
STATISTICS 174: APPLIED STATISTICS

TAKE-HOME FINAL EXAM

POSTED ON WEBPAGE: 6:00 pm, DECEMBER 6, 2004

HAND IN BY: 6:00 pm, DECEMBER 7, 2004

This is a take-home exam. You are expected to work on it by yourself and to
hand it in to my office (Smith 201) no later than 6:00 pm on Tuesday, December
7. The exam itself and both data sets are posted on the course web page.

You are allowed to consult all course materials and to use computer software,
including Excel, SAS, R, S-PLUS and Matlab. Although some of the questions
are “pocket calculator” exercises, in all parts of the exam, you are allowed and
actively encouraged to use the computer if it simplifies your task.

You are allowed and actively encouraged to quote any formulas or results
from the text or homework exercises without repeating the derivation. However
if you do this, you should clearly cite what result you are quoting.

Question 1 is largely a theoretical exercise and you are expected to show full
working. Questions 2 and 3 are more computational exercises in which you are
expected to use one of SAS, R or S-PLUS. In these exercises, you should not
hand in lengthy computer output, but only those parts of the output that are
directly relevant to the question. However, in all parts of the exam, you are
expected to describe what you did (and why) in enough detail that I could, if I
wanted to, reproduce your calculations.

You are not allowed to consult with each other or with any other person other
than myself. Below, I ask you to sign a “pledge” that you have abided with
this rule. PLEASE MAKE SURE YOU SIGN THIS PLEDGE AND HAND
IN THIS PAGE WITH YOUR SOLUTION. As with the previous exams in the
course, I remind you that the university’s Honor Code is in effect.

Grading: Question 1 is worth 40 points, questions 2 and 3 are worth 30 each.
You are encouraged to tackle the whole exam, and all answers will be graded.
[However, don’t feel you have to answer everything! As a rough guide, I expect
that over the whole course (average of homeworks, midterm and final), a score
of 55–60% will suffice for a P and a score of 75–80% for an H.]

Good luck, and feel free to contact me if you have any queries!

IMPORTANT! Please sign the following and return it with your exam.

Pledge: I certify that this is my own work and I have not discussed this exam
with any other person except the instructor.

Signed: Date:
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1. A response surface design consists of nine design points (xi1, xi2) with
xi1, xi2 ∈ {−1, 0, 1}. In this question the objective is not to find the
location at which the response is minimized or maximized, but to predict
the response on a circle of radius 1 around the origin (Fig. 1).
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Fig. 1. Illustration of response surface design.

(a) Suppose we fit the model

yi = β0 + β1xi1 + β2xi2 + β11x
2
i1 + β12xi1xi2 + β22x

2
i2 + εi (1)

where εi, i = 1, ..., 9 are independent N(0, σ2). Suppose also we try
to predict the result of a future experiment

y∗ = β0 + β1x
∗
1 + β2x

∗
2 + β11x

∗
1
2 + β12x

∗
1x
∗
2 + β22x

∗
2
2 + ε∗ (2)

independent of y1, ..., y9, where x∗1 = cos θ, x∗2 = sin θ, some θ be-
tween 0 and 2π.

The obvious predictor is ŷ∗ = β̂0 + β̂1x
∗
1 + β̂2x

∗
2 + β̂11x

∗
1
2 + β̂12x

∗
1x
∗
2 +

β̂22x
∗
2
2 where β̂0, β̂1, ..., are least squares estimators under the model

(1). In terms of θ and σ2, find an expression for E
{
(ŷ∗ − y∗)2

}
, and

show that this must lie between 197
144σ2 and 14

9 σ2.
(b) Suppose the true model is again (1), but that the data are analyzed

under the incorrect assumption

yi = β0 + β1xi1 + β2xi2 + β11x
2
i1 + β22x

2
i2 + εi. (3)

Suppose that under (3), the predictor of y∗ is ỹ∗. In terms of θ, σ2

and the true value of β12, find expressions for the mean and variance
of y∗ − ỹ∗, and hence for E

{
(y∗ − ỹ∗)2

}
.
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(c) Show that a necessary and sufficient condition for ỹ∗ to have smaller
mean squared prediction error than ŷ∗ is 4β2

12 < σ2, except when
(x∗1, x

∗
2) is one of (1, 0), (0, 1), (−1, 0) or (0,−1). Why are those

cases different, and what happens then?

