
STATISTICS 174: APPLIED STATISTICS

FINAL EXAM

DECEMBER 10, 2002

Time allowed: 3 HOURS.

This is an open book exam: all course notes and the text are allowed, and you are expected to
use your own calculator. Answers should preferably be written in a blue book.

The exam is expected to be your own work and no consultation during the exam is allowed.
You are allowed to ask the instructor for clarification if you feel the question is ambiguous.

Show all working. In questions requiring a numerical solution, it is more important to demon-
strate the method correctly than to obtain correct numerical answers. Even if your calculator has
the power to perform high-level operations such as matrix inversion, you are expected to demon-
strate the method from first principles. Solutions containing unresolved numerical expressions will
be accepted provided the method of numerical calculation is clearly demonstrated.

Questions 1 and 4 are worth 40 points each; questions 2 and 3 are worth 20 points each. A
score of 100 may be considered a perfect score. It is not necessary to attempt all the questions but
if time allows, it is recommended that you attempt as much as possible.

1. The model
yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi, i = 1, ..., n (1)

is fitted under the usual assumptions for linear models; in particular, {εi} are assumed to be
independent N [0, σ2] for common unknown σ2. Assume in addition that

∑
i xij = 0,

∑
i x

2
ij =

n for j = 1, 2, 3,
∑

i xi1xi2 = 0,
∑

i xi1xi3 = 0,
∑

i xi2xi3 = θn, where −1 < θ < 1. Also write
S0 =

∑
i yi, Sj =

∑
i yixij for j = 1, 2, 3.

(a) Write the least squares estimators β̂j , j = 0, 1, 2, 3 as explicit algebraic expressions of
S0, ..., S3, n and θ

(b) Show that the residual sum of squares is given by

RSS =
∑

i

y2
i −

1
n

(
S2

0 + S2
1 +

S2
2 − 2θS2S3 + S2

3

1− θ2

)
. (2)

(c) Write down an explicit test (i.e. expressed as far as possible in terms of the quantities
defined in the first two parts of this question) of the hypothesis H0 : β1 = 0 against the
alternative H1 : β1 6= 0.

(d) Write down an explicit test (i.e. expressed as far as possible in terms of the quantities
defined in the first two parts of this question) of the hypothesis H0 : β2 = β3 = 0 against
the alternative that β2 and β3 are not both 0. (Hint: The residual sum of squares under
H1, written RSS1, is given by (2). Write down the corresponding quantity under H0,
written RSS0, and hence give a compact expression for the difference RSS0 −RSS1.)

(e) Now suppose we are interested in the power of the test in part (d), i.e. the probability
that this test rejects the null hypothesis H0 under some explicit alternative (β2, β3)
where β2 and β3 are not both 0. Show that this power may be calculated from a certain
non-central F distribution F ′

ν1,ν2;δ, where you should state ν1 and ν2 and prove that

δ2 =
n(β2

2 + 2θβ2β3 + β2
3)

σ2
. (3)
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(f) Use the Pearson-Hartley charts to evaluate this power in the case n = 16, β2 = 1, β3 = 2,
θ = 0.8, σ2 = 5. Consider both the possibilities α = 0.05 and α = 0.01 for the size of
the test.

2. A statistician is considering the choice between just two regression models of the form

Y = X1β1 + ε,

Y = X2β2 + ε,

where Y is an n × 1 vector of observations, Xk for k = 1, 2 is a n × pk design matrix, βk is
a pk × 1 vector of parameters, and ε is a vector of error subject to the usual assumptions of
linear models.

(a) If p1 = p2, then most model selection procedures will simply select the model with the
smaller residual sum of squares. Show that this is equivalent to the following: select
model 1 if and only if

Y T CY < 0, (4)

where you should write down an explicit expression for the matrix C.

(b) Suppose that p1 < p2, σ2 is known, and that we choose between models 1 and 2 using
one of the criteria (i) AIC, (ii) BIC, (iii) in the case that X1 is a submatrix of X2, a
hypothesis test in which the null hypothesis is that X1 is the correct matrix of covariates.
Show that under any of these criteria, the selection procedure is to choose model 1 if

Y T CY < B, (5)

and find B.

(c) In case (b), what is the expected value of Y T CY when model 1 is true?

3. Consider a linear model including only one covariate and no intercept:

yi = βxi + εi, i = 1, ..., n, (6)

but in which the covariance matrix of ε = ( ε1 . . . εn )T is of the form σ2V , where σ2 is
unknown and

V =




1 ρ ρ2 . . . ρn−1

ρ 1 ρ . . . ρn−2

ρ2 ρ 1 . . . ρn−3

...
...

...
. . .

...
ρn−1 ρn−2 ρn−3 . . . 1




(7)

where −1 < ρ < 1. (Another way to write this is to say V = (vij) where vij = ρ|i−j|. In time
series analysis this is known as the autoregressive model of order 1.)

(a) If n > 2, show that V −1 is of the form κW , where W is a matrix with entries wij defined
by

wij =





1 if i = j = 1 or i = j = n,
1 + ρ2 if 1 < i = j < n,
−ρ if |i− j| = 1,
0 in all other cases,

and κ is some constant that you have to determine.
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(b) Derive the generalized least squares estimator of β and state its variance. (Note: If
you assume the result of part (a), you can do this part even if you did not successfully
complete (a).)

