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I. OVERVIEW OF UNIVARIATE
EXTREME VALUE THEORY



INSURANCE RISK EXAMPLE
(Smith and Goodman, 2000)

T he data consist of all insurance claims experienced by a large in-
ternational oil company over a threshold during a 15-year period
— a total of 393 claims.

Total of all 393 claims: 2989.6

10 largest claims: 776.2, 268.0, 142.0, 131.0, 95.8, 56.8, 46.2,
45.2, 40.4, 30.7.
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Some plots of the insurance data.



Some problems:

1. What is the distribution of very large claims?

2. Is there any evidence of a change of the distribution over
time?

3. What is the influence of the different types of claim??

4. How should one characterize the risk to the company? More
precisely, what probability distribution can one put on the amount
of money that the company will have to pay out in settlement
of large insurance claims over a future time period of, say, three
years?



EXTREME VALUE DISTRIBUTIONS

X1, Xo, ..., 1.0.d., F(CE) = PF{XZ' < 33}, My = max(Xl, ...,Xn),
PriM, < x} = F(x)".
For non-trivial results must renormalize. find a, > 0O, by, such that

Pr{Mn_bnﬁx} = F(anz 4 bn)" — H(x).
an

The Three Types Theorem (Fisher-Tippett, Gnedenko) asserts
that if nondegenerate H exists, it must be one of three types:

H(z) = exp(—e™ ™), all z (Gumbel)
H(z) = {(e)xp(—x_o‘) iig(l:réchet)
H(z) = {?xp(—|x|o‘) ””ig (Weibull)

In Fréchet and Weibull, o > 0.



The three types may be combined into a single generalized ex-
treme value (GEV) distribution:

ANV
H(w)=exp{—<1+£ ) }
vy

(y4+ = max(y,0))

where p is a location parameter, v > 0 is a scale parameter
and £ is a shape parameter. ¢ — 0 corresponds to the Gumbel
distribution, £ > 0 to the Fréchet distribution with a =1/¢, £ <0
to the Weibull distribution with a = —1/¢.

£>0: “long-tailed” case, 1 — F(z) o< 2~ 1/¢,

£ = 0: "exponential tail”

£ < 0: “short-tailed” case, finite endpoint at u — &/



EXCEEDANCES OVER THRESHOLDS

Consider the distribution of X conditionally on exceeding some
high threshold wu:

= D F

As u — wp =sup{z: F(x) < 1}, often find a limit
Fu(y) = G(y; ou, §)

where G is generalized Pareto distribution (GPD)

Gy;0,6) =1 — (1 + gg):/g.

Equivalence to three types theorem established by Pickands (1975).




The Generalized Pareto Distribution

—1/¢

Glyi0,6) =1 (1+£§)+

¢ > 0: long-tailed (equivalent to usual Pareto distribution), tail
like z—1/¢€,

¢ = 0: take limit as € — 0 to get

G(y;0,0) =1 —exp (—g) ,

o)
I.e. exponential distribution with mean o,

¢ < 0: finite upper endpoint at —o/¢.
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POINT PROCESS APPROACH

Two-dimensional plot of exceedance times and exceedance levels
forms a nonhomogeneous Poisson process with

ANA) = (L2 —t1)W(y;p, 1, §)

BNEY
W (y; pyah, €) = (1+§%>

(1 + &y —p)/v > 0).
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APPLICATION TO INSURANCE DATA

We apply the GPD and point process approaches to the 393
insurance claims described at the beginning of the talk.

GPD fits to various thresholds:

U Ny | Mean o &
Excess

0.5]1393 | 7.11 1.02 | 1.01
251132 | 17.89 | 3.47 | 0.91
5 73 28.9 6.26 | 0.89
10 | 42 | 44.05 | 10.51 | 0.c4
15| 31 | 53.60 | 5.68 | 1.44
20 | 17 | 91.21 | 19.92 | 1.10
25 | 13 | 113.7 | 74.46 | 0.93
50 §) 37.97 | 150.8 | 0.29
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Point process approach:

u | Ny p log ¢ §
0.5]/393| 26.5 | 3.30 | 1.00
(4.4) | (0.24) | (0.09)
25]132] 26.3 | 3.22 | 0.91
(5.2) | (0.31) | (0.16)
5 | 73 | 26.8 | 3.25 | 0.89
(5.5) | (0.31) | (0.21)
10 | 42 | 272 | 3.22 | 0.84
(5.7) | (0.32) | (0.25)
15| 31 | 22.3 | 2.79 | 1.44
(3.9) | (0.46) | (0.45)
20 | 17 | 22.7 | 3.13 | 1.10
(5.7) | (0.56) | (0.53)
25 | 13 | 20.5 | 3.39 | 0.93
(8.6) | (0.66) | (0.56)