The rest of this question is designed to explore how effective the
PRESS statistic is in making the correct model choice.

(d) Compute the leverage values {hii, i = 1, ..., 9} for each of the models
(1) and (3).

(e) For each of i = 1, ..., 9 and assuming model (1), calculate E{(yi −
ŷi(i))2}.

(f) For each of i = 1, ..., 9 and assuming that (1) is the true model, but (3)

is used for the estimation, show that E{(yi−ŷi(i))2} =
(

x∗i1x∗i2β12
1−hii

)2

+
σ2

1−hii
. Hence evaluate this expression for i = 1, ..., 9.

(g) By comparing the expected values of the PRESS statistics computed
under each of the models (1) and (3), but assuming everywhere that
(1) is the true model that generated the data, show that the PRESS
criterion tends to favor model (3) if and only if 7

4β2
12 < σ2. Comment

briefly on the discrepancy between this answer and the one in (c).

2. A recent published paper concerning a response surface experiment in-
cluded the following data set:

x1 x2 x3 y

-1.00000 -1.00000 -1.00000 0.926
-1.00000 -1.00000 1.00000 0.998
-1.00000 1.00000 -1.00000 1.072
-1.00000 1.00000 1.00000 1.091
1.00000 -1.00000 -1.00000 0.926
1.00000 -1.00000 1.00000 1.007
1.00000 1.00000 -1.00000 1.009
1.00000 1.00000 1.00000 1.058

-1.68179 0.00000 0.00000 1.232
1.68179 0.00000 0.00000 0.997
0.00000 -1.68179 0.00000 0.945
0.00000 1.68179 0.00000 1.231
0.00000 0.00000 -1.68179 0.927
0.00000 0.00000 1.68179 1.234
0.00000 0.00000 0.00000 1.245
0.00000 0.00000 0.00000 1.232
0.00000 0.00000 0.00000 1.212
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0.00000 0.00000 0.00000 1.201
0.00000 0.00000 0.00000 1.222
0.00000 0.00000 0.00000 1.213

Here x1, x2, x3 were three variables whose optimal values the experimenter
was trying to find, and y was the response variable.

(a) Fit the alternative models

yi = β0 + β1xi1 + β2xi2 + β3xi3 + β11x
2
i1 + β22x

2
i2 + β33x

2
i3 + εi (4)

and

yi = β0 + β1xi1 + β2xi2 + β3xi3 + β11x
2
i1 + β22x

2
i2 + β33x

2
i3

+β12xi1xi2 + β13xi1xi3 + β23xi2xi3 + εi (5)

where xi1, xi2, xi3 are the observed values of x1, x2, x3 in row i.
Which model do you prefer? Find the values of the coefficients, and
their standard errors, and verify that each of β̂11, β̂22, β̂33 is negative,
under either model.

(b) In the published paper, the researchers favored model (4). Assum-
ing this model, let (x∗1, x

∗
2, x

∗
3) be the point at which the expected

response is maximized. Find point estimates for x∗j , j = 1, 2, 3.

(c) Is this a sound analysis? What things might be wrong with it and
how might they be corrected?

[Note: I am expecting you to run some of the standard regression
diagnostics, but unlike some of the earlier exercises, I don’t want you
to go systematically through all the diagnostics. There is a specific
problem somewhere in this analysis; I want you to find it and say
how you would deal with it.]

(d) Now return to the analysis of part (b), and suppose we want to find
a setting of (x∗1, x

∗
2, x

∗
3) which the company will use for future indus-

trial production. For reasons having to do with the specifics of the
industrial process, the company decides to consider only solutions for
which x∗2 = x∗3 (x∗1 is unconstrained). Denoting the common value of
x∗2 and x∗3 by x∗2, find an estimate, standard error and 95% confidence
intervals for x∗2 using the delta method. Also find a 95% confidence
interval using Fieller’s method, and compare the two results.
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3. This question is about an analysis of variance experiment, reinterpreted as
a linear regression. It does not assume detailed knowledge about analysis
of variance.

