more closely.

4 Claim-Type and Trend E�ects

So far, the analysis has not taken any account of the fact that the data are classi�ed

into seven di�erent types of claim. Also, there has been some suggestion of a trend in

the data, which we need to investigate further. Once again, we perform some initial non-

Bayesian analyses, which serve to motivate a Bayesian hierarchical modelling approach,

which is pursued in detail in section 5.

Let us �rst consider the e�ect of di�erent claim types. The issue here is that it is

possible that the seven di�erent types have completely di�erent distributions associated

with them, so that analysing them all as one common distribution will produce distorted

estimates of the true tail parameters.

A simple way to deal with this is to �t a separate GPD to each of the claim types.

The diÆculty here is that, for some of the types, the number of large claims is very small.

For example, with u = 5 the number of exceedances of the seven di�erent types is
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Fig. 3: Posterior densities of �, log and �, under the homogeneous Bayesian model

based on exceedances over u = 5, together with the predictive loss curves in (d). Four

independent runs of the same simulation are shown, to allow comparison between di�erent

simulations.
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38+4+12+3+9+7+0 = 73 while for u = 2:5 it is 64+9+17+8+23+11+0 = 132. In

neither case is it possible to say anything at all about type 7, for which there are only two

(relatively small) claims in the entire data set. Henceforth, we ignore type 7, reducing the

number of types actually considered to 6. Even in that case, there are not many claims of

types 2, 4 and 6, but the situation is rather better if we set u = 2:5 rather than u = 5.

Therefore, we now use u = 2:5 as the main threshold for reference.

Fitting separate GPDs to the six types, based on u = 2:5, we have estimated � values

(4:5; 1:5; 4:8; 2:5; 2:0; 5:7) and � values (0:90; 1:66; 0:97; 0:97; 0:59;�0:09). This immediately

suggests that type 5 and 6 have smaller � values than the others, and some further explo-

ration of di�erent models suggests that a reasonable one is to group the types into two

classes, one consisting of types 1,2,3,4 and the other of types 5,6. The �rst class yieds

parameter estimates b� = 3:98 (standard error 0.81) and � = 0:98 (0.20). The second hasb� = 3:07 (1.01) and b� = 0:32 (0.29).

One can formally test for di�erent models using deviance statistics. For example, if

we let model I denote the model with common GPDs for all types, model II with separate

GPDs for all types, and model III the last-named model in which there are just two classes,

then we �nd that the deviance statistic (twice the di�erence of log likelihood ratios) for

testing I against II is 11.92 with 10 degrees of freedom, for a p-value of 0.29. This suggests

that the separate-parameters model is not statistically signi�cant, but this may be due to

model II being overparametrised relative to the amount of data available. The test of I

against III yields deviance statistic 6.82 with 2 degrees of freedom, p-value 0.03. This is

much better and suggests that we do have a signi�cant result in this case. However we

need to be careful here as well | there is a strong hint of post-hoc selection in model III

which the quoted p-value does not allow for.

This whole analysis is unsatisfactory because of the small number of claims in certain

types, and this makes the interpretation of the deviance statistics diÆcult. However, the

analysis serves to draw attention to the possible importance of a claim-type e�ect, and in

section 5, we shall pursue this in more detail.

Now let us consider trends in the data. We have already seen in Fig. 2(a) that there

is evidence of a dip in the Z-statistics, meaning a rise in total claim rate, around year

10. The total claim rate increase is probably due to a change of strategy in the company

towards insurance purchase. A thorough review of why insurance was purchased was made

around year 10 which led to a close examination by asset managers of what they had been

claiming. Changes of policy wording, marketing campaigs, or changes of the balance of

the portfolio of insureds can lead to non-stationary behaviour in the loss history. However,

for the moment, we revert to the case in which all seven claim types are treated as part of

a homogeneous process.

A simpler way to look at this is just to plot the number of exceedances in each year.

Fig. 4 shows this for a variety of thresholds, together with lowess plots to indicate the
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trend. Given the high year-to-year variability, the results are not conclusive, but they do

point to a peak around years 10-11, with a secondary peak around year 4.

If we �x  and � and let �t be a linear function of time t, then the result as measured

by deviance statistics is not statistically signi�cant (p-vaue 0.24 compared with model (2)).

However if we allow a quadratic trend in �t, the result is signi�cant (p-value 0.03). The �t
is not substantially improved by adding further cubic and quartic terms. Similar results

are obtained by �xing � and letting log vary with time: a linear trend is not signi�cant,

but a quadratic trend is. The �t is not substantially improved by letting � and log vary

together, nor by allowing �t to vary as well. In passing, it may be noted that some models

in which the parameters varied sinusoidally within each year were tried, in the hope of

identifying seasonal e�ects, but this approach did not yield any statistically signi�cant

results.

