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Generalized Extreme Value (GEV) Distribution
o G(y) = exp {_ (1+ gy—;é)‘”‘f} defined when 1+ ¢¥£ > 0

e Shape parameter &

— ¢ > 0: long-tailed, upper bound oo, ultimately 1 — G(y) ~ ey~ /¢ for
some ¢ > 0

— £ — 0: exponential tail, Gumbel distribution

— ¢ < 0: short-tailed, endpoint at p —%

e Estimation: MLE, PWM, Baves

e Kelowna data: fit to 1984—2020, use this to determine " how extreme"
was 2021

e MLE shows E: —0.42, estimated endpoint 39.8

|Parameter  Estimate SE tvalue  pvalue

|mu 35.7119  0.3098 115.2624 0
1 log sigma 0.5477 0.1305 4.1962 0
%1 -0.4203 0.1007 -4.1718 0




Adding a Trend
Gi(y) = exp {_ (1 + g’y_;&)—lz”&}

pe = PBo + P

Here, we take x; to be global mean surface temperature for year t
(HadCRUTS5)

Statistically significant against no-trend model (p ~ 0.03)

£ = —0.29, estimated endpoint for 2021 is 41.6

Parameter  Estimate SE tvalue pvalue

betal 34,3983 0.6427 53.5175 0
logsig 0.4088 0.1292 3.1632 0.0016
i -0.2879 0.1101 -2.6139 0.009
betal 2.6445 1.1503 2.2992 0.0215




HadCRUTS Global Temperature Means

0.5

Global Temperature Anomaly
0.0

-0.5

*2
.
o
1.".
I' - .‘; d
* 1- :i. L .
. ) .5.: ﬂ:l::.:
. . . . .l'. . . .
Vant, 0o ¥ y
. T a .- . s = *
-: .l'..;i .‘l.
| | | |
1830 1900 1930 2000

Year




Better Way to Estimate Exceedance Probability

e Bavesian predictive analysis
o If periv(p,0,6) =1 —exp {— (1+ {;‘%)_1"‘5}, compute

?T(chrit|Y) — //\/p(lrit(f-"fﬁ a, ‘S) ’ W(-"":'? a, ilY)(gj_.!ddef

e In practice: use MCMC to produce simulation from posterior
e Adaptive Metropolis (Haario et al., 2001) works very well

e [ he posterior mean of pqit is > 0, but the posterior distribution still has
a large atom at O

e 1/pqit is called the return value (RV) for yqit, but it's still questionable
whether to treat the posterior mean of peit as a point estimate



Exceedance Probability
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e This style of analysis shows how we can relate the distribution of a local
variable of interest to that of a global variable (which, for convenience,
we have taken to be global mean temperature) for which the causality
question has been widely studied

e However to get quantitative estimates, we need to look at an actual
climate model (or several of them)
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I have repeated the previous analyses with global mean temperature from
HadGEM3 in place of observational data

For a counterfactual run, I used data from 1884—1920 instead of 1984—
2020

This isn't the ideal way to do it — better to use a “natural forcings” run
that includes solar fluctations and volcanic eruptions.

A caveat about this approach: the model runs started in 2015 so the
data post-2014 are projections, not based on actual temperatures

The quoted RVs are volatile, but they give an idea how the estimated
probabilities vary with the different models

10



Exceedance Probability
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e Finally, we can use the climate model projections combined with the GEV
model to estimate future probabilities of exceeding this high temperature
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Frojected Probability
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Rapid attribution analysis of the
extraordinary heatwave on the Pacific Coast
of the US and Canada June 2021.
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WWA Analysis of the Pacific Northwest
Heatwave

Main findings

e Based on observations and modeling, the occurrence of a heatwave with
maximum daily temperatures (TXx) as observed in the area 45-52 °N, 119-123
°W, was virtually impossible without human-caused climate change.

e The observed temperatures were so extreme that they lie far outside the range of
historically observed temperatures. This makes it hard to quantify with
confidence how rare the even’t was. In the most realistic statistical analysis the
event is estimated to be about a 1 in 1000 year event in today’s climate.
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Smmary of T heir Method

Data on TXx (annual max daily temperature) over 45—-52°N,
119-123°W

Model extremes as a function of GMST (GEV distribution)
iy = o+ B1GMS Ty, o =0, & =&

Compare 2021 with late nineteenth century (GMST 1.2°C
lower than 2021) or projected future events (GMST 0.8°C
higher than 2021)
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Figure 6. GEV fit with constant scale and shape parameters, and location parameter shifting proportional
to GMST of the index series. No information from 2021 is included in the fit. Left: the observed TXx as a
Junction of the smoothed GMST. The thick red line denotes the location parameter, the thin red lines the 0
and 40-vr return times. The June 2021 observation is highlighted with the red box and is not included in
rhis fit. Right: Renirn time plois for the climare of 2021 (red) and a climate with GMST 1.2 °C cooler
(blue). The past observations are shown twice: once shifted up to the current climate and once shifted

down to the climate of the late nineteenth century. Based on ERAS extended with operational ECMWF
analvses for June 2021,
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Figure 7. As Figure 6 but demanding the 2021 event is possible in the fitted GEV function, i.e., the upper
bound is higher than the value observed in 2021.
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Figure 8. As for Figure 6 but including data from the 2021 heatwave into the fit.
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How Extreme was Hurricane Harvey?

