
STATISTICS 174: APPLIED STATISTICS

FINAL EXAM

DECEMBER 8, 2001

Time allowed: 3 HOURS.

This is an open book exam: all course notes and the text are allowed, and
you are expected to use your own calculator. Answers should preferably be
written in a blue book.

The exam is expected to be your own work and no consultation during the
exam is allowed. You are allowed to ask the instructor for clarification if you
feel the question is ambiguous.

Show all working. In questions requiring a numerical solution, it is more
important to demonstrate the method correctly than to obtain correct numerical
answers. Even if your calculator has the power to perform high-level operations
such as matrix inversion, you are expected to demonstrate the method from
first principles. Solutions containing unresolved numerical expressions will be
accepted provided the method of numerical calculation is clearly demonstrated.

Questions 1–3 are theoretical questions and each is worth 20 points. Question
4 is worth 60 points. A score of 100 may be considered a perfect score. A table
of 95% points for the F distribution is provided.

1. In the world of Scotch whisky, a single malt is a whisky made entirely
from one kind of barley at one distillery, while a blended whisky consists
of many different types of whisky mixed together (usually mixed with
grain whisky as well). In a tasting experiment of blended whiskies, k
different single malt whiskies are taken, and blended whiskies are formed
by mixing some number m < k single malts in each blend. Assume that
in each blend, the different single malts that make up the blend are mixed
in equal proportions. Assume that during the course of the experiment,
every possible combination of m out of the k single malts is tried.

[Thus, the total number of blends tried is

n =
(

k

m

)
=

k!
m!(k −m)!

.

If k and m are not very small, this could be rather a large number of
blends. Let’s just say the experiment need not be completed in a single
sitting.]

After trying out all n whisky blends, a satisfaction score yi is assessed
for the taste of each blend. A statistical analysis is then performed to
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determine the desirability of each single malt when used in a blend. A
plausible model for such an analysis is

yi =
k∑

j=1

xijβj + εi,

where xij is 1 if single malt j is a constituent of blended whisky i, and 0
otherwise.

Show how to formulate this problem as a linear model, give algebraic
expressions for the least squares estimators β̂j as functions of the obser-
vations yi, and calculate the variances of the estimates β̂j . Assume the εi

are independent errors with common mean 0 and variance σ2.

2. A furnace is controlled by opening an air vent to a prescribed aperture x.
Allowing for possible feedback effects, the temperature in the furnace is
believed to be a quadratic function of x. After measuring the temperature
y1, ..., yn corresponding to a series of apertures x1, ..., xn, an attempt is
made to determine the aperture which would correspond to a desirable
temperature T . The assumed model is

yi = β0 + β1xi + β2x
2
i + εi,

where as usual the εi are assumed uncorrelated with mean 0 and variance
σ2, and we also assume the xi values are centered and scaled so that∑

xi = 0,
∑

x2
i = A,

∑
x3

i = 0,
∑

x4
i = B, for known constants A and

B.

(a) Show how to formulate this as a linear model and calculate the co-
variance matrix of the least squares estimates (β̂0, β̂1, β̂2).

(b) Describe how to construct a 95% confidence interval (or, if it doesn’t
turn out to be an interval, some other kind of confidence set) for the
value or values of x that satisfy β0 + β1x + β2x

2 = T for a given
value of T . You should find that the boundary points of this interval
(or set) satisfy an equation of the form α0 + α1x + α2x

2 + α3x
3 +

α4x
4 = 0 where α0, ..., α4 are functions of n, A, B, the least squares

estimates β̂0, ..., β̂2 and the estimated residual standard deviation s;
give explicit expressions for α0, ..., α4 in terms of these quantities.

3. Consider a simple weighing design in which there are four objects, each
weighed two at a time. Thus, a suitable model is

y1 = β1 + β2 + ε1,

y2 = β1 + β3 + ε2,

y3 = β1 + β4 + ε3,
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y4 = β2 + β3 + ε4,

y5 = β2 + β4 + ε5,

y6 = β3 + β4 + ε6.

Once again we make the usual assumptions for {εi}, i.e. uncorrelated,
mean 0, common variance σ2.

(a) Give an explicit formula for the least squares estimate β̂1 as a linear
combination of the observations y1, ..., y6. What is its variance? Note
that by the symmetry of the experiment, the variances of β̂j , j =
2, 3, 4, will be the same.

Suppose we use a ridge regression estimate, which, for computational
simplicity in what follows, we define as (XT X + cI)−1XT Y where
X is derived directly from the above equations without rescaling to∑

i xij = 0,
∑

i x2
ij = n as in the usual treatment of ridge regression.

(b) For the ridge regression estimate (β̃(c)
1 , β̃

(c)
2 , β̃

(c)
3 , β̃

(c)
4 ), calculate di-

rectly (i) the bias of β̃
(c)
1 , (ii) the variance of β̃

(c)
1 , (iii) the value

of c which minimizes the mean squared error. (You don’t need to
give an explicit expression for c, but state clearly the minimization
problem that has to be solved. Of course, here again, if we can solve
the problem for β1 then the same solution will hold by symmetry for
βj , j = 2, 3, 4.)

(c) Suppose the objective were not to estimate the values of βj with
maximum precision, but instead to predict the yi values in a fu-
ture experiment. To be precise, assume a future experiment is to
be conducted for the same model but with yi replaced by y∗i and εi

replaced by an independent ε∗i . Suppose the predictor ỹ
(c)
i is formed

by summing the relevant β̃
(c)
j , ỹ

(c)
1 = β̃

(c)
1 + β̃

(c)
2 . The symmetry of

the experiment implies that the mean squared prediction error of ỹ
(c)
i

will be the same for each i, so we can take i = 1 for definiteness.
Outline how the calculations in (b) would have to be changed if the
objective were to choose c minimize the mean squared error of ỹ

(c)
1

rather than β̃
(c)
1 .

4. Tables 2–4 (Appendix B at the end of this exam) are based on a large
study (known as the NMMAPS study) of the health effects of particulate
matter based on the 88 largest cities in the continental U.S. In this study,
an analysis of the effects of particulate matter on health (similar to the
analyses discussed at various points of this course) was conducted sepa-
rately for each city. Ignoring all the other covariates used in the analysis,
the regression coefficient for the effect of particulate matter on mortality
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for city i is denoted yi, and its standard error is denoted si. Units are per-
cent increase in deaths corresponding to a 10 µg/m3 rise in PM10. Thus,
for example, for the first city in Table 2 (Los Angeles), we have y1 = .38
and s1 = .19. This means that using the data in Los Angeles, we estimate
that a 10 µg/m3 rise in PM10 gives rise to a 0.38% rise in deaths, and the
standard error of that estimate is 0.19%.

The purpose of the NMMAPS study was to find out what could be learned
by combining these results, possibly using regression methods as part of
that process. This differs from examples seen at various points in the
course, because here, yi is used as the input data to a regression model
rather than as an end-result in its own right. (It’s partly for that reason
that the notation is yi rather than something like θ̂i.) Our objective is to
treat yi as given observations and then regress them on the other covariates
defined for each city. The hope is that by doing this, we will understand
what factors explain why the yi estimates differ from city to city, and
also that the analysis will lead to improved estimates of the overall effect
by combining all the yi. Another issue is geographic variation, e.g. it
has been suggested that the effects of particulate matter on health are
different in the eastern and western halves of the U.S., and that this may
be due to different compositions of atmospheric particulates in different
parts of the country.