4. Table 2 (end of exam) is based on measurements of fine particles (PM2.5) collected at 74
monitoring stations in the states of North Carolina, South Carolina and Georgia, during
1999. The data shown give the annual mean PM2.5 (not corrected for missing values) at
each monitor, together with a variety of covariates for that monitor, listed in Table 1. In
the case of the meteorological covariates, the data are taken from the nearest meteorological
station in the “Historical Climatological Network”, which is an extensive data base maintained
by the National Climatic Data Center. Apart from the latitude-longitude coordinates and
meteorological variables, also included are indicator variables for state (NC/SC/GA), and for
land use type (agricultural, commercial, forest, industrial and residential).

Name Explanation
PM Annual mean PM2.5 level at monitor (µg/m3)
LAT Latitude of monitor
LON Longitude of monitor
MAX Annual mean maximum daily temperature (oF)
MIN Annual mean minimum daily temperature (oF)
PCP Total annual precipitation (inches)
N1 =1 if monitor is in North Carolina, 0 otherwise
S1 =1 if monitor is in South Carolina, 0 otherwise
G1 =1 if monitor is in Georgia, 0 otherwise
A1 =1 if monitor location is agricultural, 0 otherwise
C1 =1 if monitor location is commercial, 0 otherwise
F1 =1 if monitor location is in forest, 0 otherwise
I1 =1 if monitor location is industrial, 0 otherwise
R1 =1 if monitor location is residential, 0 otherwise

Table 1. Explanation of variables in Question 4.

(a) An initial regression is performed using one of y1 = PM , y2 =
√

PM , y3 = log PM as the
response variable of interest, and covariates lat, lon, max, min, pcp, n1, s1, a1, c1, f1, i1.
Explain why g1 and r1 are omitted from this regression, and how one would infer a
“Georgia” or “residential” effect in the absence of these covariates.

(b) An initial SAS regression using all of the above covariates resulted in error sum of squares
125.9 using y1 as the response, 1.818 using y2 as the response, 0.4291 using y3 as the
response. After taking the scaling of the transformation into account, which of these
three models is best? (Note: The geometric mean of the PM observations is 16.74.)

(c) Now suppose we select y2 as the model of interest (not necessarily the answer that you
should have obtained for part (b)). A SAS run of the full model and model selection
using the RSQUARE criterion produces the following (heavily edited) output:
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The SAS System
Dependent Variable: y2

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 11 6.10117 0.55465 18.92 <.0001
Error 62 1.81768 0.02932
Corrected Total 73 7.91885

Root MSE 0.17122 R-Square 0.7705
Dependent Mean 4.10447 Adj R-Sq 0.7297
Coeff Var 4.17164

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -8.69251 3.66715 -2.37 0.0209
lat 1 0.17669 0.04060 4.35 <.0001
lon 1 -0.05811 0.02527 -2.30 0.0249
max 1 0.02742 0.01263 2.17 0.0337
min 1 0.01105 0.00949 1.17 0.2484
pcp 1 -0.00513 0.00247 -2.08 0.0419
n1 1 -0.48338 0.12928 -3.74 0.0004
s1 1 -0.58102 0.08120 -7.16 <.0001
a1 1 -0.10472 0.07855 -1.33 0.1874
c1 1 0.01124 0.05080 0.22 0.8257
f1 1 -0.05939 0.10855 -0.55 0.5862
i1 1 0.00394 0.06749 0.06 0.9537

R-Square Selection Method
Number in
Model R-Square Variables in Model

1 0.4819 lon
2 0.6140 lon s1
3 0.6686 pcp n1 s1
4 0.7317 lat pcp n1 s1
5 0.7411 lat max pcp n1 s1
6 0.7565 lat lon max pcp n1 s1
7 0.7639 lat lon max pcp n1 s1 a1
8 0.7690 lat lon max min pcp n1 s1 a1
9 0.7703 lat lon max min pcp n1 s1 a1 f1

10 0.7704 lat lon max min pcp n1 s1 a1 c1 f1
11 0.7705 lat lon max min pcp n1 s1 a1 c1 f1 i1

4



For each value of p (the number of regressors in the model), only the best model of order
p has been shown. All models include an intercept.
Based on the above tables, which would you conclude is the best model for this set of
data? Use forward and backward selection, AIC and BIC to make your choice.

(d) Now consider the model with lat, pcp, n1, s1 as covariates (not necessarily the best model
you should have found in (c)). This was fitted in S-PLUS, and a range of diagnostics
produced. Some of the (edited) output follows:

> nreg<-lm(y2~lat+pcp+n1+s1)
> summary(nreg)
Call: lm(formula = y2 ~ lat + pcp + n1 + s1)
Residuals:

Min 1Q Median 3Q Max
-0.3454 -0.1434 0.005331 0.1225 0.5022
Coefficients:

Value Std. Error t value Pr(>|t|)
(Intercept) 0.8031 1.0178 0.7891 0.4328

lat 0.1214 0.0302 4.0272 0.0001
pcp -0.0091 0.0019 -4.8437 0.0000
n1 -0.6817 0.0896 -7.6071 0.0000
s1 -0.6830 0.0604 -11.3060 0.0000