Standard errors are in parentheses
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Predictive Distributions of Future Losses

What is the probability distribution of future losses over a specific
time period, say 1 year?

Let Y be future total loss. Distribution function G(y; u,v, &) —
in practice this must itself be simulated.

15



Traditional frequentist approach:

G(y) = G(y; 4,9, )
where [i, ¢, & are MLEs.

Bayesian:

C(y) = [ Glyi b, O)dm(is, € | X)

where 7(- | X) denotes posterior density given data X.
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Estimated posterior densities for the three parameters, and for
the predictive distribution function. Four independent Monte
Carlo runs are shown for each plot.
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II. MULTIVARIATE EXTREME
VALUE THEORY

18



Multivariate extreme value theory applies when we are interested
in the joint distribution of extremes from several random vari-
ables.
Examples:
e \Winds and waves on an offshore structure
e Meteorological variables, e.g. temperature and precipitation
e Air pollution variables, e.g. ozone and sulfur dioxide

e Finance, e.g. price changes in several stocks or indices

e Spatial extremes, e.g. joint distributions of extreme precipi-
tation at several locations
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LIMIT THEOREMS FOR MULTIVARIATE
SAMPLE MAXIMA

Let Y; = (Y;1...Y;p)? be i.i.d. D-dimensional vectors, i = 1,2, ...

M,; = max{Yig -, Yoq}(1 < d < D) — d'th-component maxi-
mum

Look for constants a,g4, b,4 Such that

And

M,;—0b
Pr{ nd —“nd < o0 d:l,,,_,D} — G(z1,...,xzp).

Vector notation:

Pr{Mn_bngx} — G(x).

an
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Two general points:

1. If G is a multivariate extreme value distribution, then each
of its marginal distributions must be one of the univariate

extreme value distributions, and therefore can be represented
in GEV form

2. The form of the limiting distribution is invariant under mono-
tonic transformation of each component. Therefore, without
loss of generality we can transform each marginal distribu-
tion into a specified form. For most of our applications, it is
convenient to assume the Fréchet form:

Pr{X, <z} = exp(—z™ %), 2>0,d=1,..,D.

Here aa > 0. The case a =1 is called unit Fréchet.

21



Basics of Multivariate Regular Variation
(following Resnick (2007), Chapter 6)

After transformation of margins,

| Y; B
tlL)I’QOtPr{b(t) S A} = v(A)
b(tx)

b regularly varying function of index a > 0 (i.e. b % as
t — oo for fixed £ > 0), v a measure on the cone

satisfying
v(tA) = t “v(A)

for any scalar ¢t > 0.
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The last statement implies that v can be decomposed into a
product of radial and angular components. Define

SD = {(:Cl,...,ZBD)I 5131ZO,---,CUDZO,CU1+---+33D:1}-

Consider sets A of form

A = {xeé’: |x]|| > r, iES}
[1x]]

for some S € Sp, ||x|| = L5, z;.

Then
v(A) = r “H(S)

for some measure H on Sp.
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First Interpretation:

Consider i.i.d. vectors {X;, i = 1,2,....} whose distribution is
MRV.

Let P, be a measure on [0, c]? consisting of the points {b}((—nl), ey b}((ﬁl)}'

Let A be a measurable set on £, then the expected number of
points of P, in A is

X
nPr{b(n)EA} — v(A) as n — oo.

With some measure-theoretic formalities, this shows that P, con-
verges vaguely to a nonhomogeneous Poisson process on £ with
intensity measure v.