Tables 2–4 show the name of the city (five-letter abbreviation — for exam-
ple, the first four are Los Angeles, New York, Chicago and Dallas); region
(classified as 1–7 by geography); latitude (oN); longitude (oW); Popula-
tion in millions; Mean levels of particulate matter (PM10), ozone (O3),
nitrogen dioxide (NO2), sulfur dioxide (SO2) and carbon monoxide (CO);
the estimate yi and its standard error si.

For the purpose of the analysis, the data were recoded as follows. The
“region” variable was converted into seven indicator variables r1–r7; for
example, Los Angeles is in Region 3 so r3=1 and r1=r2=r4=r5=r6=r7=0.
The latitude and longitude variables were converted to decimal degrees
(instead of degrees and minutes, as in Tables 2–4). The other variables
were taken directly from the tables. A typical SAS analysis was coded as

options ls=77 ps=58;
data nmm1;
infile ’nmm2.txt’;
input lon lat y se pop r1-r7 pm o3 no2 so2 co;
wt1=1/se*se;
run;
;
proc reg;
model y=r1-r7 pop pm o3 no2 so2 co /selection=rsquare ;
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weight wt1;
output p=predval r=resid1;
run;
;

in which data were read from a file ‘nmm2.txt’ and variable selection
performed on all the variables except latitude and longitude using the
‘rsquare’ option (which calculates the best model of order p for each p and
ranks them using R2).

Note the use of the ‘weight’ statement, which weights each observation
according to the reciprocal of the variance (so the calculated estimates
are actually WLS rather than OLS estimates). However, except for that
one statement, the analyses are exactly the same as in a standard linear
regression using the OLS estimates, so for the rest of this question you
can ignore the distinction between OLS and WLS.

(a) Based on the above variable selection, Table 1 gives the value of the
error sum of squares SSE, and the selected variables, for various
model orders from 0 to 12. (For model 0, the SSE is the same as
SSTO, the total sum of squares.) Note that R2 = 1− SSE/SSTO.

p R2 Variables SSE
0 0 83.0046
1 .0408 r6 79.6180
2 .0599 r3 so2 78.0326
3 .0939 r3 pm so2 75.2096
4 .1057 r3 r7 pm so2 74.2310
5 .1117 r3 r6 r7 pm so2 73.7330
6 .1157 r3 r6 r7 pm so2 co 73.4010
7 .1183 r2 r3 r6 r7 pm so2 co 73.1852
8 .1191 r2 r3 r6 r7 pm o3 so2 co 73.1188
9 .1196 r2 r3 r4 r6 r7 pm o3 so2 co 73.0772
10 .1200 r2 r3 r4 r6 r7 pop pm o3 so2 co 73.0440
11 .1200 r2 r3 r4 r6 r7 pop pm o3 no2 so2 co 73.0440
12 .1200 r1 r2 r4 r5 r6 r7 pop pm o3 no2 so2 co 73.0440

Table 1: Best model of order p for each p

Which of the above models might be considered “best” using (i) F
tests (where applicable) to compare the different models in Table 4a,
(ii) AIC, (iii) BIC?
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(b) For a study of this nature, in which the regressions performed at
the level of the individual cities are supposed to take all relevant co-
variates into account, there is no obvious reason why there should
be any relationship between the values of yi and the city-wide co-
variates. Indeed, all the R2 values in Table 4a are quite low. How
would you decide this point, i.e. whether any of the regressions are
“significant”?

(c) Some of the initial press commentary on the results of this study high-
lighted the fact that the North-East U.S.A. (region 6 in the above
analysis) had the highest overall death rates. Comment on this con-
clusion in the light of the above regression analyses.

We shall now go into more detail about one of the models in Table
4a, for which p = 3 and the variables are r3, pm, so2. (This is an
obvious candidate to be the best overall model, though it may not be
the model you identified as best in part (a) of this question.) Some
more SAS code reads

proc reg;
model y=r3 pm so2 /collin influence r cli clm vif covb ;
weight wt1;
output p=predval r=resid1;
run;
;

which creates all the diagnostics for this model (with the “weight”
command again, but for the purpose of the question, you can as-
sume that the interpretation of the diagnostics in a WLS regression
is exactly the same as in a OLS regression).
Appendix A at the end of this question gives edited SAS output
generated by the above commands.
Now answer the following questions about this SAS output.

(d) Do there appear to be any outliers? If so, give details.

(e) Are there points of high leverage? If so, give details.

(f) Are there influential data points? If so, give details.

(g) Is multicollinearity a problem with this data set? If so, give details.

The final part of this question addresses the overall objectives of the
regression exercise.

(h) If the objective is to calculate the overall average effect of particulate
matter on health, there would seem to be (at least) two ways to do it:
(i) simply average over all the yi’s (presumably a weighted average),
(ii) average over the fitted values ŷi resulting from the regression

6



(again with suitable weights). What would be the advantages and
disadvantages of method (b) as opposed to (a)?
Note: As in earlier parts of the question, you can ignore the fact that
this is really a WLS regression: answer the question as if it was being
asked for OLS regression.
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Appendix A: SAS Output

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 7.79501 2.59834
Error 84 75.20959 0.89535
Corrected Total 87 83.00460

Root MSE 0.94623 R-Square 0.0939
Dependent Mean 0.47239 Adj R-Sq 0.0616
Coeff Var 200.30861

Parameter Estimates

Parameter Standard Variance
Variable DF Estimate Error t Value Pr > |t| Inflation

Intercept 1 0.75100 0.53214 1.41 0.1619 0
r3 1 1.12099 0.49519 2.26 0.0262 1.76464
pm 1 -0.03076 0.01733 -1.77 0.0796 1.46967
so2 1 0.09382 0.03759 2.50 0.0145 1.24572

Covariance of Estimates

Variable Intercept r3 pm so2

Intercept 0.2831760814 0.0760953991 -0.0080856 -0.006256668
r3 0.0760953991 0.2452169262 -0.004760968 0.007966508
pm -0.0080856 -0.004760968 0.0003004355 -0.000090439
so2 -0.006256668 0.007966508 -0.000090439 0.001412667

Collinearity Diagnostics

Condition
Number Eigenvalue Index

1 2.91291 1.00000
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2 0.96433 1.73801
3 0.10381 5.29715
4 0.01895 12.39767

-----------------Proportion of Variation----------------
Number Intercept r3 pm so2

1 0.00409 0.00891 0.00410 0.01611
2 0.00031029 0.47585 0.00004872 0.01888
3 0.05720 0.31836 0.05794 0.95647
4 0.93840 0.19688 0.93791 0.00853

Output Statistics

Weight Dep Var Predicted Std Error
Obs Variable est Value Mean Predict 95% CL Mean

1 1.0000 0.3800 0.6355 0.3608 -0.0821 1.3531
2 1.0000 1.1100 1.0661 0.2669 0.5353 1.5969
3 1.0000 0.3100 0.0877 0.1759 -0.2622 0.4375
4 1.0000 -0.4100 0.1222 0.2274 -0.3299 0.5743
5 1.0000 0.1800 0.0910 0.1711 -0.2492 0.4313
6 1.0000 1.1000 0.9981 0.3950 0.2126 1.7836
7 1.0000 0.6900 0.8437 0.3714 0.1051 1.5823
8 1.0000 0.6500 -0.1601 0.2596 -0.6764 0.3562
9 1.0000 0.4800 0.0935 0.2340 -0.3719 0.5590