Residual standard error: 0.1755 on 69 degrees of freedom
Multiple R-Squared: 0.7317
F-statistic: 47.05 on 4 and 69 degrees of freedom, the p-value is 0

Correlation of Coefficients:
(Intercept) lat pcp n1

lat -0.9965
pcp -0.2506 0.1772
n1 0.8285 -0.8331 -0.3172
s1 0.3015 -0.3251 -0.0487 0.5166

> nreg1<-lm.influence(nreg)
> nreg1$hat
0.05193476 0.05141539 0.07954896 0.07837418 0.06202485 0.05038562 0.07572711
0.05122291 0.05849157 0.13153111 0.09117937 0.05505745 0.05569854 0.05061208
0.15836989 0.08193201 0.05815188 0.06030476 0.07156212 0.04733088 0.04661720
0.04795466 0.04957416 0.05647126 0.02942601 0.05437300 0.04495347 0.03872170
0.04686207 0.03728857 0.05322722 0.08356680 0.05288008 0.03323776 0.05739777
0.04923961 0.07710166 0.03640419 0.05464795 0.03915526 0.05615600 0.03282301
0.07772980 0.04079687 0.08084883 0.04103693 0.03522417 0.05938889 0.23135754
0.06673200 0.05015306 0.04773585 0.02864928 0.06583044 0.04019621 0.05177712
0.03516634 0.07948343 0.13022523 0.09147231 0.09217416 0.10051156 0.08755229
0.06811757 0.17500840 0.09561029 0.06920297 0.06561165 0.06605742 0.09833782
0.06648969 0.06558622 0.09326597 0.10373491
> studres(nreg)
0.248228 -0.414534 0.5986053 -0.8554859 -0.1517634 0.5499154 1.183984
0.6588629 0.9578507 -0.1787045 0.8796571 0.2084996 1.744446 -1.042982
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-0.3594699 -1.446977 -0.8958382 0.3578466 -1.305811 -0.4887948 0.0248971
-1.174425 0.8768566 1.092169 -0.8408888 -0.4392564 -1.33553 1.038401
-0.4303417 0.7258998 0.0934068 -1.040353 -0.6640207 -1.487854 -0.3507473
-0.9494389 -0.4214205 0.7373895 0.9929218 -1.942413 -1.162163 0.1524531
0.9146337 0.5640672 0.1615048 3.099669 -0.1497043 2.224197 0.7584176
-1.05061 0.7116178 -1.894143 -0.177575 1.02948 -1.195616 0.585015
0.1614823 0.7258822 -0.3393788 -2.116215 -0.1446437 -0.8431734 1.209684
-0.3734964 1.275785 2.098011 0.1511453 -0.07136735 0.7283316 -1.502677
0.3921604 0.5221203 0.0378197 -1.011913
> dffits(nreg)
0.0580979 -0.09650919 0.1759776 -0.2494721 -0.03902601 0.1266705 0.3388999
0.1530894 0.2387439 -0.06954608 0.2786266 0.0503281 0.4236665 -0.2408142
-0.1559331 -0.432266 -0.2225979 0.0906524 -0.3625313 -0.1089501 0.005505392
-0.2635797 0.2002614 0.2671937 -0.1464165 -0.1053295 -0.2897498 0.2084096
-0.0954215 0.1428619 0.0221474 -0.3141575 -0.1569008 -0.2758775 -0.08655209
-0.2160672 -0.1218065 0.1433261 0.238729 -0.3921119 -0.2834752 0.02808487
0.265529 0.1163293 0.04789927 0.6412123 -0.02860496 0.5588828 0.4160908
-0.2809347 0.1635192 -0.4240884 -0.0304965 0.2732867 -0.2446769 0.1367038
0.0308292 0.2132989 -0.1313194 -0.6714838 -0.0460896 -0.2818559 0.3747154
-0.10098 0.5876006 0.6821538 0.0412125 -0.01891152 0.1937001 -0.4962539
0.1046602 0.1383271 0.0121294 -0.3442608
> dfbetas(nreg)
numeric matrix: 74 rows, 5 columns.