25



Second Interpretation:

Fix 21 > 0,..,2p >0, 2 ;24> 0. Let A be the complement of

[0,21] X [0, z5] X ... X [0, zp].
Then

iIs the probability that P, places no points in the set A. By

Poisson limit theorem, this probability tends to e *(4) as n — oo.
Therefore, the limit of (1) is

G(x) = exp{-V(x)} (2)
where V(x) = v(A).

Moreover, using the radial-spectral decomposition of v,

V(x) = /8 | max (ﬂ> dH (w). (3)

Lj
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The function V(x) is called the exponent measure and formula
(3) is the Pickands representation. If we fix d' € {1,..., D} with
0 <zy < oo, and define z; = oo for d #= d’, then

V(x) = / max <%>dﬂ(w)

SD d:].,,D xd
1
= — wypdH (w)
J?d/ SD

sO we must have
/ widH(w) = 1, d=1,..,D, (4)
Sp

to ensure that the marginal distributions are correct.
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Note that
X

BV (x) = V(E)

(which is in fact another characterization of V) so

GF(x) = exp(—kV(x))

MRE)
- of})

Hence G is max-stable. In particular, if X1,...,X; are i.i.d. from
G, then max{Xy,..., X} (vector of componentwise maxima) has
the same distribution as £X;.

28



EXAMPLES
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Logistic (Gumbel and Goldstein, 1964)
D 1/r
Vix) = (Z :cdr> ,  r>1.
d=1

Check:
1. V(x/k) = kV(x)
2. V((400, 400, ..., 7, sy F00, +-00) = a; L

3. e V(X js a valid c.d.f.

Limiting cases:
e r — 1: independent components

e r — oo: the limiting case when X;; = X;,» = ... = X,;p with
probability 1.
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Asymmetric logistic (Tawn 1990)

0. \"c 1/re
o = 2z}
ceC \1€c v

where C is the class of non-empty subsets of {1,...,D}, rc >

1, 0,,=01ifidc, 0;.>0, Y .cc0;i.=1 for each i.

Negative logistic (Joe 1990)

o\ Te 1/7rc
Vo) = To+ ¥ <1>C{z(i@{°‘)} |

ceC': |c]|>2 1€cC

re <0, 0;.=0ifidc, 6;.>0, Yec(—1)Io; . <1 for each i.
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Tilted Dirichlet (Coles and Tawn 1991)

A general construction: Suppose h* is an arbitrary positive func-
tion on §; with my = [, ugh*(u)du < oo, then define

D
" _ —(D+1) s ( miwy - Mpwp ) |
(W) (2 miw) dl;ll T S mpwy, S mpwp

h is density of positive measure H, [s_ ugdH(u) = 1 each d.

AsS a special case of this, they considered Dirichlet density

r(za]) D Oéd 1

hiu) 114 r(ad)d 1 “d

Leads to

= D ag—1
pw) = [ o4 . TGt p ( oy )7

U r) (CagwgPt L\ S apuw,

Disadvantage: need for numerical integration
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ESTIMATION

e Parametric

e Non/semi-parametric

Both approaches have problems, e.g. nonregular behavior of
MLE even in finite-parameter problems; curse of dimensionality

if D large.
Typically proceed by transforming margins to unit Fréchet first,

though there are advantages in joint estimation of marginal dis-
tributions and dependence structure (Shi 1995)
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III. ALTERNATIVE FORMULATIONS
OF MULTIVARIATE EXTREMES
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e L edford-Tawn-Ramos approach

e Heffernan-Tawn approach

However the Heffernan-Tawn approach will be the subject of a
later talk so we concentrate here on the Ledford-Tawn-Ramos
approach

35



T he first paper to suggest that multivariate extreme value theory
(as defined so far) might not be general enough was Ledford and
Tawn (1996).

Suppose (71, Z») are a bivariate random vector with unit Fréchet
margins. Traditional cases lead to

const. x r—1 dependent cases

const. x r—2 exact independent

The first case covers all bivariate extreme value distributions ex-
cept the independent case. However, Ledford and Tawn showed
by example that for a number of cases of practical interest,

PI’{Zl >1r, Zo >’I“}N{

Pr{Z1 >r, Zo>r}r~ L(T)r_l/n,

where L is a slowly varying function (ﬁ%ﬁ’“’)) 1 as r — oo) and

n € (0, 1].