10 1.0000 0.7000 0.5141 0.1180 0.2794 0.7488
11 1.0000 0.7700 0.5910 0.1959 0.2014 0.9807
12 1.0000 0.4800 0.1676 0.1730 -0.1764 0.5117
13 1.0000 0.2800 0.5264 0.1212 0.2853 0.7675
14 1.0000 0.3100 0.3696 0.1101 0.1506 0.5885
15 1.0000 -0.0500 0.3302 0.3192 -0.3046 0.9650
16 1.0000 0.2500 0.7997 0.3737 0.0566 1.5428
17 1.0000 0.3900 1.1113 0.3133 0.4883 1.7344
18 1.0000 2.0600 0.4957 0.1138 0.2693 0.7220
19 1.0000 0.0500 0.2036 0.1659 -0.1263 0.5335
20 1.0000 0.6900 0.5725 0.1357 0.3026 0.8425
21 1.0000 0.8500 0.3102 0.3934 -0.4720 1.0925
22 1.0000 0.2000 0.3566 0.1105 0.1370 0.5763
23 1.0000 -0.4500 0.2804 0.1328 0.0163 0.5444
24 1.0000 0.8500 0.8854 0.2147 0.4585 1.3123
25 1.0000 -0.0500 0.8904 0.1919 0.5087 1.2721
26 1.0000 0.9500 0.4126 0.1062 0.2015 0.6238
27 1.0000 0.2000 0.8156 0.2430 0.3324 1.2988
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28 1.0000 1.5000 0.5818 0.1391 0.3052 0.8583
29 1.0000 0.4000 0.1796 0.1809 -0.1802 0.5394
30 1.0000 1.9000 0.6124 0.1207 0.3724 0.8524
31 1.0000 0.4000 0.4571 0.1094 0.2394 0.6747
32 1.0000 1.3500 0.4892 0.1272 0.2363 0.7422
33 1.0000 0.6000 0.6398 0.1711 0.2995 0.9800
34 1.0000 0.9500 0.5272 0.1446 0.2396 0.8148
35 1.0000 0.2500 0.1519 0.1498 -0.1460 0.4499
36 1.0000 1.8000 1.0531 0.2336 0.5886 1.5177
37 1.0000 3.2500 0.6968 0.1578 0.3829 1.0107
38 1.0000 0 0.1936 0.2217 -0.2473 0.6345
39 1.0000 0.1000 0.0378 0.1888 -0.3377 0.4133
40 1.0000 0.9000 0.7155 0.3579 0.003798 1.4271
41 1.0000 1.1500 0.5918 0.1337 0.3259 0.8577
42 1.0000 1.9000 0.8895 0.1869 0.5179 1.2612
43 1.0000 1.4000 0.4106 0.1131 0.1857 0.6355
44 1.0000 0.7500 0.9344 0.2145 0.5080 1.3609
45 1.0000 0.0500 0.5356 0.1238 0.2894 0.7819
46 1.0000 1.2500 0.6919 0.1608 0.3721 1.0117
47 1.0000 0.2000 0.3376 0.2494 -0.1583 0.8335
48 1.0000 0.6000 0.4997 0.1065 0.2878 0.7115
49 1.0000 1.1000 0.6556 0.1690 0.3196 0.9916
50 1.0000 -0.6000 0.4618 0.1084 0.2463 0.6773
51 1.0000 0.8500 0.8168 0.1956 0.4279 1.2057
52 1.0000 0.6500 0.5173 0.3976 -0.2735 1.3080
53 1.0000 0.4000 1.1879 0.2763 0.6385 1.7373
54 1.0000 1.8000 0.3603 0.1116 0.1383 0.5823
55 1.0000 -0.4000 0.8428 0.2271 0.3912 1.2944
56 1.0000 0.9000 0.5802 0.1154 0.3508 0.8097
57 1.0000 -0.1500 0.3312 0.1829 -0.0325 0.6949
58 1.0000 -0.3000 0.4126 0.1062 0.2015 0.6238
59 1.0000 0.0500 -0.2890 0.2833 -0.8524 0.2745
60 1.0000 0.8000 0.7847 0.2302 0.3269 1.2426
61 1.0000 1.3000 0.3352 0.1569 0.0232 0.6473
62 1.0000 2.9500 0.5172 0.1188 0.2809 0.7534
63 1.0000 -0.3000 0.5172 0.1188 0.2809 0.7534
64 1.0000 -1.0500 0.4140 0.1278 0.1598 0.6682
65 1.0000 1.9500 0.4957 0.1138 0.2693 0.7220
66 1.0000 0 0.3992 0.1143 0.1719 0.6265
67 1.0000 -1.6500 -0.3532 0.3135 -0.9766 0.2701
68 1.0000 0.5000 0.4486 0.2063 0.0383 0.8588
69 1.0000 0.3000 0.1973 0.1652 -0.1313 0.5259
70 1.0000 -2.7000 0.2014 0.1756 -0.1477 0.5506
71 1.0000 -1.2000 0.2993 0.1309 0.0389 0.5596
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72 1.0000 -0.4000 0.1881 0.1693 -0.1485 0.5247
73 1.0000 2.1500 0.2071 0.1883 -0.1673 0.5816
74 1.0000 -0.8500 0.2127 0.1587 -0.1029 0.5283
75 1.0000 0.6500 0.4127 0.1596 0.0953 0.7301
76 1.0000 -0.1500 0.0852 0.2269 -0.3660 0.5363
77 1.0000 -1.3500 0.5799 0.1178 0.3456 0.8143
78 1.0000 -1.7500 0.4926 0.1132 0.2674 0.7177
79 1.0000 0.7500 0.5049 0.1158 0.2745 0.7352
80 1.0000 -0.1000 0.5792 0.1287 0.3232 0.8351
81 1.0000 -0.9000 0.5326 0.1229 0.2881 0.7771
82 1.0000 -0.1000 0.5139 0.1206 0.2740 0.7539
83 1.0000 -1.0000 0.6279 0.1571 0.3154 0.9404
84 1.0000 1.5000 0.6771 0.1786 0.3220 1.0322
85 1.0000 1.2500 0.3080 0.1240 0.0614 0.5547
86 1.0000 0.3000 -0.1428 0.2876 -0.7148 0.4291
87 1.0000 0.9000 0.6064 0.1484 0.3113 0.9015
88 1.0000 1.8000 0.4126 0.1062 0.2015 0.6238

Output Statistics

Std Error Student
Obs 95% CL Predict Residual Residual Residual -2-1 0 1 2

1 -1.3784 2.6494 -0.2555 0.875 -0.292 | | |
2 -0.8890 3.0212 0.0439 0.908 0.0484 | | |
3 -1.8263 2.0016 0.2223 0.930 0.239 | | |
4 -1.8130 2.0575 -0.5322 0.919 -0.579 | *| |
5 -1.8212 2.0032 0.0890 0.931 0.0956 | | |
6 -1.0410 3.0372 0.1019 0.860 0.119 | | |
7 -1.1777 2.8651 -0.1537 0.870 -0.177 | | |
8 -2.1113 1.7912 0.8101 0.910 0.890 | |* |
9 -1.8449 2.0319 0.3865 0.917 0.422 | | |