A recent paper discussed the following experiment related to the extrac-
tion of juice from blueberries. Three control variables were considered:
temperature, level of sulfur dioxide (SO2) and citric acid (coded as 0 or
1). Two response variables were measured: ACY (anthocynanin) and TP
(total phenolics), both of which are considered to have beneficial health
effects. The data were as follows:

Number Temp SO2 Citric ACY TP
(deg C) (ppm) Acid

1 50 0 0 27.5 55.9
2 50 0 1 42.6 62.6
3 80 0 0 50.2 71.4
4 80 0 1 62.4 88.8
5 50 50 0 92.2 307.3
6 50 50 1 96.5 316.4
7 80 50 0 97.5 420.6
8 80 50 1 102.2 413.8
9 50 100 0 90.6 386.0

10 50 100 1 82.2 337.5
11 80 100 0 92.1 641.0
12 80 100 1 91.4 684.3

Consider the model

yijk = µ + αi + βj + γk + δij + ηik + ζjk + εijk, (6)

where αi, i = 1, 2, βj , j = 1, 2, 3, γk, k = 1, 2 are main effects due
to temperature, SO2 and citric acid respectively, δij , ηik, ζjk are interac-
tion terms, and εijk are independent N(0, σ2) errors. To make the model
identifiable, assume any of αi, βj , γk, δij , ηik, ζjk is 0 when any of i, j, k
is 1 (note that this is a different identifiability condition from the ones
assumed in most of the examples of Chapter 8).

(a) Write the model (6) in the form Y = Xβ+ε, where Y is the vector of
responses (of dimension 12), the vector β consists of all the non-zero
unknown parameters, and X is a design matrix of zeros and ones.
(You should find that X is 12× 10.)

(b) Using SAS’s PROC REG or the “lm” command in R or S-PLUS,
fit the model (6) to the data, where temperature, SO2 and citric
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acid are the three factor variables and ACY is the response. Also
consider possible transformations of the response and indicate which
you prefer. (For example, you should consider both the square root
and the log transformation, and others in the Box-Cox family if you
have time. It is not necessary to give detailed tables of parameter
values, but state the value of the residual sum of squares or the
estimated s, and any other statistics that are directly relevant to the
question.)

(c) Now using whatever transformation you selected in (b), decide which
of the main effects and interactions is significant. (Again, I don’t want
very detailed regression output, but indicate the main steps of your
analysis and how you did them.)

(d) Repeat the steps of (b) and (c) for the TP response variable. (It’s
not necessary that the transformation of TP be the same as that for
ACY.)

(e) Write a short report on your conclusions for the company. Recall that
the company’s objective is to choose one setting of the three control
variables so that both ACY and TP are high. Your report should
indicate which settings you recommend, but should also make clear
to what extent the differences among different possible settings are
statistically significant, and whether you would recommend further
experimentation.

6



SOLUTIONS (MARKS FOR EACH PART IN BRACKETS)

1. (a) {8} ŷ∗ = cT β̂ where cT = ( 1 x∗1 x∗2 x∗1
2 x∗1x

∗
2 x∗2

2 ). Then
E{(ŷ∗ − y∗)2} = σ2{cT (XT X)−1c + 1}, by equation (3.25) (p. 124)
of the course text.

For X, XT X and (XT X)−1, refer to p. 358 of the course text. In
particular,

(XT X)−1 =




5
9 0 0 − 1

3 0 − 1
3

0 1
6 0 0 0 0

0 0 1
6 0 0 0

− 1
3 0 0 1

2 0 0
0 0 0 0 1

4 0
− 1

3 0 0 0 0 1
2




Hence with x∗1 = cos θ, x∗2 = sin θ,

cT (XT X)−1c = σ2

(
5
9

+
1
6

cos2 θ +
1
6

sin2 θ +
1
2

cos4 θ

+
1
4

cos2 θ sin2 θ +
1
2

sin4 θ − 2
3

cos2 θ − 2
3

sin2 θ

)

= σ2

(
5
9
− 3

4
cos2 θ sin2 θ

)

using cos2 θ + sin2 θ = 1 and 1
2 cos4 θ + cos2 θ sin2 θ + 1

2 sin4 θ =
1
2 (cos2 θ + sin2 θ)2 = 1

2 .

Hence

E{(ŷ∗ − y∗)2} = σ2

(
14
9
− 3

4
cos2 θ sin2 θ

)
. (7)

But cos2 θ sin2 θ lies between 0 and 1
4 (the maximum is when cos2 θ =

sin2 θ = 1
2 ), so (7) lies between 197

144σ2 and 14
9 σ2, as claimed.