Estimation: used fact that 1/n is Pareto index for min(Zq, Z5).
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More general case (Ledford and Tawn 1997):

Pr{Z1 > 21,20 > 2z2,} = L(21,22)2] ‘25 2,

O<n<1;,¢c1+co= %; L slowly varying in sense that

- L(tzy,t20)
= |im .

They showed ¢g(z1,22) = g« (zl—l—z ) but were unable to estimate
g« directly — needed to make parametric assumptions about this.

More recently, Resnick and co-authors were able to make a more
rigorous mathematical theory using concept of hidden regular
variation (see e.g. Resnick 2002, Maulik and Resnick 2005,
Heffernan and Resnick 2005; see also Section 9.4 of Resnick
(2007)).
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Ramos-Ledford (2007a, 2007b) approach:

Pr{Z1 > 21, %2> 20,} = L(z1,22)(2122) /"),

L(uxq,ux
lim (uzy, uw) = g(x1,22)

u=o0  L(u,u)
L1
I x1 + o

Limiting joint survivor function

1 w 1—w 1/n
Pr{X1>x1,Xo >xp} = /077 min , dH;';(w),

L1 L2

1 = n/ol{min(w,l—w)}l/ndH;;(w).
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Multivariate generalization to D > 2:

Pr{X1 >z1,....Xp>xp}

Open problems:

e How to find sufficiently

, w 1/n
min (—d>} dHp(w),

| 1<d<D \ 74

,

1/n
min : dH :
| 1<d<D wj} p(w)

rich classes of Hj(w) to derive para-

metric families suitable for real data

e How to do the subsequent estimation
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IV. MAX-STABLE PROCESSES
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Suppose Y;, t € T is a stochastic process (e.g. spatial, temporal)

Normalization condition: for each n > 1, there exist constants
ant, bnt, t € 7 such that, for any tq,....,tm € 7,

Pr < xtja J — 1,....,m — th,...,tm(ajt17"'7xtm>'(5)

At .
nt‘7

Then Gty t,,(xty, -y ¢,,) 1IS@a MEVD. When (5) holds in a stochas-
tic process sense the limiting process is called max-stable.

41



For this section of the talk, I describe a particular class of
max-stable processes called M4 processes (Smith and Weissman
(1996),Zhang (2002),Smith (2003) Chamu Morales (2005),Zhang
and Smith (2007)). Alternative approaches will be described in

the talk by D. Cooley.
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Suppose {X,4, ¢t = 0,£1,£2,..., d = 1,...,D} form a stationary
time series in D dimensions.

Suppose we transform each X;; to a variable Y;; which is unit
Fréchet (P{Y < y} = e—l/y). For example, a common method
would be to fit a GPD to all exceedances of X;; above a high
threshold, use the empirical distribution function for all values
below the threshold, and apply the probability integral transfor-
mation.

The process {Y,;} is called a multivariate maxima of moving
maxima process (M4 for short), if it is defined by
Yig = maxmaxagpdZei—k-
where ay 4 > 0 are coefficients such that > ,> paprq = 1 for
each d, and {Z;;,/=1,...,L, i =0,%+1,£2,...,} is a double array
of independent unit Fréchet random variables.
43



Elementary Properties

Pr{Y;; < y;q for all ,d}

PriasraZei—r < yiq Tor all £,k,q,d}
PriayraZei < Yitrq for all £,k,i,d}

= Pr{Z,; < min Yitkd ¢or all l,1}

 kd ag k.d

_ exp( ZZ ad cwk:d>.

Yi+k,d

So
Pr{Y;d < nYid for all i,d}n = PI’{Y;;d < Yid for all i,d} (6)
and for a particular (i, d),

D02k A¢ k d 1
Pri{Yiqa < wv,q} = exp <— — = exp|— . (7)
Yi d Yi d

(7) shows that the margins are unit Fréchet while (6) shows that
the joint distributions are max-stable.
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If we ignore the time series component and just treat this as
a model for a single random vector (Y7,...,Yp), the equation
simplifies to

a
Pr{Y;<wyg4 d=1,...,D} = exp (—ch?x M) : (8)
/ Yd

Recall the formula for the spectral measure:
Wy
Pr{Y;<wys d=1,..,D} = exp / ‘max || dH(w)
SD j=1,...,d y]

where Sp is simplex. Thus, (8) is equivalent to defining a spec-
tral measure H that is discrete with mass at points

(ag ;- a0.p)
>.d 0¢.d
The condition g wgH(w) = 1, for d =1, ..., D, is equivalent to
the statement that > yay 4 =1 for all d.

