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What’s wrong with that picture?

• We fitted a linear trend to data which are obviously autocor-
related

• OLS estimate 0.74 deg C per century, standard error 0.037

• So it looks statistically significant, but question how standard
error is affected by the autocorrelation

• First and simplest correction to this: assume an AR(1) time
series model for the residual

• So I calculated the residuals from the linear trend and fitted
an AR(1) model, Xn = φ1Xn−1 + εn, estimated φ̂1 = 0.62
with standard error 0.07. With this model, the standard error
of the OLS linear trend becomes 0.057, still making the trend
very highly significant

• But is this an adequate model?
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Fit AR(p) of various orders p, calculate log likelihood, AIC, and

the standard error of the linear trend.

Model Xn =
∑p
i=1 φiXn−i + εn, εn ∼ N [0, σ2

ε ] (IID)

AR order LogLik AIC Trend SE
0 72.00548 –140.0110 0.036
1 99.99997 –193.9999 0.057
2 100.13509 –192.2702 0.060
3 101.84946 –193.6989 0.069
4 105.92796 –199.8559 0.082
5 106.12261 –198.2452 0.079
6 107.98867 –199.9773 0.086
7 108.16547 –198.3309 0.089
8 108.16548 –196.3310 0.089
9 108.41251 –194.8250 0.086

10 108.48379 –192.9676 0.087
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Extend the calculation to ARMA(p,q) for various p and q: model
is Xn −

∑p
i=1 φiXn−i = εn +

∑q
j=1 θjεn−j, εn ∼ N [0, σ2

ε ] (IID)

AR order MA order
0 1 2 3 4 5

0 –140.0 –177.2 –188.4 –186.4 –191.5 –192.0
1 –194.0 –193.0 –197.4 –195.5 –201.7 –199.8
2 –192.3 –193.0 –195.4 –199.2 –200.8 –199.1
3 –193.7 –197.2 –200.3 –197.9 –200.8 –200.1
4 –199.9 –199.6 –199.8 –197.8 –196.8 –197.4
5 –198.2 –198.8 –197.8 –195.8 –194.8 –192.8
6 –200.0 –198.3 –196.4 –195.7 –196.5 –199.6
7 –198.3 –196.3 –200.2 –199.1 –194.6 –197.3
8 –196.3 –195.8 –194.4 –192.5 –192.8 –196.4
9 –194.8 –194.4 –197.6 –197.9 –196.2 –194.4

10 –193.0 –192.5 –195.0 –191.2 –194.9 –192.4

SE of trend based on ARMA(1,4) model: 0.087 deg C per cen-
tury
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Calculating the standard error of the trend

Estimate β̂ =
∑n
i=1wiXi, variance

σ2
ε

n∑
i=1

n∑
j=1

wiwjρ|i−j|

where ρ is the autocorrelation function of the fitted ARMA model

Alternative formula (Bloomfield and Nychka, 1992)

Variance(β̂) = 2
∫ 1/2

0
w(f)s(f)df

where s(f) is the spectral density of the autocovariance function
and

w(f) =

∣∣∣∣∣∣
n∑

j=1

wne
−2πijf

∣∣∣∣∣∣
2

is the transfer function
11
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What’s better than the OLS linear trend
estimator?

Use generalized least squares (GLS)

yn = β0 + β1xn + un,

un ∼ ARMA(p, q)

Repeat same process with AIC: ARMA(1,4) again best

β̂ = 0.73, standard error 0.10.
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Calculations in R

ip=4

iq=1

ts1=arima(y2,order=c(ip,0,iq),xreg=1:ny,method=’ML’)

Coefficients:

ar1 ar2 ar3 ar4 ma1 intercept 1:ny

0.0058 0.2764 0.0101 0.3313 0.5884 -0.4415 0.0073

s.e. 0.3458 0.2173 0.0919 0.0891 0.3791 0.0681 0.0010

sigma^2 estimated as 0.009061: log likelihood = 106.8,

aic = -197.59

acf1=ARMAacf(ar=ts1$coef[1:ip],ma=ts1$coef[ip+1:iq],lag.max=150)
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Statistical Models

Let

• t1i: ith year of series

• yi: temperature anomaly in year ti

• t2i = (t1i − 1998)+

• yi = β0 + β1t1i + β2t2i + ui

• Simple linear regression (OLS): ui ∼ N [0, σ2] (IID)