One possible interpretation of these results is that the appearance of a trend might

be a consequence of the fact there are two outliers near the middle of the data. However,

when these outliers are removed and the models re-�tted, the results are very similar. For

example, with constant  t and �t and a quadratic trend in �t, the p-value against the case
of constant � was 0.04. With constant � and log t a quadratic function of t, the evidence
is even slightly stronger (p-value 0.03). Thus the evidence for a quadratic trend is not due

to the outliers. Further evidence of this is that all the �tted quadratic curves are consistent

with a peak in the rate of claims around year 10, somewhat later than the two outliers

but consistent with the general rise in insurance claims of the early 1990s. This therefore

suggests that we ought to take the trend seriously.

There remains the question of how to model the trend. Fitting a quadratic function

of time is a useful device for determining that a trend exists, but it is hardly a satisfactory

basis for future extrapolation (which would imply, for instance, that the rate of claims will

continue to fall after 1996). A more reasonable approach is to allow an additional random

e�ect to represent the variation from year to year. We now consider a way to do this, as

part of the hierarchical modelling approach already mentioned.

5 Hierarchical Models

In Section 4, it was argued that both type-of-claim e�ects and year e�ects are po-

tentially important to the analysis, but a simple-minded attempt to implement this (for

example, by performing separate analyses for each of the six types) runs into diÆculties

because of the small number of claims of certain types. In this section a Bayesian approach

to this problem is proposed, with the types allowed to be di�erent, but linked through a hi-

erarchical model. The approach is �rst developed without year e�ects, and then extended

to include year e�ects as well.

The hierarchical structure is as follows:
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Fig. 4: Numbers of exceedances above various thresholds, plotted by year, with lowess

smoothed curves.
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Level I. Parameters m�; m ; m�; s
2
�; s

2
 ; s

2
� are generated from a prior distribution

(speci�ed later).

Level II. Conditional on the parameters in Level I, parameters �1; :::; �J (where J is the

number of types) are independently drawn from N(m�; s
2
�), the normal distribution

with mean m�, variance s
2
�. Similarly, log 1; :::; log J are drawn independently from

N(m ; s
2
 ), �1; :::; �J are drawn independently from N(m�; s

2
�).

Level III. Conditional on Level II, for each j 2 f1; :::; Jg, the point process of ex-

ceedances of type j is generated from the Poisson process de�ned by (2) with param-

eters �j ;  j; �j.

The prior distribution for (m�; s
2
�) is of the well-known \Gamma-Normal" type: let

�� be drawn from a Gamma distribution with shape parameter � and scale parameter �
and, given ��, de�ne s

2
� = 1=�� and let m� � N(�; 1

���
). We represent this distribution as

(m�; s
2
�) � GN(�; �; �; �). Similarly, (m ; s

2
 ) and (m�; s

2
�) are independently drawn from

the same distribution. We �x � = � = � = 0:001 and � = 0 to represent a proper but very

di�use prior distribution.

It can easily be veri�ed that the GN family is conjugate: given �1; :::; �J and de�ning

�� = 1

J
(�1 + :::+ �J ), the posterior distribution of (m�; s

2
�) is GN(�0; �0; �0; �0) where

�0 = �+
J

2
;

�0 = � +
1

2

J�

J + �
(��� �)2 + 1

2

X
j

(�j � ��)2 ;

�0 =
�� + J ��

�+ J
;

�0 = �+ J:

Similar formulae apply, for course, for the  and � parameters.

The estimation procedure is then a Markov chain Monte Carlo (MCMC) simulation

algorithm in which the values of the unknown quantities in Levels I and II are updated as

follows:

1: (Gibbs step) Given current values of f�j ;  j; �j; j = 1; :::; Jg, new values of the Level

I parameters m�; m ; m�; s
2
�; s

2
 ; s

2
� are generated from the appropriate posterior

distributions.

2: (Hastings-Metropolis step) Given both the observed data and the current values of

m�; m ; m�; s
2
�; s

2
 ; s

2
�, each of the parameters f�j ;  j; �j; j = 1; :::; Jg is updated

by generating a small random perturbation and accepting or rejecting according to

the Hastings-Metropolis criterion.
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The procedure is repeated for up to 106 iterations, as in Section 3. Moreover, at the

end of each 100 cycles, a new value for \future loss" is generated conditionally on the

current values of �j ;  j; �j for each j, and the results aggregated over all classes. Thus we

obtain a MCMC sample from the predictive distribution, just as in Section 3. Time series

plots of the Level I and Level II parameters suggest that the MCMC algorithm settles

down to its stationary distribution quickly.