10 -1.3822 2.4104 0.1859 0.939 0.198 | | |
11 -1.3306 2.5126 0.1790 0.926 0.193 | | |
12 -1.7453 2.0805 0.3124 0.930 0.336 | | |
13 -1.3707 2.4235 -0.2464 0.938 -0.263 | | |
14 -1.5248 2.2639 -0.0596 0.940 -0.0634 | | |
15 -1.6556 2.3161 -0.3802 0.891 -0.427 | | |
16 -1.2234 2.8228 -0.5497 0.869 -0.632 | *| |
17 -0.8708 3.0935 -0.7213 0.893 -0.808 | *| |
18 -1.3996 2.3909 1.5643 0.939 1.665 | |*** |
19 -1.7068 2.1140 -0.1536 0.932 -0.165 | | |
20 -1.3284 2.4735 0.1175 0.936 0.125 | | |
21 -1.7276 2.3481 0.5398 0.861 0.627 | |* |
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22 -1.5378 2.2511 -0.1566 0.940 -0.167 | | |
23 -1.6198 2.1805 -0.7304 0.937 -0.780 | *| |
24 -1.0441 2.8149 -0.0354 0.922 -0.0384 | | |
25 -1.0296 2.8104 -0.9404 0.927 -1.015 | **| |
26 -1.4809 2.3061 0.5374 0.940 0.572 | |* |
27 -1.1272 2.7583 -0.6156 0.914 -0.673 | *| |
28 -1.3201 2.4837 0.9182 0.936 0.981 | |* |
29 -1.7362 2.0954 0.2204 0.929 0.237 | | |
30 -1.2845 2.5093 1.2876 0.939 1.372 | |** |
31 -1.4372 2.3513 -0.0571 0.940 -0.0607 | | |
32 -1.4094 2.3878 0.8608 0.938 0.918 | |* |
33 -1.2724 2.5520 -0.0398 0.931 -0.0427 | | |
34 -1.3763 2.4307 0.4228 0.935 0.452 | | |
35 -1.7532 2.0571 0.0981 0.934 0.105 | | |
36 -0.8850 2.9913 0.7469 0.917 0.815 | |* |
37 -1.2109 2.6045 2.5532 0.933 2.737 | |***** |
38 -1.7391 2.1262 -0.1936 0.920 -0.210 | | |
39 -1.8810 1.9566 0.0622 0.927 0.0671 | | |
40 -1.2963 2.7272 0.1845 0.876 0.211 | | |
41 -1.3086 2.4922 0.5582 0.937 0.596 | |* |
42 -1.0285 2.8076 1.0105 0.928 1.089 | |** |
43 -1.4845 2.3057 0.9894 0.939 1.053 | |** |
44 -0.9950 2.8638 -0.1844 0.922 -0.200 | | |
45 -1.3621 2.4334 -0.4856 0.938 -0.518 | *| |
46 -1.2168 2.6006 0.5581 0.932 0.599 | |* |
47 -1.6083 2.2835 -0.1376 0.913 -0.151 | | |
48 -1.3939 2.3932 0.1003 0.940 0.107 | | |
49 -1.2559 2.5670 0.4444 0.931 0.477 | | |
50 -1.4322 2.3558 -1.0618 0.940 -1.130 | **| |
51 -1.1047 2.7382 0.0332 0.926 0.0359 | | |
52 -1.5238 2.5583 0.1327 0.859 0.155 | | |
53 -0.7724 3.1481 -0.7879 0.905 -0.871 | *| |
54 -1.5344 2.2551 1.4397 0.940 1.532 | |*** |
55 -1.0923 2.7779 -1.2428 0.919 -1.353 | **| |
56 -1.3154 2.4759 0.3198 0.939 0.340 | | |
57 -1.5853 2.2477 -0.4812 0.928 -0.518 | *| |
58 -1.4809 2.3061 -0.7126 0.940 -0.758 | *| |
59 -2.2532 1.6753 0.3390 0.903 0.375 | | |
60 -1.1518 2.7213 0.0153 0.918 0.0166 | | |
61 -1.5721 2.2426 0.9648 0.933 1.034 | |** |
62 -1.3793 2.4136 2.4328 0.939 2.592 | |***** |
63 -1.3793 2.4136 -0.8172 0.939 -0.871 | *| |
64 -1.4848 2.3128 -1.4640 0.938 -1.561 | ***| |
65 -1.3996 2.3909 1.4543 0.939 1.548 | |*** |
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66 -1.4961 2.2946 -0.3992 0.939 -0.425 | | |
67 -2.3355 1.6290 -1.2968 0.893 -1.452 | **| |
68 -1.4773 2.3744 0.0514 0.923 0.0557 | | |
69 -1.7128 2.1075 0.1027 0.932 0.110 | | |
70 -1.7124 2.1152 -2.9014 0.930 -3.120 |******| |
71 -1.6004 2.1989 -1.4993 0.937 -1.600 | ***| |
72 -1.7235 2.0997 -0.5881 0.931 -0.632 | *| |
73 -1.7115 2.1257 1.9429 0.927 2.095 | |**** |
74 -1.6953 2.1207 -1.0627 0.933 -1.139 | **| |
75 -1.4955 2.3210 0.2373 0.933 0.254 | | |
76 -1.8498 2.0202 -0.2352 0.919 -0.256 | | |
77 -1.3163 2.4761 -1.9299 0.939 -2.056 | ****| |
78 -1.4025 2.3877 -2.2426 0.939 -2.387 | ****| |
79 -1.3909 2.4006 0.2451 0.939 0.261 | | |
80 -1.3199 2.4782 -0.6792 0.937 -0.724 | *| |
81 -1.3649 2.4301 -1.4326 0.938 -1.527 | ***| |
82 -1.3830 2.4109 -0.6139 0.939 -0.654 | *| |
83 -1.2796 2.5353 -1.6279 0.933 -1.745 | ***| |
84 -1.2378 2.5920 0.8229 0.929 0.886 | |* |
85 -1.5897 2.2058 0.9420 0.938 1.004 | |** |
86 -2.1095 1.8239 0.4428 0.901 0.491 | | |
87 -1.2983 2.5111 0.2936 0.935 0.314 | | |
88 -1.4809 2.3061 1.3874 0.940 1.476 | |** |