• Time series regression (GLS): ui − φ1ui−1 − ... − φpui−p =

εi + θ1εi−1 + ...+ θqεi−q, εi ∼ N [0, σ2] (IID)

Fit using arima function in R
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Adjustment for the El Niño Effect

• El Niño is a weather effect caused by circulation changes in

the Pacific Ocean

• 1998 was one of the strongest El Niño years in history

• A common measure of El Niño is the Southern Oscillation

Index (SOI), computed monthly

• Here use SOI with a seven-month lag as an additional co-

variate in the analysis
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Selecting The Changepoint

If we were to select the changepoint through some form of au-

tomated statistical changepoint analysis, where would we put

it?
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Conclusion from Temperature Trend Analysis

• No evidence of decrease post-1998 — if anything, the trend

increases after this time

• After adjusting for El Niño, even stronger evidence for a

continuously increasing trend

• If we were to select the changepoint instead of fixing it at

1998, we would choose some year in the 1970s
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Continental US monthly temperatures, Jan 1895–Oct 2012.

For each month between June 2011 and Sep 2012, the monthly

temperature was in the top tercile of all observations for that

month up to that point in the time series. Attention was first

drawn to this in June 2012, at which point the series of top

tercile events was 13 months long, leading to a näıve calculation

that the probability of that event was (1/3)13 = 6.3 × 10−7.

Eventually, the streak extended to 16 months, but ended at that

point, as the temperature for Oct 2012 was not in the top tercile.

In this study, we estimate the probability of either a 13-month or

a 16-month streak of top-tercile events, under various assump-

tions about the monthly temperature time series.
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Method

• Two issues with NOAA analysis:

– Neglects autocorrelation

– Ignores selection effect

• Solutions:

– Fit time series model – ARMA or long-range dependence

– Use simlulation to determine the probability distribution
of the longest streak in 117 years

• Some of the issues:

– Selection of ARMA model — AR(1) performs poorly

– Variances differ by month — must take that into account

– Choices of estimation methods, e.g. MLE 0r Bayesian —
Bayesian methods allow one to take account of parameter
estimation uncertainty
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Conclusions

• It’s important to take account of monthly varying standard
deviations as well as means.

• Estimation under a high-order ARMA model or fractional
differencing lead to very similar results, but don’t use AR(1).

• In a model with no trend, the probability that there is a
sequence of length 16 consecutive top-tercile observations
somewhere after year 30 in the 117-year time series is of
the order of 0.01–0.03, depending on the exact model being
fitted. With a linear trend, these probability rise to something
over .05. Include a nonlinear trend, and the probabilities are
even higher — in other words, not surprising at all.

• Overall, the results may be taken as supporting the over-
all anthropogenic influence on temperature, but not to a
stronger extent than other methods of analysis.
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A Parliamentary Question is a device where any member of the

U.K. Parliament can ask a question of the Government on any

topic, and is entitled to expect a full answer.
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www.parliament.uk, April 22, 2013
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Essence of the Met Office Response

• Acknowledged that under certain circumstances an ARIMA(3,1,0)

without drift can fit the data better than an AR(1) model

with drift, as measured by likelihood

• The result depends on the start and finish date of the series

• Provides various reasons why this should not be interpreted

as an argument against climate change

• Still, it didn’t seem to me (RLS) to settle the issue beyond

doubt
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There is a tradition of this kind of research going back some

time
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Summary So Far

• Integrated or unit root models (e.g. ARIMA(p, d, q) with d =

1) have been proposed for climate models and there is some

statistical support for them

• If these models are accepted, the evidence for a linear trend

is not clear-cut

• Note that we are not talking about fractionally integrated

models (0 < d < 1
2) for which there is by now a substantial

tradition. These models have slowly decaying autocorrela-

tions but are still stationary

• Integrated models are not physically realistic but this has not

stopped people advocating them

• I see the need for a more definitive statistical rebuttal

60



61



HadCRUT4 Global Series, 1900–2012

Model I : yt − yt−1 = ARMA(p, q) (mean 0)

Model II : yt = Linear Trend + ARMA(p, q)

Model III : yt − yt−1 = Nonlinear Trend + ARMA(p, q)

Model IV : yt = Nonlinear Trend + ARMA(p, q)