GSD.
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Difficulties of Estimation

Yig = mMaxmaxagj o i—k-
Problem of signature patterns. If a specific Zé,k IS much larger
than its neighbors, then for ¢ close to k,

Yida X api_f.d
Under the model, this pattern will be replicated throughout the
process. Such patterns cannot be expected in real data, so we

Mmust devise methods of estimation that take account of the fact
that the M4 process is not an exact model.
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Davis and Resnick (1989, 1993) developed many properties of
“max-ARMA" processes but did not devise a good statistical
approach.

Hall, Peng and Yao (2002) proposed an alternative estimation
scheme for max-ARMA processes, based on the empirical distri-
bution distribution.

Chamu Morales (PhD thesis, 2005) developed an approximate
MCMC technique

Zhang and Smith (2007) (but originally Zhang (2002)) general-
ized the Hall-Peng-Yao technique to M4 processes

47



APPLICATION OF M4 PROCESSES TO
FINANCIAL DATA
(Smith 2003)
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We use neg daily returns from closing prices of 1982-2001 stock
prices in three companies, Pfizer, GE and Citibank.

Univariate EVT models were fitted to threshold «w = .02 with
results:

Series Ny 7 log £
(SE) (SE) | (SE)
Pfizer 518 | .0623 | —4.082 | .174
(.0029) | (.132) | (.051)
GE 336 | .0549 | —4.139| .196
(.0029) | (.143) | (.062)
Citibank 587 | .0743 | —3.876 | .164
(.0036) | (.119) | (.012)
However, diagnostic plots show a problem — sign of volatility.
(See in particular plot (b) — QQ plot based on intervals between
threshold exceedances — these are clearly inconsistent with a

simple Poisson processes.)
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Estimate volatility by fitting a GARCH(1,1) model to each se-
ries. Standardize returns data, recompute threshold analysis
(u = 1.2). Diagnostic plots now look OK (Pfizer shown, others

similar)

Series Nu 7 log £
(SE) | (SE) | (SE)
Pfizer 411 | 3.118 | —.177 .200
(.155) | (.148) | (.061)
GE 415 | 3.079 | —.330 .108
(.130) | (.128) | (.053)
Citibank 361 | 3.188 | —0.118 | .194
(.157) | (.126) | (.050)
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After fitting a univariate extreme value model to each series, the
exceedances over the threshold for each series are transformed to
have marginal Fréchet distributions. On the transformed scale,
the data in each series consist of all values in excess of threshold
1.

On this transformed scale, pairwise scatterplots are shown of the
three series against each other on the same day (top 3 plots),
and against series on neighboring days. The two numbers on
each plot show the expected number of joint exceedances based
on an independence assumption, and the observed number of
joint exceedances.
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Also shown is a plot of Fréchet exceedances for the three series
on the same day, normalized to have total 1, plotted in barycen-
tric coordinates. The three circles near the corner points P, G
and C correspond to days for which that series along had an
exceedance.
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After fitting an M4 model, a new data set was simulated using
the fitted model. The following figures correspond to the earlier
ones, but using simulated data. This is a check on the realism
of the fitted model.
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Finally, we attempt to validate the model by calibrating observed
vs. expected probabilities of extreme events under the model.

The “extreme event” considered is that there is at least one
exceedance of a specific threshold v by one of the three series in
one of the next 10 days after a given day.

To make the comparison honest, the period of study is divided
into four periods each of length just uder 5 years. The univariate
and multivariate EV model is fitted to each of the first three 5-
year period, and used to predict extreme events in the following
period.

The final plot shows observed (dashed lines) and expected (solid
lines) counts for a sequence of thresholds u. There is excellent
agreement between the two curves.
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