This model may be further extended to include a year e�ect, as follows. Suppose the

extreme value parameters for type j in year k are not �j ;  j; �j but �j + Æk;  j; �j. We �x

Æ1 = 0 to ensure identi�ability, and let fÆk; k > 1g follow an AR(1) process:

Æk = �Æk�1 + �k; �k � N(0; s2�):

This can be �tted using the same kind of Gamma-Normal prior as used for the other

parameters: if the prior distribution of (�; s2�) is GN(�; �; 0; �), then the posterior given

Æ2; :::; ÆK is GN(�0; �0; �0; �0) where

�0 = �+
K � 1

2
;

�0 = � +
1

2

KX
2

(Æk � �Æk�1)2 ;

�0 =

PK
2
Æk�1Æk

�+
PK

2
Æ2k�1

;

�0 = �+
KX
2

Æ2k�1:

To update (Æ2; ::; ÆK) within level II of the MCMC algorithm, each value in turn is

updated, using its conditional distribution given (Æk�1; Æk+1) (or just Æk�1 in the case

k = K) combined with the likelihood for the observed data in year k given Æk, in a

Hastings-Metropolis updating step.

This analysis was performed using all large claims above threshold u = 2:5. Fig. 5

shows crude boxplots of the posterior distributions of the Level II parameters, in which the

central black dot for each parameter represents the posterior median for that parameter

(taken directly from MCMC output) and the horizontal bars represent the �rst and third

quartiles of the posterior distribution. Plots (a) to (c) show that there is wide variability

in the �j and  j parameters for the di�erent types, but not for the �j parameters. This

suggests that our earlier conclusion, in which the values of �j seemed markedly di�erent

for di�erent types, was not correct, but there is a general masking e�ect causing the

common value of � to be estimated larger when type e�ects are ignored than when they are

included. In the analysis of section 3, the posterior mean of � was 0.955 and the posterior

probability of f� � 1g was 0.38. Here, the posterior means of each of the �j parameters are
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respectively .741, .749, .749, .726, .718, .701, and the posterior probabilities of f�j � 1g
are .045,.077,.075,.062,.059,.052. The distributions are still very long-tailed, but at least

we now have some assurance that we are dealing with distributions of �nite mean! Recall

that claim type j has in�nite mean if �j � 1.

The plots based on fÆkg in Fig. 5(d) show some common features with the plots in

Fig. 4. In particular, there appear to be large values in years 5, 11 and 12, but there

is also a large overlap in the posterior distributions for di�erent years, which casts doubt

on the statistical signi�cance of the year e�ects. Another feature is that there is little

evidence either of any long-term trend in the Æk's, or even of persistence from one year to

the next | the median values of Æk drop right back to near 0 in the last three years of

the data, while the posterior density of � (Fig. 6) is nearly 
at over the range (�0:5; 1),
suggesting that we could just as well have taken � = 0. A side comment here is that � was
not constrained a priori to lie in the interval (�1; 1), since in this kind of analysis there is

no need to make a stationarity assumption. Nevertheless, nearly all of the posterior mass

lies within this range, which adds further reassurance that we are dealing with a process

without long-term trends.

Thus our conclusions as far as year e�ects are concerned is that there are reasons to

think that the `blip' around years 11-12 was genuine, but it does not persist into subsequent

years, and there is no evidence of any long-term trend, to the extent that the scope of this

data set allows us to judge that.

Fig. 7 shows the \loss curves" (predictive distributions of future loss su�ered over a

one-year period) under various model assumptions. The seven curves plotted are based

on:

A. Homogeneous model of Section 3, using threshold u = 5. (This is the average of the

four curves in Fig. 3(d).)

B. Same as A, but based on u = 2:5 (to be consistent with later hierarchical analyses).

There is little di�erence between curves A and B, which is reassuring because it shows

that the largely arbitrary choice of threshold does not greatly in
uence the results.

C. Same as A, but omitting the two largest observations. This curve is well below A and

B, showing that the outliers are certainly \in
uential observations" even if they are

not genuine outliers, but it still represents a very long-tailed distribution. The choice

between A and C depends on whether it is desired to include \total losses" (in the

sense in which this expression was used in Section 1) in the assessment or not. There

appear to be no statistical grounds for excluding the outliers, but this is based on

just two \total losses" in the data set, and more data on these may suggest that it is

unreasonable to aggregate both total and partial losses into a single distribution.

D. Hierarchical model, u = 2:5, no year e�ects, outliers left in the data.
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Fig. 6: Posterior density of �

E. Hierarchical model, u = 2:5, no year e�ects, outliers omitted.

F. Hierarchical model with year e�ects, u = 2:5, outliers left in the data.

G. Hierarchical model with year e�ects, u = 2:5, outliers omitted.

Based on the close proximity of curves D and F, there is little evidence that year

e�ects are in
uencing our conclusions. However, there is a big gap between B and D (or F)

implying that allowing for type of claim does have a marked e�ect on our risk assessment.