Use AICC as measure of fit
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Integrated Time Series, No Trend

p q
0 1 2 3 4 5

0 –165.4 –178.9 –182.8 –180.7 –187.7 –185.8
1 –169.2 –181.3 –180.7 –184.1 –186.3 –184.4
2 –176.0 –182.8 –185.7 –182.7 –184.7 –184.4
3 –185.5 –184.2 –185.2 –183.0 –184.4 –184.0
4 –183.5 –181.5 –183.0 –180.7 –181.5 NA
5 –185.2 –183.1 –181.0 –185.8 –183.6 –182.5
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Stationary Time Series, Linear Trend

p q
0 1 2 3 4 5

0 –136.1 –168.8 –178.2 –176.2 –180.9 –181.6
1 –183.1 –183.1 –186.8 –184.5 –190.8 –188.5
2 –181.3 –181.7 –184.5 –187.4 –189.2 –187.3
3 –182.6 –186.6 –188.9 –187.1 –189.3 –187.3
4 –189.7 –188.7 –188.4 –185.4 –185.1 NA
5 –187.9 –187.6 –186.0 –183.0 –182.6 –183.8
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Integrated Time Series, Nonlinear Trend

p q
0 1 2 3 4 5

0 –156.8 –195.1 –201.7 –199.4 –207.7 –208.9
1 –161.4 –199.5 –199.4 –202.3 –210.3 –209.0
2 –169.9 –202.3 –210.0 –201.4 –209.7 –208.7
3 –183.2 –201.0 –203.5 –201.2 –207.3 –204.8
4 –180.9 –199.3 –201.2 –198.7 –205.3 NA
5 –186.8 –201.7 –199.4 –207.7 –204.8 –204.8
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Stationary Time Series, Nonlinear Trend

p q
0 1 2 3 4 5

0 –199.1 –204.6 –202.4 –217.8 –216.9 –215.9
1 –202.6 –202.3 –215.2 –217.7 –216.1 –214.7
2 –205.2 –217.3 –205.0 –216.6 –214.1 –213.3
3 –203.8 –205.9 –203.6 –214.3 –211.7 –213.5
4 –202.2 –203.5 –213.7 –212.0 –227.1 NA
5 –205.7 –203.2 –216.2 –233.3 –212.6 –226.5
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Conclusions

• If we restrict ourselves to linear trends, there is not a clear-
cut preference between integrated time series models without
a trend and stationary models with a trend

• However, if we extend the analysis to include nonlinear trends,
there is a very clear preference that the residuals are
stationary, not integrated

• Possible extensions:

– Add fractionally integrated models to the comparison
– Bring in additional covariates, e.g. circulation indices and

external forcing factors
– Consider using a nonlinear trend derived from a climate

model. That would make clear the connection with de-
tection and attribution methods which are the preferred
tool for attributing climate change used by climatologists.
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EXTREME VALUE DISTRIBUTIONS

X1, X2, ..., i.i.d., F (x) = Pr{Xi ≤ x}, Mn = max(X1, ..., Xn),

Pr{Mn ≤ x} = F (x)n.

For non-trivial results must renormalize: find an > 0, bn such that

Pr
{
Mn − bn
an

≤ x
}

= F (anx+ bn)n → H(x).

The Three Types Theorem (Fisher-Tippett, Gnedenko) asserts
that if nondegenerate H exists, it must be one of three types:

H(x) = exp(−e−x), all x (Gumbel)

H(x) =
{0 x < 0

exp(−x−α) x > 0
(Fréchet)

H(x) =
{

exp(−|x|α) x < 0

1 x > 0
(Weibull)

In Fréchet and Weibull, α > 0.
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The three types may be combined into a single generalized ex-

treme value (GEV) distribution:

H(x) = exp

−
(

1 + ξ
x− µ
ψ

)−1/ξ

+

 ,
(y+ = max(y,0))

where µ is a location parameter, ψ > 0 is a scale parameter

and ξ is a shape parameter. ξ → 0 corresponds to the Gumbel

distribution, ξ > 0 to the Fréchet distribution with α = 1/ξ, ξ < 0

to the Weibull distribution with α = −1/ξ.

ξ > 0: “long-tailed” case, 1− F (x) ∝ x−1/ξ,

ξ = 0: “exponential tail”

ξ < 0: “short-tailed” case, finite endpoint at µ− ξ/ψ
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EXCEEDANCES OVER THRESHOLDS

Consider the distribution of X conditionally on exceeding some

high threshold u:

Fu(y) =
F (u+ y)− F (u)

1− F (u)
.