(b) {8} We may rewrite (1) in the form Y = X1γ+X2β12+ε where γT =
( β0 β1 β2 β11 β22 ), X1 is the matrix X (as on page 358 of the
course text) with the fifth column removed, and X2 is the fifth column
of X, in other words XT

2 = ( 0 0 0 0 1 −1 0 −1 1 ).
Note that because the fifth column of X is orthogonal to all the other
columns, we have XT

1 X2 = 0. We estimate γ̂ = (XT
1 X1)−1XT

1 Y .
This has mean E{γ̂} = (XT

1 X1)−1XT
1 (X1γ + X2β12) = γ where we

used the fact that XT
1 X2 = 0. In other words, γ̂ is still an unbiased

estimator of γ even under the wrong model when β12 6= 0. Also the
covariance matrix of γ̂ is (XT

1 X1)−1σ2, as usual.
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Write cT
1 = ( 1 x∗1 x∗2 x∗1

2 x∗2
2 ), so that y∗ = cT

1 γ +x∗1x
∗
2β12 +

ε∗, ỹ∗ = cT
1 γ̂, and hence

y∗ − ỹ∗ = cT
1 (γ − γ̂) + x∗1x

∗
2β12 + ε∗

has mean x∗1x
∗
2β12 and variance σ2{cT

1 (XT
1 X1)−1c1 + 1} as in part

(a). To evaluate the latter expression, we note that (XT
1 X1)−1 is

the same as (XT X)−1 except that the fifth column and fifth row
are omitted (this follows again because X1 and X2 are orthogonal,
or just repeat the computation in the text with XT

1 X1 in place of
XT X), hence σ2{cT

1 (XT
1 X1)−1c1 + 1} is the same as (7) but with a

term 1
4 cos θ sin θ subtracted.

Finally, since E{(ỹ∗ − y∗)2} is the sum of the squared bias and the
variance, we have

E{(ỹ∗ − y∗)2} = cos2 θ sin2 θβ2
12 + σ2

(
14
9
− cos2 θ sin2 θ

)
. (8)

[Many students did not give a precise explanation of why E{y∗ −
ỹ∗} = β12x

∗
1x
∗
2. It is important that E{β̂0} = β0, E{β̂1} = β1, etc.

This wouldn’t be true without the orthogonality of X1 and X2.]

(c) {4} Comparing (7) and (8), E{(ỹ∗ − y∗)2} < E{(ŷ∗ − y∗)2} if and
only if

cos2 θ sin2 θβ2
12 <

σ2

4
cos2 θ sin2 θ (9)

The inequality (9) reduces to 4β2
12 < σ2 except when cos θ = 0 or

sin θ = 0 — in these cases, ŷ∗ and ỹ∗ are identical, so there is no
distinction between the two methods.

(d) {5}Under (1) the hii values for i = 1, ..., 9 are 5
9 , 5

9 , 5
9 , 5

9 , 29
26 , 29

26 , 5
9 , 29

26 , 29
26

while under (2) all nine values are 5
9 (direct matrix calculation, or

create an artificial data set y1, ..., y9 and run the influence diagnostics
in SAS or S-PLUS).

(e) {6} By equations (4.4) and (4.5) of the text, yi− ŷi(i) = ei

1−hii
. Under

model (1), this has mean 0 and variance σ2

1−hii
. This has values

9
4σ2, 9

4σ2, 9
4σ2, 9

4σ2, 36
7 σ2, 36

7 σ2, 9
4σ2, 36

7 σ2, 36
7 σ2, respectively for i =

1, ..., 9.

(f) {6}Writing the model in the form Y = X1γ+X2β12+ε as in part (b),
we have e = (I−H1)Y where H1 = X1(XT

1 X1)−1XT
1 , so e has covari-

ance matrix (I−H1)σ2 as usual, and mean (I−H1)(X1γ+X2β12) =
X2β12 since (I −H1)X1 = 0 and H1X2 = 0 by orthogonality of X1

and X2. Hence ei, the ith component of e, has variance (1 − hii)σ2

and mean xi1xi2β12. It then follows that ei

1−hii
has variance σ2

1−hii
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and mean xi1xi2β12
1−hii

, from which the result follows. The individual
values are 9

4σ2 for i = 1, 2, 3, 4, 7 and 81
16β2

12 + 9
4σ2 for i = 5, 6, 8, 9.

[As in part (b), many answers missed the point about orthogonality.]