(Intercept) lat pcp n1 s1
1 0.0224972274 -0.019699413 -0.0159997596 -0.003102471 -0.025907835
2 -0.0361016337 0.031425553 0.0264525976 0.006398387 0.043729128
3 0.1082858333 -0.107699049 0.0295598103 0.028088666 -0.043340970
4 -0.1516038218 0.150755113 -0.0427607254 -0.037565100 0.062896230
5 0.0201411877 -0.021217846 -0.0060080496 0.031410953 0.026667906
6 -0.0301431773 0.036696192 -0.0222417587 -0.073582316 -0.083464298
7 -0.1929384105 0.195005491 0.1372316342 -0.285281941 -0.217991037
8 -0.0491093438 0.055909935 -0.0102024030 -0.100644549 -0.103789014
9 -0.1071726338 0.117221271 -0.0085758418 -0.176560714 -0.163051354
10 -0.0574554537 0.055159338 0.0235295598 -0.032035884 0.006412387
11 -0.1840663989 0.185753027 0.1098467476 -0.246776320 -0.176218895
12 -0.0199803206 0.022152137 -0.0024512545 -0.035599013 -0.034349028
13 -0.1543024407 0.175352206 -0.0603659746 -0.282908270 -0.284566389
14 0.0590102687 -0.071446747 0.0418632607 0.141107134 0.158917242
15 -0.1337064139 0.132193515 0.0107992658 -0.074561072 0.006394875
16 0.2846265133 -0.295318413 -0.0739985082 0.378391402 0.286536246
17 -0.1186320796 0.111668914 0.0254506765 -0.015436140 0.080329238
18 0.0506034103 -0.047829789 -0.0107401580 0.008815752 -0.031093372
19 0.1937457425 -0.195955605 -0.1477104534 0.298407212 0.233824187
20 0.0249243820 -0.027716828 -0.0187594932 0.068150200 0.072131179
21 -0.0010943901 0.001235963 0.0009241074 -0.003323948 -0.003615691
22 -0.0670511898 0.053705100 0.0685753328 0.047390732 0.135096798
23 0.0639681743 -0.054043524 -0.0537090877 -0.023823407 -0.096430016
24 -0.1370867953 0.127138116 0.1585729458 -0.066832185 -0.040084090
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25 0.0008691843 -0.002742988 0.0239219644 -0.049740270 0.001115745
26 -0.0219140916 0.016663678 0.0724532122 -0.051321609 -0.004779536
27 0.1737123587 -0.174798571 -0.0247135861 0.068072640 0.056884481
28 -0.0036756831 0.011688994 -0.1023113783 0.067789662 -0.004758044
29 0.0288307543 -0.024843608 -0.0577357872 0.005373922 0.007587200
30 0.0573208923 -0.060090473 0.0228763413 0.085582272 0.019843079
31 -0.0002749601 0.001407983 -0.014520593 0.0067835175 -0.0005932851
32 -0.0512960152 0.069960854 -0.228787906 -0.0768582205 -0.0249577055
33 0.0715031194 -0.065425191 -0.094148742 0.0307868195 0.0205120967
34 0.1032859069 -0.102923963 -0.027664243 0.0027378590 0.0333740789
35 0.0195960468 -0.023924778 0.051345258 -0.0100113403 0.0082880645
36 0.0725894641 -0.081431738 0.097630035 -0.0062536125 0.0275018686
37 -0.0458283735 0.039329718 0.093844606 -0.0725172018 -0.0119888113
38 -0.0658965364 0.066390349 0.008322610 -0.0126811319 -0.0216150918
39 -0.0291591340 0.041303850 -0.149805714 0.0502315407 -0.0148698658
40 -0.0578159535 0.042985623 0.203742147 -0.1810103648 -0.0121747279
41 -0.0178883739 0.032732789 -0.187060893 -0.0604290609 -0.0124113769
42 -0.0008893209 0.001644722 -0.009523812 0.0090208563 -0.0006247769
43 0.1027600413 -0.088662207 -0.204325941 0.1601691360 0.0270931103
44 0.0433325563 -0.039729697 -0.056020218 0.0738954300 0.0124666210
45 0.0207725094 -0.018287973 -0.036602511 0.0305011111 0.0056392487
46 0.2435723325 -0.223790293 -0.308845576 0.4106538811 0.0702837966
47 0.0068778823 -0.007641535 0.008296110 -0.0038502327 0.0025728263
48 0.2094479577 -0.183134079 -0.385308443 0.3426486814 0.0562986204
49 0.1022123701 -0.130262375 0.338232378 0.0936607918 0.0456642016
50 -0.1019374046 0.115731734 -0.154825233 -0.1265621167 -0.0392334761
51 -0.0652640877 0.058720576 0.098751036 -0.0235375241 -0.0182792862
52 0.2513005570 -0.243626429 -0.154739980 0.1139047491 0.0781790575
53 0.0011895655 -0.001107706 -0.001318487 -0.0089607593 0.0003498165
54 0.1348208696 -0.146195884 0.116364491 0.1564777837 0.0488339479
55 -0.0565073237 0.047446778 0.129194393 -0.1289509342 -0.0143164522
56 -0.0510375291 0.045213465 0.086323015 -0.0177667163 -0.0139802138
57 -0.0091038429 0.008349804 0.011732171 0.0004462663 -0.0026204306
58 -0.0187085753 0.005904441 0.168954463 0.0080115990 -0.0003785890
59 -0.0932540470 0.091835289 0.039030768 -0.0804922168 -0.0957126806
60 -0.3678712988 0.360636350 0.175052971 -0.3199052656 -0.5192985374
61 -0.017569414 0.018987167 -0.014332831 -0.012719824 -0.033896097
62 -0.170145764 0.167328358 0.074158138 -0.147193342 -0.215394249
63 0.146289775 -0.156269206 0.095848942 0.108558985 0.281849975
64 0.026103082 -0.025098457 -0.018743621 0.023412420 -0.062214473
65 -0.008654952 -0.026796203 0.458178836 -0.058723299 0.267964858
66 -0.373565716 0.383755852 -0.047936858 -0.299408808 0.274698467
67 -0.007686526 0.008441770 -0.008007769 -0.005368978 0.025610548
68 -0.001645828 0.001358291 0.004067160 -0.001801513 -0.013810381
69 -0.018048594 0.021105335 -0.035319627 -0.010744482 0.129605028
70 0.288359653 -0.281669057 -0.150336674 0.252240273 -0.196653583
71 -0.012500761 0.014156706 -0.018527328 -0.008111074 0.068893165
72 -0.007385063 0.009556434 -0.026300257 -0.003060456 0.094697420
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73 -0.006453283 0.006635789 -0.000911399 -0.005162843 0.005034201
74 0.172879171 -0.182361269 0.083525783 0.131644287 -0.133704490

Also shown in Fig. 1 is a plot of the diagnostics produced by the “plot(nreg)” command.
Based on this output, write a detailed report on the fit of the model to the data, taking
into account outliers, influential values, the fit of the normal distribution, etc.