As u→ ωF = sup{x : F (x) < 1}, often find a limit

Fu(y) ≈ G(y;σu, ξ)

where G is generalized Pareto distribution (GPD)

G(y;σ, ξ) = 1−
(

1 + ξ
y

σ

)−1/ξ

+
.

Equivalence to three types theorem established by Pickands (1975).

74



The Generalized Pareto Distribution

G(y;σ, ξ) = 1−
(

1 + ξ
y

σ

)−1/ξ

+
.

ξ > 0: long-tailed (equivalent to usual Pareto distribution), tail

like x−1/ξ,

ξ = 0: take limit as ξ → 0 to get

G(y;σ,0) = 1− exp
(
−
y

σ

)
,

i.e. exponential distribution with mean σ,

ξ < 0: finite upper endpoint at −σ/ξ.
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POISSON-GPD MODEL FOR
EXCEEDANCES

1. The number, N , of exceedances of the level u in any one

year has a Poisson distribution with mean λ,

2. Conditionally on N ≥ 1, the excess values Y1, ..., YN are IID

from the GPD.
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Relation to GEV for annual maxima:

Suppose x > u. The probability that the annual maximum of the

Poisson-GPD process is less than x is

Pr{ max
1≤i≤N

Yi ≤ x} = Pr{N = 0}+
∞∑
n=1

Pr{N = n, Y1 ≤ x, ... Yn ≤ x}

= e−λ +
∞∑
n=1

λne−λ

n!

{
1−

(
1 + ξ

x− u
σ

)−1/ξ
}n

= exp

{
−λ

(
1 + ξ

x− u
σ

)−1/ξ
}
.

This is GEV with σ = ψ+ξ(u−µ), λ =
(
1 + ξu−µψ

)−1/ξ
. Thus the

GEV and GPD models are entirely consistent with one another

above the GPD threshold, and moreover, shows exactly how the

Poisson–GPD parameters σ and λ vary with u.
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ALTERNATIVE PROBABILITY MODELS

1. The r largest order statistics model

If Yn,1 ≥ Yn,2 ≥ ... ≥ Yn,r are r largest order statistics of IID

sample of size n, and an and bn are EVT normalizing constants,

then (
Yn,1 − bn

an
, ...,

Yn,r − bn
an

)
converges in distribution to a limiting random vector (X1, ..., Xr),

whose density is

h(x1, ..., xr) = ψ−r exp

−
(

1 + ξ
xr − µ
ψ

)−1/ξ

−
(

1 +
1

ξ

) r∑
j=1

log

(
1 + ξ

xj − µ
ψ

) .
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2. Point process approach (Smith 1989)

Two-dimensional plot of exceedance times and exceedance levels

forms a nonhomogeneous Poisson process with

Λ(A) = (t2 − t1)Ψ(y;µ, ψ, ξ)

Ψ(y;µ, ψ, ξ) =

(
1 + ξ

y − µ
ψ

)−1/ξ

(1 + ξ(y − µ)/ψ > 0).
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Illustration of point process model.
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An extension of this approach allows for nonstationary processes

in which the parameters µ, ψ and ξ are all allowed to be time-

dependent, denoted µt, ψt and ξt.

This is the basis of the extreme value regression approaches

introduced later

Comment. The point process approach is almost equivalent to

the following: assume the GEV (not GPD) distribution is valid for

exceedances over the threshold, and that all observations under

the threshold are censored. Compared with the GPD approach,

the parameterization directly in terms of µ, ψ, ξ is often easier

to interpret, especially when trends are involved.
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ESTIMATION

GEV log likelihood:

`Y (µ, ψ, ξ) = −N logψ −
(

1

ξ
+ 1

)∑
i

log

(
1 + ξ

Yi − µ
ψ

)

−
∑
i

(
1 + ξ

Yi − µ
ψ

)−1/ξ

provided 1 + ξ(Yi − µ)/ψ > 0 for each i.

Poisson-GPD model:

`N,Y (λ, σ, ξ) = N logλ− λT −N logσ −
(

1 +
1

ξ

) N∑
i=1

log
(

1 + ξ
Yi
σ

)
provided 1 + ξYi/σ > 0 for all i.