(g) {3} From the results of (e) and (f), the mean value of the PRESS
statistic under (3) is smaller than the mean value under (1) if 81

16β2
12+

9
4σ2 < 36

7 σ2. This quickly reduces to 7
4β2

12 < σ2.

There are various comments you could make about this. If 7
4β2

12 <
σ2 < 4β2

12 then PRESS will tend to select model (1) even though the
prediction criterion would favor (3) — thus, at least in this instance,
PRESS seems to over-favor the larger model. As for an explanation
of this, it appears that the deletion aspect of PRESS is not accu-
rately representing the biases and variances of the desired prediction
experiment.

2. This exercise was based on the paper:

Kong, Q., He, G., Chen, Q. and Chen, F. (2004), Optimization of medium
composition for cultivating Clostridium butyricum with response surface
methodology. Journal of Food Science 69, No. 7, M163–M168.

though the analysis given below differs substantially from that in the pa-
per!

(a) {7} In model (5), none of the variables β12, β13, β23 is significant (all
have p-values bigger than 0.5) so we prefer model (4), in which all
parameters are significant except possibly β1 (p-value .060). The
coefficients (from SAS) are:

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 1.22328 0.02578 47.44 <.0001
x1 1 -0.03531 0.01711 -2.06 0.0596
x2 1 0.06253 0.01711 3.66 0.0029
x3 1 0.05399 0.01711 3.16 0.0076
x11 1 -0.05359 0.01665 -3.22 0.0067
x22 1 -0.06296 0.01665 -3.78 0.0023
x33 1 -0.06561 0.01665 -3.94 0.0017

The covariances of (β̂1, β̂11), (β̂2, β̂22), (β̂3, β̂33), are each 0.
[Some students did a formal F-test of model (4) against (5). This
results in F = 0.17: not significant.]

(b) {3} x∗j = − βj

2βjj
, j = 1, 2, 3 so substituting the point estimates from

(a), we find x̂∗1 = −.3294, x̂∗2 = .4966, x̂∗3 = .4114.
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(c) {7} There is no problem with multicollinearity etc., but the influence
diagnostics show that there are two large outliers in rows 9 and 14,
each of which is highly significant (externally studentized values of
3.46 and 3.79; DFFITS of 4.30 and 4.71; 2

√
p
n = 1.18). Omitting

these values and rerunning the regression, we get results

Intercept 1 1.22089 0.01146 106.57 <.0001
x1 1 -0.01047 0.00950 -1.10 0.2940
x2 1 0.06253 0.00760 8.23 <.0001
x3 1 0.02722 0.00950 2.86 0.0154
x11 1 -0.07361 0.01025 -7.18 <.0001
x22 1 -0.04732 0.00769 -6.15 <.0001
x33 1 -0.08840 0.01025 -8.62 <.0001

with point estimates of x∗1 = −.0711, x∗2 = .661, x∗3 = .154, substan-
tially different from the above.

(d) {13} Fixing x2 = x3, the response surface includes terms (β2+β3)x2+
(β22 +β33)x2

2 which is maximized by x∗2 = −(β2 +β3)/(2(β22 +β33)).
Writing θ1 = β2 + β3, θ2 = β22 + β33, the quantity of interest is
g(θ1, θ2) = − θ1

2θ2
for which we also have g1 = ∂g

∂θ1
= − 1

2θ2
, g2 =

∂g
∂θ2

= θ1
2θ2

2
.

The covariance matrix of β̂ shows among other things that (i) β̂2 and
β̂3 each has estimated variance .0002926338, and they are indepen-
dent; (ii) the estimated variances of β̂22 and β̂33 are each .0002773153
and their estimated covariance is .0000275354; (iii) β̂2 and β̂3 are
independent of β̂22 and β̂33. By (i), the standard error of θ̂1 is√

2× .00029262338 = .0242. By (ii), the standard error of θ̂2 is√
2× (.0002773153 + .0000275354) = .0247, and by (iii), θ̂1 and θ̂2

are independent.

Substituting the estimates for β2, β3, β22, β33, the estimated values
of θ1, θ2, x

∗
2, g1 and g2 are .11652, –.12857, .45314, 3.89 and 3.52. By

the delta method, the estimated standard error of x̂∗2 is√
3.892 × .02422 + 3.522 × .02472 = .1281. The RSS has 13 degrees

of freedom and t13;.975 = 2.16, so an approximate 95% confidence
interval is .45314± 2.16× .1281 = (.1764, .7298).