(e) The new EPA standard for PM2.5 includes the requirement that the annual mean at
each site should be less than 15 µg/m3. Based on this analysis, what do you conclude
about the agreement with that standard?

(f) Ultimately, the EPA would like to save costs by reducing the number of monitors in its
network. One criterion that it might well use is to drop a monitor if the PM2.5 at that
location can be well predicted from the rest of the data available. Suggest ways in which
this kind of analysis might be used to help inform that kind of decision. (This might
require more regression analyses than the ones given in the above SAS and S-PLUS
output, but if so, you should indicate the kinds of analyses you would do and how you
would use them.)
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Figure 1. Diagnostic plots produced by S-PLUS “plot(nreg)” command.
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Num PM LAT LON MAX MIN PCP N1 S1 G1 A1 C1 F1 I1 R1
1 20.19 32.78 –83.65 78.50 50.40 36.56 0 0 1 0 0 0 1 0
2 19.20 32.80 –83.54 78.50 50.40 36.56 0 0 1 0 0 0 1 0
3 18.98 32.09 –81.14 78.10 55.10 48.78 0 0 1 0 0 0 0 1
4 16.92 32.11 –81.16 78.10 55.10 48.78 0 0 1 0 0 0 0 1
5 20.35 33.95 –83.37 72.60 50.60 42.66 0 0 1 0 1 0 0 0
6 21.60 33.61 –84.39 73.01 48.07 36.38 0 0 1 0 0 0 1 0
7 21.93 34.01 –84.61 72.00 48.50 49.30 0 0 1 0 1 0 0 0
8 21.69 33.69 –84.29 75.12 50.76 38.42 0 0 1 0 0 0 0 1
9 22.40 33.90 –84.28 75.12 50.76 38.42 0 0 1 0 1 0 0 0

10 18.45 31.58 –84.10 79.60 54.60 34.38 0 0 1 0 0 0 0 1
11 21.73 34.26 –85.27 72.00 48.50 49.30 0 0 1 0 1 0 0 0
12 21.11 33.81 –84.38 75.12 50.76 38.42 0 0 1 0 0 0 0 1
13 23.71 33.80 –84.44 73.01 48.07 36.38 0 0 1 0 1 0 0 0
14 19.15 33.62 –84.44 73.01 48.07 36.38 0 0 1 0 0 0 1 0
15 17.03 31.18 –81.50 78.90 59.90 44.38 0 0 1 0 0 0 1 0
16 18.82 34.30 –83.81 72.60 50.60 42.66 0 0 1 0 0 0 0 1
17 17.84 32.48 –84.98 74.78 49.64 40.69 0 0 1 0 1 0 0 0
18 19.64 32.43 –84.93 74.78 49.64 40.69 0 0 1 0 0 0 1 0
19 18.10 33.93 –85.05 72.00 48.50 49.30 0 0 1 1 0 0 0 0
20 19.21 33.47 –81.99 78.50 50.90 43.94 0 0 1 0 1 0 0 0
21 19.95 33.43 –82.02 78.50 50.90 43.94 0 0 1 0 0 0 0 1
22 18.26 32.97 –82.81 78.50 50.40 36.56 0 0 1 0 0 0 0 1
23 21.28 32.88 –83.33 78.50 50.40 36.56 0 0 1 0 1 0 0 0
24 17.07 36.09 –79.41 71.50 48.20 61.25 1 0 0 0 0 0 0 1
25 15.00 35.61 –82.35 68.10 45.70 46.86 1 0 0 0 1 0 0 0
26 16.33 35.51 –80.62 72.50 48.90 34.81 1 0 0 0 0 0 1 0
27 14.86 36.31 –79.47 70.10 48.20 49.17 1 0 0 1 0 0 0 0
28 18.26 35.73 –81.37 71.10 46.30 40.13 1 0 0 0 0 0 1 0
29 14.68 35.76 –79.16 71.50 48.20 61.25 1 0 0 1 0 0 0 0
30 16.08 35.04 –78.95 73.20 50.50 53.97 1 0 0 0 0 0 0 1
31 17.38 35.81 –80.26 72.50 48.90 34.81 1 0 0 0 1 0 0 0
32 12.56 34.95 –77.96 74.00 53.50 70.96 1 0 0 0 0 0 0 1
33 14.59 35.99 –78.90 71.50 48.20 61.25 1 0 0 0 1 0 0 0
34 14.25 35.95 –77.79 72.65 49.21 50.21 1 0 0 0 0 0 0 1
35 17.05 36.11 –80.23 72.50 48.90 34.81 1 0 0 0 0 0 0 1
36 16.00 36.17 –80.28 69.40 42.30 38.54 1 0 0 0 0 0 0 1
37 16.42 35.25 –81.15 74.20 50.80 30.56 1 0 0 0 0 0 0 1
38 17.49 36.08 –79.79 70.10 48.20 49.17 1 0 0 0 1 0 0 0
39 18.84 35.96 –80.00 72.50 48.90 34.81 1 0 0 0 1 0 0 0
40 14.02 35.54 –82.91 68.50 39.00 40.09 1 0 0 0 1 0 0 0