Output Statistics

Cook’s Hat Diag Cov
Obs D RStudent H Ratio DFFITS

1 0.004 -0.2905 0.1454 1.2226 -0.1198
2 0.000 0.0481 0.0796 1.1396 0.0141
3 0.001 0.2378 0.0346 1.0837 0.0450
4 0.005 -0.5771 0.0577 1.0957 -0.1429
5 0.000 0.0950 0.0327 1.0841 0.0175
6 0.001 0.1178 0.1743 1.2696 0.0541
7 0.001 -0.1756 0.1541 1.2383 -0.0749
8 0.016 0.8892 0.0753 1.0923 0.2537
9 0.003 0.4195 0.0612 1.1080 0.1071
10 0.000 0.1969 0.0156 1.0637 0.0247
11 0.000 0.1922 0.0429 1.0941 0.0407
12 0.001 0.3340 0.0334 1.0795 0.0621
13 0.000 -0.2611 0.0164 1.0631 -0.0337
14 0.000 -0.0630 0.0135 1.0633 -0.0074
15 0.006 -0.4248 0.1138 1.1736 -0.1522
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16 0.018 -0.6301 0.1560 1.2194 -0.2708
17 0.020 -0.8062 0.1096 1.1421 -0.2829
18 0.010 1.6834 0.0145 0.9307 0.2040
19 0.000 -0.1640 0.0307 1.0809 -0.0292
20 0.000 0.1247 0.0206 1.0703 0.0181
21 0.021 0.6249 0.1728 1.2447 0.2857
22 0.000 -0.1657 0.0136 1.0622 -0.0195
23 0.003 -0.7777 0.0197 1.0395 -0.1102
24 0.000 -0.0382 0.0515 1.1059 -0.0089
25 0.011 -1.0152 0.0411 1.0414 -0.2103
26 0.001 0.5692 0.0126 1.0460 0.0643
27 0.008 -0.6709 0.0659 1.0991 -0.1783
28 0.005 0.9808 0.0216 1.0239 0.1457
29 0.001 0.2360 0.0366 1.0860 0.0460
30 0.008 1.3793 0.0163 0.9740 0.1774
31 0.000 -0.0604 0.0134 1.0631 -0.0070
32 0.004 0.9172 0.0181 1.0261 0.1244
33 0.000 -0.0425 0.0327 1.0844 -0.0078
34 0.001 0.4500 0.0234 1.0637 0.0696
35 0.000 0.1043 0.0251 1.0755 0.0167
36 0.011 0.8129 0.0610 1.0823 0.2071
37 0.054 2.8503 0.0278 0.7427 0.4822
38 0.001 -0.2092 0.0549 1.1077 -0.0504
39 0.000 0.0667 0.0398 1.0924 0.0136
40 0.002 0.2095 0.1430 1.2216 0.0856
41 0.002 0.5936 0.0200 1.0525 0.0847
42 0.012 1.0906 0.0390 1.0313 0.2197
43 0.004 1.0538 0.0143 1.0092 0.1269
44 0.001 -0.1990 0.0514 1.1038 -0.0463
45 0.001 -0.5154 0.0171 1.0538 -0.0680
46 0.003 0.5962 0.0289 1.0620 0.1028
47 0.000 -0.1499 0.0695 1.1262 -0.0409
48 0.000 0.1061 0.0127 1.0620 0.0120
49 0.002 0.4751 0.0319 1.0719 0.0862
50 0.004 -1.1315 0.0131 0.9999 -0.1305
51 0.000 0.0357 0.0427 1.0958 0.0075
52 0.001 0.1537 0.1766 1.2726 0.0712
53 0.018 -0.8693 0.0853 1.1060 -0.2654
54 0.008 1.5448 0.0139 0.9498 0.1835
55 0.028 -1.3598 0.0576 1.0193 -0.3362
56 0.000 0.3387 0.0149 1.0590 0.0416
57 0.003 -0.5161 0.0374 1.0759 -0.1017
58 0.002 -0.7560 0.0126 1.0337 -0.0854
59 0.003 0.3735 0.0897 1.1447 0.1172
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60 0.000 0.0165 0.0592 1.1151 0.0041
61 0.008 1.0343 0.0275 1.0249 0.1739
62 0.027 2.6857 0.0158 0.7637 0.3399
63 0.003 -0.8692 0.0158 1.0279 -0.1100
64 0.011 -1.5752 0.0183 0.9498 -0.2148
65 0.009 1.5614 0.0145 0.9481 0.1892
66 0.001 -0.4229 0.0146 1.0555 -0.0515
67 0.065 -1.4623 0.1097 1.0644 -0.5134
68 0.000 0.0554 0.0475 1.1013 0.0124
69 0.000 0.1096 0.0305 1.0814 0.0194
70 0.087 -3.2990 0.0344 0.6637 -0.6229
71 0.012 -1.6151 0.0191 0.9450 -0.2257
72 0.003 -0.6294 0.0320 1.0633 -0.1144
73 0.045 2.1393 0.0396 0.8813 0.4344
74 0.009 -1.1413 0.0281 1.0143 -0.1942
75 0.000 0.2530 0.0285 1.0765 0.0433
76 0.001 -0.2546 0.0575 1.1096 -0.0629
77 0.017 -2.0967 0.0155 0.8668 -0.2632
78 0.021 -2.4577 0.0143 0.8036 -0.2962
79 0.000 0.2596 0.0150 1.0616 0.0320
80 0.002 -0.7224 0.0185 1.0424 -0.0992
81 0.010 -1.5393 0.0169 0.9535 -0.2017
82 0.002 -0.6519 0.0163 1.0448 -0.0838
83 0.022 -1.7665 0.0276 0.9308 -0.2975
84 0.007 0.8844 0.0356 1.0478 0.1700
85 0.004 1.0042 0.0172 1.0171 0.1328
86 0.006 0.4890 0.0924 1.1426 0.1560
87 0.001 0.3125 0.0246 1.0705 0.0496
88 0.007 1.4861 0.0126 0.9565 0.1678

Output Statistics

-------------------DFBETAS-------------------
Obs Intercept r3 pm so2

1 0.0153 -0.0788 -0.0154 -0.0021
2 -0.0030 0.0044 -0.0018 0.0130
3 -0.0161 -0.0293 0.0324 -0.0203
4 -0.0990 0.0361 0.0375 0.1146
5 0.0044 -0.0092 0.0040 -0.0136
6 0.0198 0.0484 -0.0230 0.0039
7 -0.0185 -0.0626 0.0201 -0.0009
8 -0.1186 -0.1734 0.2089 -0.1289
9 -0.0753 -0.0625 0.0956 -0.0111

15



10 0.0152 0.0003 -0.0109 -0.0014
11 -0.0254 -0.0057 0.0198 0.0250
12 0.0333 -0.0227 -0.0050 -0.0479
13 -0.0218 -0.0015 0.0163 0.0016
14 -0.0001 0.0029 -0.0020 0.0012
15 0.1308 0.0545 -0.1247 -0.0535
16 -0.0759 -0.2206 0.0750 0.0125
17 0.1038 -0.0707 -0.0065 -0.2629
18 0.1132 -0.0077 -0.0742 -0.0143
19 0.0153 0.0171 -0.0225 0.0049
20 0.0135 0.0026 -0.0113 -0.0003
21 -0.0869 0.1128 0.1148 -0.0469
22 -0.0031 0.0075 -0.0032 0.0055
23 0.0359 0.0594 -0.0663 0.0206
24 0.0024 -0.0019 0.0002 -0.0077
25 -0.1110 -0.0914 0.1482 -0.1146
26 0.0134 -0.0183 0.0033 -0.0088
27 0.0935 -0.0120 -0.0471 -0.1456
28 0.1108 0.0237 -0.0943 -0.0013
29 0.0280 -0.0144 -0.0076 -0.0352
30 0.0153 0.0104 -0.0245 0.0861
31 0.0005 0.0018 -0.0015 -0.0010
32 -0.0436 -0.0295 0.0469 0.0449
33 0.0037 0.0004 -0.0025 -0.0053
34 -0.0320 -0.0132 0.0288 0.0337
35 -0.0022 -0.0103 0.0090 -0.0090
36 0.0684 0.0979 -0.1251 0.1522
37 0.3545 0.1467 -0.3564 0.0976
38 -0.0386 0.0092 0.0184 0.0375
39 0.0037 -0.0071 0.0029 -0.0112
40 -0.0016 0.0627 0.0003 0.0030
41 -0.0219 -0.0046 0.0149 0.0476
42 0.0229 0.0759 -0.0800 0.1726
43 -0.0219 -0.0450 0.0447 0.0073
44 0.0061 -0.0135 0.0078 -0.0403
45 -0.0456 -0.0045 0.0351 0.0027
46 -0.0314 0.0060 0.0125 0.0743
47 0.0330 0.0158 -0.0329 -0.0125
48 0.0034 -0.0012 -0.0017 0.0012
49 0.0726 0.0233 -0.0671 0.0023
50 -0.0559 0.0179 0.0269 0.0128
51 -0.0022 0.0013 0.0002 0.0063
52 -0.0302 0.0332 0.0296 0.0054
53 -0.0487 -0.1262 0.1353 -0.2216
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54 -0.0061 -0.0766 0.0573 -0.0305
55 0.1429 -0.0426 -0.0512 -0.2836
56 0.0169 0.0032 -0.0149 0.0104
57 -0.0836 0.0096 0.0483 0.0604
58 -0.0178 0.0243 -0.0043 0.0117
59 -0.0333 -0.0802 0.0830 -0.0813
60 0.0037 0.0015 -0.0037 0.0003
61 0.1303 -0.0266 -0.0672 -0.0999
62 0.2111 0.0070 -0.1532 -0.0181
63 -0.0683 -0.0023 0.0496 0.0058
64 -0.1457 0.0256 0.0803 0.0801
65 0.1050 -0.0071 -0.0688 -0.0133
66 -0.0253 0.0113 0.0092 0.0165
67 0.2028 0.3549 -0.4035 0.3200
68 0.0114 0.0009 -0.0083 -0.0054
69 -0.0099 -0.0115 0.0149 -0.0037
70 -0.3887 0.1865 0.1166 0.4642
71 -0.1119 0.0744 0.0202 0.1289
72 0.0600 0.0679 -0.0892 0.0217
73 0.2994 -0.1080 -0.1162 -0.3217
74 0.0938 0.1134 -0.1444 0.0369
75 0.0360 -0.0014 -0.0231 -0.0195
76 -0.0402 0.0188 0.0121 0.0522
77 -0.1302 -0.0256 0.1134 -0.0509
78 -0.1613 0.0137 0.1038 0.0215
79 0.0187 -0.0004 -0.0129 -0.0020
80 -0.0670 -0.0138 0.0572 -0.0059
81 -0.1335 -0.0119 0.1021 0.0084
82 -0.0542 -0.0019 0.0392 0.0067
83 -0.2433 -0.0702 0.2195 -0.0045
84 0.1454 0.0499 -0.1367 0.0059
85 -0.0316 -0.0674 0.0689 -0.0243
86 -0.0990 -0.1020 0.1417 -0.0511
87 0.0394 0.0101 -0.0347 0.0002
88 0.0350 -0.0478 0.0085 -0.0229
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Appendix B: Data Tables