Usual asymptotics valid if ξ > −1
2 (Smith 1985)
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Bayesian approaches

An alternative approach to extreme value inference is Bayesian,

using vague priors for the GEV parameters and MCMC samples

for the computations. Bayesian methods are particularly useful

for predictive inference, e.g. if Z is some as yet unobserved ran-

dom variable whose distribution depends on µ, ψ and ξ, estimate

Pr{Z > z} by ∫
Pr{Z > z;µ, ψ, ξ}π(µ, ψ, ξ|Y )dµdψdξ

where π(...|Y ) denotes the posterior density given past data Y
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Plots of women’s 3000 meter records, and profile log-likelihood

for ultimate best value based on pre-1993 data.
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Example. The left figure shows the five best running times by

different athletes in the women’s 3000 metre track event for

each year from 1972 to 1992. Also shown on the plot is Wang

Junxia’s world record from 1993. Many questions were raised

about possible illegal drug use.

We approach this by asking how implausible Wang’s performance

was, given all data up to 1992.

Robinson and Tawn (1995) used the r largest order statistics

method (with r = 5, translated to smallest order statistics) to

estimate an extreme value distribution, and hence computed a

profile likelihood for xult, the lower endpoint of the distribution,

based on data up to 1992 (right plot of previous figure)
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Alternative Bayesian calculation:

(Smith 1997)

Compute the (Bayesian) predictive probability that the 1993 per-

formance is equal or better to Wang’s, given the data up to 1992,

and conditional on the event that there is a new world record.
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> yy=read.table(’C:/Users/rls/r2/d/evt/marathon/w3000.txt’,header=F)
> r=5
>
1 1972 533.00 545.80 549.20 556.00 556.60
2 1973 536.60 537.20 538.40 540.60 543.00
3 1974 532.80 535.20 535.60 539.00 541.40
4 1975 526.60 531.00 531.80 534.20 535.00
5 1976 507.12 521.80 525.40 528.40 534.90
6 1977 516.80 526.30 526.40 526.60 529.20
7 1978 512.10 513.20 513.50 520.90 522.30
8 1979 511.80 516.40 521.30 521.60 524.10
9 1980 513.53 513.90 514.00 516.00 520.40
10 1981 514.30 514.80 518.35 524.64 524.65
11 1982 506.78 509.36 509.71 511.67 513.40
12 1983 512.08 514.02 514.60 514.62 515.06
13 1984 502.62 509.59 512.00 513.57 514.91
14 1985 505.83 507.83 508.83 515.74 516.51
15 1986 513.99 514.10 514.43 515.92 516.00
16 1987 518.10 518.50 518.73 519.28 519.45
17 1988 506.53 507.15 509.02 510.45 511.67
18 1989 518.48 518.51 518.97 520.85 522.12
19 1990 518.38 519.46 523.14 523.68 524.07
20 1991 512.00 515.72 515.82 516.05 516.06
21 1992 513.72 516.63 517.92 518.45 519.94