As already remarked, it appears that if type e�ects are ignored, then the variability of

scale between di�erent types of claims has a masking e�ect causing the estimate of � to be
increased, resulting in a more pessimistic risk assesment. The relationship between curves

D and F with the outlier-removed versions E and G is similar to the relationship between

A and C: remove the outliers, and the assessed risk goes down, but at the cost of ignoring

\total losses" completely.

If we decide not to exclude the outliers, then the overall recommendation would be to

use curve F on the basis that it includes the type-of-claim e�ects which do appear to be

important, and that even though we are less sure about the signi�cance of the year e�ects,

it does appear to be desirable to take these into account having seen some evidence of their

importance.
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Fig. 8 shows curve F again plotted for 1-year losses, and the same curve recomputed

for 5-year and 10-year losses. One thing to note here is that the three curves do not

obey a simple probability-scaling relationship. For example, the 1-year loss sustained with

probability 1

100
(1310) is quite di�erent from the 10-year loss sustained with probability

1

10
(2820). In conventional terminology these would both be called the \100-year loss"

and, in the absence of trend or strong serial dependence, considered equivalent. The

di�erence is explained by the fact that we are considering, not the �tted distribution

with estimated parameters, but a predictive distribution in which the e�ect of unknown

parameters is accounted for by integration over the posterior distribution. This departs

not only from conventional actuarial practice, but also from more traditional methods of

looking at extreme values, such as the \POT" method and its variants (Davison and Smith

1990).

A �nal comment is that a \loss curve" de�ned with respect to the sum of all losses over

a �xed period of time is by no means the only way, or even necessarily the most sensible

way, of assessing the impact of future large insurance claims on a company. It would be

possible to extend the methodology in this paper to compute the predictive distribution of

loss under a variety of assumptions about, for example, future reinsurance or investment

strategies by the company. Ultimately this could be used to compare the e�ect of di�erent

strategies for managing large insurance claims.
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Fig. 8: Predictive loss curve using hierarchical model (curve F in Fig. 7) recomputed with

respect to losses incurred over a 10-year (top curve), 5-year (middle) and 1-year (bottom)

time horizon.

6 Conclusions

The methods described in this paper represent a completely new approach to the

assessment of actuarial risks. Models from extreme value theory, previously employed in

such contexts as the assessment of extreme 
oods or extreme air pollution episodes, are

combined with modern statistical methodology based on Bayesian inference, hierarchical

models, and Monte Carlo sampling. This allows us to compute a \loss curve" which

represents our best estimate of the probability of a loss of a given size over a given time

span, taking uncertainty of the model parameters into account.

The results con�rm that the distribution of claims is very long-tailed, though when

the type-of-claim e�ect is taken into account, the tail is less extreme (� � 0:7) than

when it is not (� � 0:9). This has a substantial e�ect of the loss curve, which suggests the

possibility that if we had even more ancillary information about the claims, we might come

up with even more precise assessments of the individual distributions which could result in

a further reduction of the assessed risks. When the analysis is further extended to include

year e�ects, we see that there is an apparent peak in the frequency of claims around years

11 and 12, which is probably not a spurious e�ect, because there was a known change of

policy towards insurance at about this time. However, there is no evidence of any long-term

trends, and including the year e�ects makes little di�erence to the estimated loss curve. An

intriguing possibility for future research is to extend the year e�ects to incorporate other

factors, such as environmental variables. This could be a way of exploring the possible

connection between patterns of insurance claims and long-term environmental e�ects such

as global warming.

Finally, the whole analysis is heavily in
uenced by the two very large claims that

correspond to \total losses", though the evidence in the data is that these are no more

extreme than would be expected of the largest two observations, given the long-tailed

nature of the entire distribution. Thus it is argued that there is no statistical reason to

treat these as separate from the rest of the distribution, though there may of course be

other reasons why the insurance industry would �nd it unreasonable to aggregate these

with the partial losses into a single overall distribution.

References

Davison, A.C. & Smith, R.L. (1990), Models for exceedances over high thresholds

(with discussion). J.R. Statist. Soc. B 52, 393-442.

Pickands, J. (1975), Statistical inference using extreme order statistics. Ann. Statist.

3, 119-131.

24



Smith, A.F.M. and Roberts, G.O. (1993), Bayesian computation via the Gibbs sampler

and related Markov chain Monte Carlo methods. J.R. Statist. Soc. B 55, 3-23.

Smith, R.L. (1989), Extreme value analysis of environmental time series: An appli-

cation to trend detection in ground-level ozone (with discussion). Statistical Science 4,

367-393.

Smith, R.L. and Shively, T.S. (1995), A point process approach to modeling trends in

tropospheric ozone. Atmospheric Environment 29, 3489-3499.

25