City Reg. Lat. Lon. Pop. PM10 O3 NO2 SO2 CO yi si

Los A 3 34: 3 118:14 8.86 46.0 22.8 39.4 1.9 1.51 .38 .19
New Y 6 40:47 73:58 8.20 28.8 19.6 38.9 12.8 2.04 1.11 .29
Chica 5 41:59 87:54 5.11 35.6 18.6 24.3 4.6 .79 .31 .10
Dalla 7 32:54 97: 2 3.31 23.8 25.3 13.8 1.1 .74 –.41 .63
Houst 7 29:58 95:21 2.82 30.0 20.5 18.8 2.8 .89 .18 .33
San D 3 32:44 117:10 2.50 33.6 31.6 22.9 1.7 1.10 1.10 .47
Santa 3 33:50 117:55 2.41 37.4 23.0 35.1 1.3 1.23 .69 .52
Phoen 2 33:26 112: 1 2.12 40.3 22.5 16.6 3.5 1.27 .65 .54
Detro 5 42:14 83:20 2.11 40.9 22.6 21.3 6.4 .66 .48 .19
Miami 7 25:49 80:17 1.94 25.7 25.9 11.0 5.9 1.06 .70 .73
Phila 6 39:53 75:15 1.59 35.4 20.5 32.2 9.9 1.18 .77 .48
Minne 4 44:53 93:13 1.52 26.9 24.9 17.6 2.6 1.18 .48 .28
Seatt 1 47:27 122:18 1.51 25.3 19.4 22.1 5.9 1.78 .28 .30
San J 1 37:20 121:53 1.50 30.4 17.9 25.1 5.9 .94 .31 .33
Cleve 5 41:25 81:52 1.41 45.1 27.4 25.2 10.3 .85 –.05 .22
San B 3 34: 7 117:19 1.42 37.0 35.9 27.9 .7 1.03 .25 .68
Pitts 5 40:30 80:13 1.34 31.6 20.7 27.6 14.2 1.22 .39 .15
Oakla 1 37:49 122:16 1.28 26.3 17.2 21.2 5.9 .91 2.06 .56
Atlan 7 33:45 84:23 1.19 36.1 25.1 26.0 6.0 .89 .05 .83
San A 2 29:32 98:28 1.19 23.8 22.2 22.1 5.9 1.01 .69 .89
River 3 33:59 117:22 1.17 52.0 33.4 25.0 .4 1.12 .85 .47
Denve 1 39:44 104:59 1.12 29.6 21.4 27.9 5.5 1.03 .20 .25
Sacra 1 38:35 121:29 1.04 33.3 26.7 16.3 5.9 .94 –.45 .52
St Lo 5 38:37 90:12 .99 30.1 22.8 22.5 11.3 1.05 .85 1.23
Buffa 5 42:53 78:53 .97 21.7 22.9 19.0 8.6 .73 –.05 .92
Colum 5 39:58 83: 0 .96 29.0 26.0 22.1 5.9 .76 .95 .57
Cinci 5 39: 6 84:31 .87 34.2 25.8 26.7 11.9 1.00 .20 .40
St Pe 7 27:46 82:39 .85 23.5 24.6 11.8 5.9 .71 1.50 1.00

Table 2: NMMAPS Data, Part 1

18



City Reg. Lat. Lon. Pop. PM10 O3 NO2 SO2 CO yi si

Kansa 4 39: 6 94:35 .84 25.9 27.6 9.2 2.4 .62 .40 1.00
Tampa 7 27:57 82:27 .83 28.3 23.5 21.2 7.8 .78 1.90 1.05
Memph 7 35: 8 90: 3 .83 30.3 29.0 26.8 6.8 1.19 .40 1.10
India 5 39:46 86: 9 .80 32.0 31.9 20.2 7.7 .90 1.35 .53
Newar 6 40:44 74:10 .78 32.9 15.2 33.6 9.6 .87 .60 .70
Balti 6 39:17 76:37 .74 32.9 21.2 32.9 8.4 .92 .95 .42
Salt 1 40:45 111:53 .73 32.9 23.0 29.6 4.4 1.35 .25 .18
Roche 6 43:10 77:37 .71 21.9 22.7 22.1 10.4 .63 1.80 1.20
Worce 6 42:16 71:48 .71 22.2 30.0 25.2 6.7 .89 3.25 1.13
Orlan 7 28:33 81:23 .68 22.7 24.1 11.4 1.5 .93 .00 1.75
Jacks 7 30:20 81:39 .67 29.9 28.2 14.8 2.2 .92 .10 1.05
Fresn 3 36:44 119:47 .67 43.4 29.4 21.7 1.9 .68 .90 .50
Louis 5 38:15 85:46 .66 30.8 19.8 22.4 8.4 1.12 1.15 .97
Bosto 6 42:22 71:94 .66 26.0 17.9 29.9 10.0 1.13 1.90 .95
Birmi 7 33:31 86:48 .65 31.2 22.4 22.1 6.6 1.05 1.40 .70
Washi 6 38:54 77: 6 .61 28.2 17.5 25.6 11.2 1.23 .75 1.02
Oklah 2 35:30 97:30 .60 25.0 28.4 13.9 5.9 .71 .05 1.02
Provi 6 41:49 71:24 .60 30.9 25.4 21.9 9.5 1.00 1.25 .88
El Pa 2 31:45 106:29 .59 41.2 24.4 23.6 9.1 1.25 .20 .30
Tacom 1 47:14 122:26 .59 28.0 23.8 22.1 6.5 1.66 .60 .85
Austi 2 30:17 97:45 .58 21.1 25.5 22.1 5.9 1.02 1.10 1.45
Dayto 5 39:45 84:12 .57 27.4 26.6 22.1 5.9 .83 –.60 1.20
Jerse 6 40:44 74: 4 .55 30.5 19.7 28.7 10.7 2.01 .85 .57
Baker 3 35:23 119: 1 .54 53.2 33.3 19.4 3.0 1.05 .65 .48
Akron 5 41: 5 81:31 .51 22.4 30.5 22.1 12.0 .70 .40 .80
Charl 7 35:13 80:51 .51 30.7 29.3 16.2 5.9 1.11 1.80 1.30
Nashv 7 36:10 86:47 .51 32.4 16.2 22.1 11.6 1.12 –.40 .60
Tulsa 7 36:10 95:55 .50 26.6 31.4 16.6 6.9 .65 .90 1.15
Grand 5 42:58 85:40 .50 22.8 27.7 22.1 3.0 .57 –.15 1.08
New O 7 29:58 90: 4 .50 29.0 20.5 21.3 5.9 .94 –.30 .95