Table 2, Part 1. Fine particles data set.
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Num PM LAT LON MAX MIN PCP N1 S1 G1 A1 C1 F1 I1 R1
41 13.02 35.23 –77.57 72.50 50.70 65.12 1 0 0 0 1 0 0 0
42 16.69 35.69 –81.99 71.50 39.70 43.52 1 0 0 0 0 0 0 1
43 18.28 35.23 –80.88 74.20 50.80 30.56 1 0 0 0 0 0 0 1
44 16.99 35.25 –80.77 73.60 49.70 41.43 1 0 0 0 0 0 0 1
45 17.12 35.14 –80.85 74.20 50.80 30.56 1 0 0 0 0 0 0 1
46 20.48 35.24 –80.78 73.60 49.70 41.43 1 0 0 0 0 0 0 1
47 16.49 35.92 –82.07 71.50 39.70 43.52 1 0 0 0 0 0 1 0
48 19.84 35.26 –79.84 71.20 47.56 34.81 1 0 0 0 0 1 0 0
49 12.80 34.24 –77.91 73.60 51.60 89.79 1 0 0 0 1 0 0 0
50 12.76 34.77 –77.43 72.50 50.70 65.12 1 0 0 0 0 0 0 1
51 16.36 35.90 –79.06 71.50 48.20 61.25 1 0 0 0 0 0 0 1
52 13.69 36.23 –76.29 70.92 50.70 55.14 1 0 0 0 0 0 0 1
53 15.64 35.59 –77.39 72.65 49.21 50.21 1 0 0 0 0 0 0 1
54 15.45 34.62 –78.99 73.50 51.30 62.46 1 0 0 0 0 0 0 1
55 14.86 35.44 –83.44 68.50 39.00 40.09 1 0 0 0 0 0 0 1
56 16.08 35.86 –78.57 72.40 46.30 62.15 1 0 0 0 0 0 0 1
57 15.91 35.79 –78.62 72.60 48.90 55.61 1 0 0 0 0 0 0 1
58 15.15 35.37 –77.99 74.00 53.50 70.96 1 0 0 0 0 0 0 1
59 13.57 32.43 –80.68 77.42 56.60 34.97 0 1 0 0 1 0 0 0
60 11.87 32.94 –79.66 74.20 61.20 36.17 0 1 0 0 0 1 0 0
61 13.14 32.98 –80.07 77.82 52.45 52.20 0 1 0 0 0 0 0 1
62 13.19 32.79 –79.96 74.20 61.20 36.17 0 1 0 0 0 0 0 1
63 14.99 33.01 –80.97 77.74 49.93 50.37 0 1 0 1 0 0 0 0
64 14.44 34.17 –79.85 76.00 53.30 44.54 0 1 0 0 0 0 0 1
65 13.78 33.37 –79.29 74.92 53.22 72.69 0 1 0 0 0 0 0 1
66 19.12 34.90 –82.31 72.60 51.20 35.93 0 1 0 0 0 0 0 1
67 15.84 34.21 –82.17 73.80 48.90 35.15 0 1 0 0 0 0 1 0
68 15.07 33.78 –81.12 79.30 55.00 36.00 0 1 0 1 0 0 0 0
69 16.41 34.05 –81.15 79.30 55.00 36.00 0 1 0 0 1 0 0 0
70 13.46 34.80 –83.24 75.00 47.50 47.09 0 1 0 0 0 1 0 0
71 15.99 34.09 –80.96 79.30 55.00 36.00 0 1 0 0 0 0 0 1
72 16.07 33.99 –81.02 79.30 55.00 36.00 0 1 0 0 1 0 0 0
73 16.26 34.86 –82.23 72.60 51.20 35.93 0 1 0 0 0 0 0 1
74 15.34 34.94 –81.23 74.20 50.80 30.56 0 1 0 1 0 0 0 0

Table 2, Part 2.
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SOLUTIONS TO 2002 FINAL EXAM

1. In the standard notation we have

XT X =




n 0 0 0
0 n 0 0
0 0 n θn
0 0 θn n


 , XT Y =




S0

S1

S2

S3


 . (8)

(a) {7 points} Exploiting the block-diagonal form to invert XT X,

(XT X)−1 =
1
n




1 0 0 0
0 1 0 0
0 0 1

1−θ2 − θ
1−θ2

0 0 − θ
1−θ2

1
1−θ2


 . (9)

Hence from β̂ = (XT X)−1XT Y ,

β̂0 =
S0

n
, β̂1 =

S1

n
, β̂2 =

S2 − θS3

n(1− θ2)
, β̂3 =

S3 − θS2

n(1− θ2)
. (10)

(b) {7} This follows from the sequence of identities (with H as the hat matrix)

RSS = Y T (I −H)Y
= Y T Y − Ŷ T Ŷ

= Y T Y − β̂T XT Xβ̂

= Y T Y − Y T X(XT X)−1XT Y

= Y T Y − 1
n

(
S0 S1 S2 S3

)



1 0 0 0
0 1 0 0
0 0 1

1−θ2 − θ
1−θ2

0 0 − θ
1−θ2

1
1−θ2







S0

S1

S2

S3




which quickly reduces to the form given.