Under Fieller’s method, we have to evaluate Q(x) = (θ̂1 − θ̂2x)2 −
t∗2s2(a−2cx+bx2). Here as2, bs2, cs2 are respectively the estimated
variances of θ̂1 and θ̂2, and the estimated covariance. We also assume
t∗ = 2.16, as in the previous paragraph. Therefore, Q(x) = (.11652−
.12857x)2 − 2.162(.02422 + .02472x2) = .01085− .02996x + .01368x2.
This quadratic equation has roots at –1.732 and –.4576. This is
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an exact 95% confidence interval for θ1
θ2

; therefore, an exact 95%
confidence interval for x∗2 = − θ1

2θ2
is (.2288, .8660).

[I made a slight correction to the Fieller interval on the first version
of these solutions. Many students made numerical slips with both
the delta and Fieller methods, but I tried not to penalize these too
much if the basic method was right.]

The two confidence intervals (delta method and Fieller) overlap sub-
stantially, but they are not identical, with Fieller giving a more right-
skewed interval.

3. This exercise was based on the paper:

Lee, J. and Wrolstad, R.E. (2004), Extraction of anthocyanins and polyphe-
nolics from blueberry-processing waste. Journal of Food Science 69, No.
7, C564–C573.

though the analysis given below differs substantially from that in the pa-
per!

(a) {6} We write

Y =




y111

y112

y211

y212

y121

y122

y221

y222

y131

y132

y231

y232




, β =




µ
α2

β2

β3

γ2

δ22

δ23

η22

ζ22

ζ32




, X =




1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 1 0 0
1 0 1 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 1 0
1 1 1 0 0 1 0 0 0 0
1 1 1 0 1 1 0 1 1 0
1 0 0 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 1
1 1 0 1 0 0 1 0 0 0
1 1 0 1 1 0 1 1 0 1




.

(b) {4} With the y variable representing ACY, ẏ = 72.29848 so we
consider transformations h(yi) = yi, 2

√
ẏyi, ẏ log(yi) with respective

residual sums of squares (RSS) of 14.71, 28.33, 66.58. Among these
three, the favored transformation is the identity. (If you extend to
hλ(yi) = ẏ1−λ yλ

i −1
λ it turns out the preferred value is about λ = 1.9,

with RSS=9.9, but this is not a statistically significant reduction,
compared with λ = 1.)

[It seems that not everyone understands the need to rescale after a
transformation! Some students just compared with raw RSSs without
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rescaling, with results in favor of the log transformation, not correct
in this instance. However there are other statistics you could look
at, e.g. the adjusted or unadjusted R2 statistic, or the F statistic for
the overall model fit. All three of these — which are really different
ways of measuring the same thing — point towards the model with
ACY as the response as being superior to the ones based on logs or
square roots.]

(c) {5} An initial table of results shows α2, β2, β3 highly significant,
ζ32 significant with p = .042 and γ2, δ22, δ23 having p-values just
over .05. There are various intermediate tests you can do (credit for
careful searching!) but if we fit the model containing just α2, β2, β3,
we have RSS = 411.205 with 8 DF, compared with RSS = 14.71167
with 2 DF for the full model. The F statistic is

411.205− 14.71167
6

· 2
14.71167

= 8.984

which has p-value 0.104 against the F6,2 distribution. In other words,
to the extent that we can determine based on this experiment, only
the main effects due to temperature and SO2 are significant. More-
over, the difference between β2 and β3 is not significant (though
β̂3 < β̂2).

[There are a number of other solutions which seem acceptable. For
instance, if you use backward elimination, removing the η22 and ζ22

terms, it seems all the rest are significant at the .05 level, in contra-
diction to the above! Also, criteria such as Cp, AIC and even BIC
seems to favor larger models. So if you said that I was willing to
give full credit for it, though I still wanted to see some comparison
of different models, not just a single model.]

(d) {9} With TP as the response, we have ẏ = 229.5938 and the RSS
values for h(yi) = yi, 2

√
ẏyi, ẏ log(yi) are 1574, 756, 403 suggesting

the log transform as the best. (A Box-Cox transformation suggests
λ ≈ −0.6, with RSS about 295, but this would be an unusual trans-
formation to adopt in practice.) Henceforth we use a log transforma-
tion, without the scaling by ẏ.