Table 3: NMMAPS Data, Part 2
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City Reg. Lat. Lon. Pop. PM10 O3 NO2 SO2 CO yi si

Stock 1 37:58 121:17 .48 39.0 22.6 24.2 1.7 .82 .05 .67
Albuq 2 35: 5 106:39 .48 16.9 25.8 22.1 5.9 .79 .80 1.35
Syrac 6 43: 3 76: 9 .47 24.5 23.7 22.1 3.6 1.17 1.30 1.15
Toled 5 41:39 83:33 .46 25.6 27.1 22.1 5.9 1.03 2.95 1.27
Ralei 7 35:46 78:38 .42 25.6 35.4 12.7 5.9 1.61 –.30 2.05
Wichi 4 37:42 97:20 .40 25.6 24.2 22.1 4.8 .65 –1.05 1.73
Color 1 38:50 104:49 .40 26.3 24.3 22.1 5.9 1.09 1.95 1.77
Baton 7 30:27 91:11 .38 27.3 21.2 16.6 5.2 .43 .00 1.75
Modes 1 37:39 121: 0 .37 41.7 26.1 24.2 1.9 .91 –1.65 1.02
Madis 5 43: 4 89:24 .37 19.9 29.7 22.1 3.3 1.04 .50 2.25
Spoka 1 47:40 117:24 .36 36.0 32.6 22.1 5.9 2.19 .30 .25
Littl 7 34:45 92:17 .35 25.8 27.7 9.3 2.6 1.02 –2.70 1.40
Green 7 36: 4 79:48 .35 27.5 24.9 22.1 4.2 1.22 –1.20 1.60
Knoxv 7 35:58 83:55 .34 36.3 29.6 22.1 5.9 1.36 –.40 1.20
Shrev 7 32:31 93:45 .33 24.7 28.2 22.1 2.3 1.02 2.15 1.67
Des M 4 41:35 93:37 .33 35.5 11.8 22.1 5.9 .86 –.85 .68
Fort 5 41: 4 85: 9 .30 23.2 32.1 22.1 4.0 1.44 .65 2.08
Corpu 2 27:47 97:24 .29 24.7 23.9 22.1 1.0 1.02 –.15 1.83
Norfo 6 36:51 76:17 .26 26.0 24.9 19.6 6.7 .73 –1.35 1.83
Jacks 7 32:18 90:12 .25 26.4 23.9 22.1 5.9 .79 –1.75 1.88
Hunts 7 34:44 86:35 .24 26.0 30.4 12.9 5.9 .63 .75 1.38
Lexin 5 38: 3 84:30 .23 24.5 32.8 16.4 6.2 .88 –.10 1.65
Lubbo 2 33:35 101:51 .22 25.1 24.9 22.1 5.9 1.02 –.90 .85
Richm 6 37:33 77:27 .20 25.4 24.9 23.7 5.8 .66 –.10 2.05
Arlin 6 38:53 77: 7 .17 22.0 29.0 25.5 5.9 .66 –1.00 1.75
Kings 6 41:56 73:59 .17 20.4 24.9 22.1 5.9 1.02 1.50 1.75
Evans 5 37:58 87:35 .17 32.4 24.9 22.1 5.9 1.02 1.25 1.88
Kansa 4 36: 7 94:38 .16 43.4 18.5 17.6 4.7 .82 .30 1.25
Olymp 1 47:35 122:10 .16 22.7 24.9 22.1 5.9 1.27 .90 .95
Topek 4 39: 3 95:40 .16 29.0 24.9 22.1 5.9 1.02 1.80 1.85

Table 4: NMMAPS Data, Part 3
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STATISTICS 174: APPLIED STATISTICS

SOLUTIONS TO 2001 FINAL EXAM

1. Each single malt appears in the experiment
(

k−1
m−1

)
times, since after one

malt is chosen, there are this number of ways of selecting m − 1 other
whiskies from the other k − 1 choices.

By the same argument, each pair of single malts appears in the experiment(
k−2
m−2

)
times.

Therefore, the XT X matrix is of the form aIn + bJn where

a + b =
(

k − 1
m− 1

)
, b =

(
k − 2
m− 2

)
. (1)

Note that this implies

a =
(

k − 2
m− 1

)
. (2)

By the results in Section 3.2.4, the inverse matrix is of the form

XT X = cIn + dJn

where c and d are given by

c =
1
a
, d = − b

a(a + nb)
. (3)

If we denote Sj as the sum of yi for all blends in which single malt j is
one of the constituents, then

XT Y =




S1

S2

...
Sk


 .

Since β̂ = (XT X)−1XT Y , it follows that

β̂j = cSj + d
∑

`

S`. (4)

Combining equations (1)–(4) gives the desired explicit expression.

Also, the variance of β̂j is

(c + d)σ2 =
a + (n− 1)b
a(a + nb)

σ2.
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2. We have

XT X =




n 0 A
0 A 0
A 0 B


 , (XT X)−1 =




B
nB−A2 0 − A

nB−A2

0 1
A 0

− A
nB−A2 0 n

nB−A2


 .

(a) The covariance matrix of β̂ is (XT X)−1σ2 so this follows immediately
from the above equation for (XT X)−1.

(b) The confidence interval consists of all x for which a null hypothesis
H0 : β0 + β1x + β2x

2 = T is accepted at the .05 level. Using the
answer to (a), the variance of β̂0 + β̂1x + β̂2x

2 is
{

B

nB −A2
+

x2

A
+

x4n

nB −A2
− 2x2A

nB −A2

}
σ2.

This may be written in the form (f + gx2 + hx4)σ2 where

f =
B

nB −A2
, g =

1
A
− 2A

nB −A2
, h =

n

nB −A2
. (5)

The obvious test statistic for H0 is then

β̂0 + β̂1x + β̂2x
2 − T

s
√

f + gx2 + hx4
∼ tn−3.