(c) {6} The test is: reject H0 at size α if

∣∣∣∣
β̂1

SE(β̂1)

∣∣∣∣ > tn−4;1−α/2 (11)

where SE(β̂1) refers to the standard error of β̂1. However, the variance of β̂1 is σ2/n
which is estimated by RSS/{n(n−4)}, and the square root of this is the standard error.
Therefore, (11) reduces to

|S1|
√

n− 4
n×RSS

> tn−4;1−α/2. (12)
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(d) {7} The corresponding calculation to (2) under H0 leads to

RSS =
∑

i

y2
i −

1
n

(
S2

0 + S2
1

)
, (13)

in other words, RSS1 is given by (2) and RSS0 by (13). Therefore

RSS0 −RSS1 =
S2

2 − 2θS2S3 + S2
3

n(1− θ2)
. (14)

The relevant F statistic is

F =
RSS0 −RSS1

2
· n− 4
RSS1

(15)

which may be calculated from (2) and (14). The F test at size α rejects H0 if F >
F2,n−4;1−α.

(e) {7} The alternative hypothesis is of the form Cβ = h′ where C =

(
0 0 1 0
0 0 0 1

)
and

h′ =

(
β2

β3

)
. Under the null hypothesis, h′ is replaced by h =

(
0
0

)
. According to

page 134 of the text, the noncentrality parameter δ is given by

σ2δ2 = (h− h′)T {C(XT X)−1CT }−1(h− h′). (16)

However in this case,

C(XT X)−1CT =
1
n

(
1

1−θ2 − θ
1−θ2

− θ
1−θ2

1
1−θ2

)

and hence

{C(XT X)−1CT }−1 = n

(
1 θ
θ 1

)

Hence

σ2δ2 = n
(

β2 β3

) (
1 θ
θ 1

) (
β2

β3

)
(17)

which quickly reduces to (3). The degrees of freedom ν1 and ν2 are 2 and n − 4, as in
(d).

(f) {6} With the given numerical values we have β2
2 + 2θβ2β3 + β2

3 = 8.2 and hence

δ2 =
16× 8.2

5
= 26.24

and hence φ = δ√
1+ν1

=
√

26.24
3 = 2.957. From the Pearson-Hartley charts with ν1 =

2, ν2 = 12, the power is approximately .89 in the case α = 0.01 and .984 in the case
α = 0.05. (More precise values from the S-PLUS “pearsonhartley” function are .8966
and .9852.)
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2. (a) {5} If RSSk denotes the residual sum of squares under model k = 1, 2, then RSSk =
Y T (I −Hk)Y where Hk = Xk(XT

k Xk)−1XT
k . Then

RSS1 −RSS2 = Y T (H2 −H1)Y.

For this to be negative, condition (4) is satisfied with C = H2 −H1.

(b) {8} (i) With σ2, AIC selects model 1 if

SSE1

σ2
+ 2p1 <

SSE2

σ2
+ 2p2.

This is equivalent to

Y T CY = SSE1 − SSE2 < 2σ2(p2 − p1),

so (5) is satisfied with B = 2σ2(p2 − p1).
(ii) BIC replaces 2pk with pk log n for k = 1, 2, so B = σ2(p2 − p1) log n.
(iii) With σ2 known, the most direct test is a χ2 test: reject H0 that model 1 is correct
with significance level α if

SSE1 − SSE2

σ2
> χ2

p2−p1;1−α (18)

so (5) is satisfied if B = σ2χ2
p2−p1;1−α.

If we used an F test instead of a χ2 test, the result would be to reject H0 if

SSE1 − SSE2

p2 − p1
.
n− p2

SSE2
> Fp2−p1,n−p2;1−α (19)

which is of form (5) with

B =
SSE2

n− p2
· (p2 − p1)Fp2−p1,n−p2;1−α.

(c) {7} E{Y T CY } = E{tr(Y T CY )} = E{tr(CY Y T )} = tr(CE{Y Y T )} and

E{Y Y T } = X1β1β
T
1 XT

1 + σ2In

(In is the n× n identity matrix). Therefore,

E{Y T CY } = tr(CX1β1β
T
1 XT

1 ) + σ2tr(C). (20)

However tr(Hk) = pk from theory developed in Chapter 3, so in (20), tr(C) may be
replaced by p2 − p1.
In the case of nested models (X1 a submatrix of X2) it follows directly from Theorem
3.1 that E(RSSk) = (n − pk)σ2 and therefore that E(RSS1 − RSS2) = σ2(p2 − p1).
Therefore, in this case, the first term of (20) may be omitted entirely.

3. (a) {10} We have to show
∑

j

wijvjk =
{

κ−1 if k = i,
0 if k 6= i.

(21)
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For i = 1,
∑

j

wijvjk = v1k − ρv2k

=
{

1− ρ2 if k = 1,
ρk−1 − ρk−1 = 0 if k > 1,

while if 2 < i < n,
∑

j

wijvjk = −ρvi−1,k + (1 + ρ2)vi,k − ρvi+1,k

=




−ρ2 + (1 + ρ2)− ρ2 = 1− ρ2 if k = i,
−ρk−i+2 + (1 + ρ2)ρk−i − ρk−i = 0 if k > i,
−ρi−k + (1 + ρ2)ρi−k − ρi−k+2 = 0 if k < i.