The full model has RSS = .00764 with DF=2. Initial analysis sug-
gests γ2, η22, ζ22, ζ32 could all be dropped, and if we refit the model
without these parameters we get RSS = .08356 with DF=6. The
F6,2 statistic is 3.31; the p-value associated with that is 0.25. Thus
we accept the second model as correct. (In this model we could also
drop δ22, but it is not conventional to drop one component of an
interaction term without the other.)
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[Here again, some answers missed the point about scaling of trans-
formations. Also, those who applied forward/backward elimination
often got different answers from the above, though in this case, I am
less sure these are acceptable alternatives. The defaults in SAS use
rather liberal criteria for retaining variables — it doesn’t really make
sense to retain variables with P -values over 0.1, though the small
sample size makes interpretation of all these statistics problematic.]

(e) {6} For ACY, it seems we should take temperature at 80 and SO2 at
either 50 or 100. For TP, the main effects together with the strongly
significant positive value of δ23 suggests that the optimal combination
is temperature 80, SO2=100. However, the fact that the experiment
was small and there are several other effects that could be tested
(e.g. should SO2 have been tried at some levels other than 50 or
100?) suggests that there is scope for further experimentation.

Most answers to this question did not do an adequate job of ad-
dressing whether other settings of the control variables are signifi-
cantly worse than the ones recommended. Here are two analytical
approaches that could be used for this question.

One of them is to use SAS’s PROC REG, with the “clm” option to
produce confidence limits for the mean responses at each of the 12
possible settings. (Not “cli” in this instance, because the objective is
to study the long-run output of the system, not the result of a single
experiment.) When this is done for ACY as the response, the confi-
dence intervals for TEMP=80 and SO2=50 or 100 nearly all overlap,
whichever regression model was used, implying that the differences
among these settings are not significant. However running the re-
gression for log TP as the response, using the model recommended
in (d), gives the confidence intervals:

Output Statistics

Dependent Predicted Std Error
Obs Variable Value Mean Predict 95% CL Mean Residual

1 4.0236 4.0817 0.0474 3.9696 4.1937 -0.0581
2 4.1368 4.0817 0.0474 3.9696 4.1937 0.0551
3 4.2683 4.3758 0.0474 4.2638 4.4879 -0.1075
4 4.4864 4.3758 0.0474 4.2638 4.4879 0.1106
5 5.7278 5.7409 0.0474 5.6288 5.8530 -0.0131
6 5.7570 5.7409 0.0474 5.6288 5.8530 0.0161
7 6.0417 6.0350 0.0474 5.9230 6.1471 0.006635
8 6.0254 6.0350 0.0474 5.9230 6.1471 -0.009665
9 5.9558 5.8887 0.0547 5.7593 6.0181 0.0671
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10 5.8216 5.8887 0.0547 5.7593 6.0181 -0.0671
11 6.4630 6.4957 0.0547 6.3663 6.6251 -0.0327
12 6.5284 6.4957 0.0547 6.3663 6.6251 0.0327

We can see that observations 11 or 12 (implying TEMP=80, SO2=100)
have not only a higher predicted value than all the others, but also
a confidence interval that is disjoint from the confidence intervals for
all other settings, implying that the differences are truly significant.

The second method is based on an adaptation of Tukey’s studen-
tized range procedure, discussed in the very last class. Consider the
following SAS code:

options ls=77 ps=58 nonumber label;
data rs1;
input x1 y1 y2;
ly2=log(y2);
datalines;
1 27.5 55.9
1 42.6 62.6
2 50.2 71.4
2 62.4 88.8
3 92.2 307.3
3 96.5 316.4
4 97.5 420.6
4 102.2 413.8
5 90.6 386.0
5 82.2 337.5
6 92.1 641.0
6 91.4 684.3
;
run;
;
proc anova;
class x1;
model y1=x1;
means x1 /tukey;
run;
;
proc anova;
class x1;
model ly2=x1;
means x1 /tukey;
run;
;
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This combines temperature and SO2 into a single factor variable with
six levels, and ignores the possible effect of citric acid. The results
show that for ACY (variable y1 in the SAS code), the four best
values of x1 (4,3,6,5 in that order) are statistically indistinguishable.
However, with log of TP (ly2) as the response, x1 = 6 is the best,
superior to every other level according to the Tukey test. Combining
the two results, we should take temperature at 80, SO2 at 100.
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