Hurricane Harvey hit the Houston area at the end of August
2017

Very excessive precipitations led to major flooding

Meteorologically, associated with a stalling of the storm sys-
tem just off the Gulf coast, but recent work by Kossin and
others has suggested such events are becoming more com-
mon overall

Statistically, questions about (a) just how extreme an event
this was, (b) whether such events will become more common
in the future
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Photo Credits: NASA, CNN, Wikipedia, National Geographic



Statistical Methodology

e Annual maxima follow GEV:

. —1/¢
()]
Tt +

e Assume 7 and log 7¢ are linear functions of SST; (Gulf of
Mexico annual mean SST in year t) and CO2; (global mean
CO» in year t).

Pr{Y: <y} = exp

e AIC chooses model:
ne = 01+ 045511 4 05C 02,
log T¢ 0> + 0551;.
& = 063.
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Parameter Estimates

Parameter | Estimate | Standard error | t-statistic | p-value
01 4.70 0.29 16.22 0.00
0> 0.56 0.13 4.25 0.00
03 0.15 0.09 1.64 0.10
04 3.06 1.49 2.06 0.04
Os 1.95 0.82 2.36 0.018
f6 1.24 0.50 2.48 0.013
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How Can We Extend This to a Spatial Field?

e Full "detection and attribution” not so far attempted, but
this follows Russell et al. (Environmetrics, 2020)

e Precipitation data, 326 stations in 6 states bordering Gulf

e Model n:(s), 74(s), &(s) in year t at station s:
nt(s) 01(s) + 02(s)S STy,
log 7¢(s) 03(s) + 04(s)S STz,

§e(s) = 05(s),

T
e O(s) = (Ql(s) ... B5(s) ) modeled as a 5-dim spatial pro-
cess based on co-regionalization (VWackernagel and many
others)

e [ wo-stage estimation procedure allows also for spatial cor-
relation among individual measurements
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1. Research aim: To understand how sea-level extremes
along the U.S. East Coast have varied over space and time
In the past and to make predictions for how these
patterns will evolve in the future under different climate

change projections.

2. Tools: Oceanography, climate-science, statistical
methodology (i.e. extreme value theory. spatial statistics)

3. Data:

(a) Hourly sea-level time-series taken from NOAA observation
stations along the U.S. East Coast over a 40-year period.

(b) Corresponding model-generated (ADCIRC) reconstruction
of historic sea-level time-series.

27



NOAA Sea-Level Observation Stations
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Modeling Questions

1. How do the GEV parameters and r-year return levels
depend upon their spatial location?

2. How should the NOAA data be used to validate the ADCIRC
reconstruction?

3. How should one incorporate global climatic information?
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|dea (Russell et al. 2019): Multivariate spatial extreme value
model fit by a 2-stage inference procedure.

1. a. Independently model the yearly (detided daily mean)
sea-level maxima at each station using the GEV
distribution.

b. Perform inference via MLE.

2. a. Model the MLE output from stage 1 as a multi-dimensional
Gaussian process with measurement error.
b. Perform inference via MLE.

The output of stage 2 can then be used to spatially interpolate
the GEV parameters and return-levels along the coastline via

Kriging.
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Methods: Latent Process with Measurement Error

Let Y(s) be the yearly (detided daily mean) maximum sea-level
at location s € D c R? and assume

Y(s) ~ GEV(u(s),o(s).£(s))

To characterize how the sea-level extremes vary spatially
define, at both observed and unobserved locations, the latent
Gaussian process

6(s) = B+n(s) (4)

for 8(s) := (u(s), log(c(s)),£(s))".

Here 3 Is a vector of mean parameter values over D and n(s) a
vector of spatially correlated random effects.
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Methods: Latent Process with Measurement Error

The spatially correlated random effects are defined by the
relation

n(s) := Ad(s) (5)

where A Is a lower-triangular matrix and 4(s) is a vector of
independent second-order stationary Gaussian processes with
mean 0 and covariance function

Cov(i(s), 5i(S")) = exp (_HS - S'H) (6)

Pi

fors, s’ € D where p; > 0 Is the range parameter.

32



Methods: Latent Process with Measurement Error

For NOAA station [ € {1,...,26}, let 8(s)) be the point-wise MLE
for the GEV distribution associated with Y(s;). We assume that

0(s)) = 0(s1) + €(s1) (7)

where €(s;) Is estimation error that is independent of n.

Thus, the latent process with measurement error at station [ is
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Further, assume that

€ := (e(51), ..., €(S26)) " ~ Nys(0, W) (11)

where W Is unknown and estimated via a regularized
non-parametric bootstrap procedure:

Wtap = Wps o Ttap()*) (12)

where Wy Is the non-parametric bootstrap estimate of W and
Ttap(A) Is a taper matrix with range parameter A > 0
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Thus,

and hence

O ~ Nig (e ® B,X4 , + Wiap) (15)

Therefore, given © (i.e. the output from the 1st stage of
inference) and W;qp, we can obtain 3, p and A via MLE.
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Preliminary Results: 100-Year Return Level Surface for Yearly

(Detided Daily Mean) Sea-Level Maxima

Lt
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Summary and Conclusions

e Univariate time series:

— GEV model allows global variables as covariates; attribution of local
extreme events may then follow from studies of global attribution

— Identifying the right global variable is a challenge: not clear to me
that GMST is the way to go

— T he zero-probability problem is alleviated by Bayesian analyses but
it's not going away

— Other important issues such as how to integrate observational with
model data and how to combine different models

— Maybe need to think of a different formulation...

e Spatio-temporal datasets:

— Spatial dependence at two levels — model p, o, £ as spatial processes
but still need to consider spatial dependence of the errors

— The W-matrix approach is one way to do it but there are others (e.g.
max-stable processes)

— Spatial-temporal analysis allow us to combine different variables in
one analysis (may avoid zero-probability problems) and also addresses
selection effects