We accept x for which

(β̂0 + β̂1x + β̂2x
2 − T )2 ≤ t2n−3;.95s

2(f + gx2 + hx4). (6)

Writing (6) in the form

α0 + α1x + α2x
2 + α3x

3 + α4x
4 ≤ 0,

one possible specification of the constants α0, ..., α4 is

α0 = (β̂0 − T )2 − t2n−3;.95s
2f, (7)

α1 = 2(β̂0 − T )β̂1, (8)

α2 = β̂2
1 + 2(β̂0 − T )β̂2 − t2n−3;.95s

2g, (9)

α3 = 2β̂1β̂2, (10)

α4 = β̂2
2 − t2n−3;.95s

2h. (11)

The final answer is obtained by combining (5) with (7)–(11).
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3. Formulating this as a linear model in the usual way, we find

XT X =




3 1 1 1
1 3 1 1
1 1 3 1
1 1 1 3


 .

Thus in the notation of Section 3.2.4, we have

XT X +cI4 = (2+c)I4+J4, (XT X +cI)−1 =
1

2 + c
I4− 1

(2 + c)(6 + c)
J4.

(12)

(a) With c = 0, (XT X)−1 is just 1
2I4 − 1

12J4. We also have

XT Y =




y1 + y2 + y3

y1 + y4 + y5

y2 + y4 + y6

y3 + y5 + y6


 .

Hence the first component of β̂ = (XT X)−1XT Y is

1
2
(y1 + y2 + y3)− 1

12
(2y1 + 2y2 + 2y3 + 2y4 + 2y5 + 2y6)

=
1
3
(y1 + y2 + y3)− 1

6
(y4 + y5 + y6).

The associated variance of β̂1 is 5
12σ2.

(b) By the results in Section 5.2.4 of the notes, the variance of the ridge
regression estimator is (XT X + cI)−1XT X(XT X + cI)−1σ2 and the
bias is −c(XT X + cI)−1β. In the present case, we calculate

[
1

2 + c
I4 − 1

(2 + c)(6 + c)
J4

]
[2I4 + J4]

=
[

2
2 + c

I4 +
c

(2 + c)(6 + c)
J4

]
,

[
2

2 + c
I4 +

c

(2 + c)(6 + c)
J4

] [
1

2 + c
I4 − 1

(2 + c)(6 + c)
J4

]

=
[

2
(2 + c)2

I4 +
c2 − 12

(2 + c)2(6 + c)2
J4

]
.

In particular, the variance of β̃
(1)
1 is

{
2

(2 + c)2
+

c2 − 12
(2 + c)2(6 + c)2

}
σ2 =

3(c2 + 8c + 20)
(2 + c)2(6 + c)2

σ2. (13)
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The bias is

−c

[
1

2 + c
I4 − 1

(2 + c)(6 + c)
J4

]
β

and the first component of this is

−c

[
1

2 + c
β1 − 1

(2 + c)(6 + c)
(β1 + ... + β4)

]

= −c(5 + c)
(6 + c)

β1 +
c

(2 + c)(6 + c)
(β2 + β3 + β4). (14)

The optimization problem therefore chooses c to minimize S + B2,
where S is given by (13) and B by (14).

(c) In this case, ỹ
(c)
1 = β̃

(c)
1 + β̃

(c)
2 so the bias of ỹ

(c)
1 is the sum of the

biases for β̃
(c)
1 and β̃

(c)
2 , i.e. the sum of (14) and the corresponding

expression with β1 and β2 interchanged.
By the independence of past and future observations, the variance of
ỹ
(c)
1

σ2 + Var(β̃(c)
1 ) + Var(β̃(c)

2 ) + 2Cov(β̃(c)
1 , β̃

(c)
2 ). (15)

The variances of β̃
(c)
1 and β̃

(c)
2 are both given by (13), while the

covariance is
c2 − 12

(2 + c)2(6 + c)2
σ2. (16)

The variance S of ỹ
(c)
1 is derived by combining (13), (15) and (16),

while the bias B is given as the sum of (14) and the corresponding
expression with β1 and β2 interchanged. The optimal value of c is
again that which minimizes S + B2.

4. Problem about NMMAPS study.

(a) Successive F tests of one model against the next yield F statistics
3.66 (for p = 0 against p = 1); 1.73 (p = 1 against p = 2, though
note this combination is not nested); 3.15, 1.09, 0.55 etc. The 95%
point for F1,ν where ν ≈ 88 is about 4.00; thus, none of these tests
is significant. On this basis, it looks as though either forward or
backward selection would result in p = 0. On the other hand, if
we test H0 : p = 0 against H1 : p = 3 (based on the r3, pm, so2
variables) we get an F statistic of 2.90 and the corresponding F3,84,.95

value is about 2.7. So this is significant.
AIC, BIC calculations are as in Table 5 based on

AIC = n log SSE + 2p, BIC = n log SSE + p log n,

and suggest that the best-AIC model is p = 3 and the best-BIC
model is p = 0. The choice appears to be between those two.
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p SSE AIC BIC
0 388.86 388.86 388.86
1 385.20 387.20 389.68
2 383.43 387.43 392.38
3 380.18 386.18 393.61
4 379.03 387.03 396.94

Table 5: AIC and BIC calculations

(b) As noted in (a), both BIC and successive F testing suggest p = 0
as the optimal model, which would therefore support the statement
that there is no effect due to any of the regressors. On the other
hand, a direct test of p = 0 against p = 3 does produce a significant
result. The answer to the direct question, whether any of the models
is significant against the null model, is “yes” in the case of p = 3.

(c) The model with p = 1 has r6 as the only significant variable, so
presumably the coefficient is positive and this confirms that region 6
has the highest mortality ratio (though not significantly, according to
this analysis). On the other hand, the p = 3 model has both pm and
so2 as covariates, and r3 as the only significant “region” covariate
(with a positive coefficient, from the SAS output). Therefore, it
looks as though when the model is properly adjusted to allow for
variable background levels in PM10 and SO2, it is region 3 (southern
California), not region 6, which has the highest mortality ratios.

(d) Large studentized residuals include observation 37 (2.737), 62 (2.592),
70 (–3.120) and 78 (–2.387).

(e) p = 4 (counting the intercept) so 2p
n = .0909. Large hii values include

observations 1,6,7,15,16,17,21,40,52,67,86. In other words, there are
many points of possibly high leverage here.

(f) For DFFITS, the cutoff is 2
√

p
n = .426 and by this criterion obser-

vations 37, 70, 73 are influential.
For DFBETAS, the cutoff is 2√

n
= .213 and (in addition to the

foregoing) this means each of observations 16, 17, 53, 55, 67, 83 is
influential in at least one βj .

(g) The largest VIF is 1.76; largest condition index is 12.4. No problem
with multicollinearity.

(h) The choice is between 1
88

∑
yi and 1

88

∑
ŷi as estimate of overall

average effect (ignoring the weightings).
∑

ŷi could be biased if we
did not identify the correct regression model. Normally, we would
expect it to have lower variance, however. The two could be examined
analytically because

∑
yi has variance nσ2 while the variance of

∑
ŷi

is of the form tr{(XT X)−1XT JX}σ2 where J is the n × n matrix
of ones. To see this, note that the vector Ŷ = HY has covariance
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matrix Hσ2 where H is the hat matrix, so the variance of
∑

ŷi is
1T H1σ2 where 1 is the column vector of ones. But

1T H1 = tr{1T X(XT X)−1XT 1}
= tr{(XT X)−1XT 11T X}
= tr{(XT X)−1XT JX}

which reduces the variance expression to the given form. Of course,
we can’t tell how much tr{(XT X)−1XT JX} is less than 1 without
actually doing the calculations, but if it was a great deal less than
1, that would be an argument in favor of using the regression-based
calculation. There was no definitive “right answer” to this question,
but definite bonus points if you discussed the tr{(XT X)−1XT JX}σ2

formula or anything equivalent to it.
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