The case i = n is similar to the case i = 1.
Thus for all cases, we have proved (21) with κ = (1− ρ2)−1.

(b) {10} The GLS estimator is β̂ = (XT V −1X)−1XT V −1Y . We may replace V −1 by W ,
since the constant κ cancels from the numerator and denominator. Thus

XT WY = x1y1 + xnyn + (1 + ρ2)
n−1∑

i=2

xiyi − ρ
n−1∑

i=1

(xiyi+1 + xi+1yi)

and similarly

XT WX = x2
1 + x2

n + (1 + ρ2)
n−1∑

i=2

x2
i − 2ρ

n−1∑

i=1

xixi+1.

Therefore

β̂ =
x1y1 + xnyn + (1 + ρ2)

∑n−1
i=2 xiyi − ρ

∑n−1
i=1 (xiyi+1 + xi+1yi)

x2
1 + x2

n + (1 + ρ2)
∑n−1

i=2 x2
i − 2ρ

∑n−1
i=1 xixi+1

.

The variance of β̂ is

σ2(XT V −1X)−1 = σ2κ−1(XT WX)−1

=
σ2(1− ρ2)

x2
1 + x2

n + (1 + ρ2)
∑n−1

i=2 x2
i − 2ρ

∑n−1
i=1 xixi+1

.

4. (a) {3} For all rows, N1 + S1 + G1 = 1 and A1 + C1 + F1 + I1 + R1 = 1 so the G1 and R1
variables are exactly collinear with some of the others. Therefore, we have to omit some
variables to make X of full rank. However, we could still infer an effect for G1 from the
coefficients for N1 and S1 and similarly for R1 from the coefficients for A1, C1, F1, I1

(b) {5} The scaled variable has to be multiplied by C where C = 1 for y1, C = 2
√

˙PM
for y2 and C = log ˙PM for y3. Then RSS is multiplied by C2, i.e. 4 ˙PM = 66.96 for
y2 and ( ˙PM)2 = 280.2 for y3. This makes the rescaled RSS values 125.9, 121.7, 120.2
respectively for y1, y2, y3, i.e. y3 appears to be the best.

(c) {13} The RSS values are of the form (1−R2)SSTO where SSTO = 7.91885; therefore,
the RSS for the 11 models at the bottom of page 4 are

4.079 3.057 2.624 2.125 2.050 1.928 1.870 1.829 1.819 1.818 1.817
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Ignoring some constants, AIC = n log RSS + 2p, BIC = n log RSS + 2p, where n = 74
and p = 2, 3, ..., 12 for the 11 models, so the AIC and BIC values are

108.033 88.682 79.396 65.766 65.127 62.589 62.305 62.689 64.272 66.240 68.207

112.641 95.594 88.613 77.286 78.951 78.717 80.738 83.426 87.312 91.584 95.856

The best model is the one with 7 covariates (lat,lon,max,pcp,n1,s1,a1) by AIC, 4 covari-
ates (lat,pcp,n1,s1) by BIC.
Successive F statistics for the model in row i against the model in row i + 1 are of the
form

RSSi −RSSi+1

1
· n− i− 2)

RSSi+1
, i = 1, ..., 10

which leads to values

23.75 11.53 16.23 2.47 4.24 2.07 1.44 0.36 0.03 0.03

Note that the model is nested in every case except the test of row 2 against row 3.
Without detailed looking up of tables, we may interpret the values of 4.24 and higher to
be significant, but not the smaller values. This means that forward selection would stop
after the first 3 tests (i.e. the model with 4 covariates) while backward selection would
select the model with 6 covariates.

(d) {13} For this model p = 5 (counting the intercept) while n = 74. The critical value for hi

is 2p/n = .135, exceeded for i = 15, 49, 65. We have |studres| > 2 for i = 46, 48, 60, 66;
only the value i = 46 for which studres = 3.10 seems truly an outlier. The critical
value for dffits is 2

√
p/n = 0.520, exceeded in magnitude for i = 46, 48, 60, 65, 66 (see

also Cook’s distance on Fig. 1 which is similar but not identical). Critical value for
dfbetas is 2/

√
n = 0.232 which is exceeded in numerous places, see esp. row 60, value

for s1. From this we conclude that there are a number of potentially influential values
but observations 46, 60 and 66 are most critical. The normality plot shown as part
of Fig. 1 seems fine, but note that this is for ordinary residuals and not studentized
residuals; however even for the latter, with only one significant outlier, the fit to the
normal distribution does not seem bad.

(e) {3} Based on raw data and fitted values, many sites are not in agreement with the
standard. Sites are more likely to be out of compliance in Georgia (in the data, all the
Georgia sites have mean PM2.5 greater than 15), and it also appears that low-rainfall
sites are more likely to be out of compliance.

(f) {3} For a proposed reduction of the network, repeat the regression on reduced data set
and use to predict PM2.5 at the deleted sites. A good network will be one in which the
prediction MSE at the deleted sites is small. However, this simple suggestion ignores
the effect of direct spatial correlation between the sites. One possible extension of the
analysis would be to include values at observed neighboring sites among the covariates
of the regression.
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