88



> # likelihood function (compute NLLH - defaults to 10^10 if parameter values
> # infeasible) - par vector is (mu, log psi, xi)
> lh=function(par){
+ if(abs(par[2])>20){return(10^10)}
+ #if(abs(par[3])>1){return(10^10)}
+ if(par[3]>=0){return(10^10)}
+ mu=par[1]
+ psi=exp(par[2])
+ xi=par[3]
+ f=0
+ for(i in 9:21){
+ f=f+r*par[2]
+ s1=1+xi*(mu-yy[i,6])/psi
+ if(s1<=0){return(10^10)}
+ s1=-log(s1)/xi
+ if(abs(s1)>20){return(10^10)}
+ f=f+exp(s1)
+ for(j in 2:6){
+ s1=1+xi*(mu-yy[i,j])/psi
+ if(s1<=0){return(10^10)}
+ f=f+(1+1/xi)*log(s1)
+ }}
+ return(f)
+ }
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> # trial optimization of likelihood function
> par=c(520,0,-0.01)
> lh(par)
[1] 485.5571
>
> par=c(510,1,-0.1)
> lh(par)
[1] 255.9864
>
> opt1=optim(par,lh,method="Nelder-Mead")
> opt2=optim(par,lh,method="BFGS")
> opt3=optim(par,lh,method="CG")
> opt1$par
[1] 510.8844846 1.3119151 -0.3377374
> opt2$par
[1] 510.8840970 1.3118407 -0.3378123
> opt3$par
[1] 510.4261195 1.3143073 -0.3549833
> opt1$value
[1] 116.1818
> opt2$value
[1] 116.1818
> opt3$value
[1] 116.3213
>
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>
> # MLE of endpoint (intepreted as smallest possible running time)
>
> opt1$par[1]+exp(opt1$par[2])/opt1$par[3]
[1] 499.8899
> opt2$par[1]+exp(opt2$par[2])/opt2$par[3]
[1] 499.8928
>
> # now do more through optimization and prepare for MCMC
> par=c(520,0,-0.01)
> opt2=optim(par,lh,method="BFGS",hessian=T)
> library(MASS)
> A=ginv(opt2$hessian)
> sqrt(diag(A))
[1] 0.85637360 0.08829459 0.07802306
> eiv=eigen(A)
> V=eiv$vectors
> V=V %*% diag(sqrt(eiv$values)) %*% t(V)
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> # MCMC - adjust nsim=total number of simulations,
> par=opt2$par
> nsim=1000000
> nsave=1
> nwrite=100
> del=1
> lh1=lh(par)
> parsim=matrix(nrow=nsim/nsave,ncol=3)
> accp=rep(0,nsim)
> for(isim in 1:nsim){
+ # Metropolis update step
+ parnew=par+del*V %*% rnorm(3)
+ lh2=lh(parnew)
+ if(runif(1)<exp(lh1-lh2)){
+ lh1=lh2
+ par=parnew
+ accp[isim]=1
+ }
+ if(nsave*round(isim/nsave)==isim){
+ parsim[isim/nsave,]=par
+ write(isim,’C:/Users/rls/mar11/conferences/NCSUFeb2015/counter.txt’,ncol=1)
+ }
+ if(nwrite*round(isim/nwrite)==isim){
+ write(parsim,’C:/Users/rls/mar11/conferences/NCSUFeb2015/parsim.txt’,ncol=1)}}
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> # results from presaved MCMC output
> parsim1=matrix(scan(’C:/Users/rls/mar11/conferences/NCSUFeb2015/parsim1.txt’),nrow=10000,ncol=3)
Read 30000 items
> parsim=parsim1[(length(parsim1[,1])/2+1):length(parsim1[,1]),]
> s1=1+parsim[,3]*(parsim[,1]-502.62)/exp(parsim[,2])
> s1[s1<0]=s1
> s1[s1>0]=1-exp(-s1[s1>0]^(-1/parsim[s1>0,3]))
> s2=1+parsim[,3]*(parsim[,1]-486.11)/exp(parsim[,2])
> s2[s2<0]=0
> s2[s2>0]=1-exp(-s2[s2>0]^(-1/parsim[s2>0,3]))
> mean(s2/s1)
[1] 0.000422214
> mean(s2==0)
[1] 0.9212
> quantile(s2/s1,c(0.5,0.9,0.95,0.975,0.995))

50% 90% 95% 97.5% 99.5%
0.0000000000 0.0000000000 0.0001011265 0.0026199509 0.0254551231
> endp=parsim[,1]+exp(parsim[,2])/parsim[,3]
> sum(endp<486.11)/length(endp)
[1] 0.079
> plot(density(endp[endp>460]))
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Motivating Question:

• Concern over increasing frequency of extreme meteorological
events
– Is the increasing frequency a result of

anthropogenic influence?
– How much more rapidly with they increase in the future?

• Focus on three specific events: heatwaves in Europe 2003,
Russia 2010 and Central USA 2011

• Identify meteorological variables of interest — JJA temper-
ature averages over a region
– Europe — 10o W to 40o E, 30o to 50o N
– Russia — 30o to 60o E, 45o to 65o N
– Central USA — 90o to 105o W, 25o to 45o N

• Probabilities of crossing thresholds — respectively 1.92K,
3.65K, 2.01K — in any year from 1990 to 2040.
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Data

Climate model runs have been downloaded from the WCRP
CMIP3 Multi-Model Data website (http://esg.llnl.gov:8080/index.jsp)

Three kinds of model runs:

• Twentieth-century

• Pre-industrial control model runs (used a proxy for natural
forcing)

• Future projections (A2 scenario)

We also took observational data (5o × 5o gridded monthly tem-
perature anomalies) from the website of the Climate Research
Unit of the University of East Anglia (www.cru.uea.ac.uk — Had-
CRUT3v dataset)

98



Number Model Control runs 20C runs A2 runs
1 bccr bcm2 0 2 1 1
2 cccma cgcm3 1 10 5 5
3 cnrm cm3 5 1 1
4 csiro mk3 0 3 3 1
5 gfdl cm2 1 5 3 1
6 giss model e r 5 9 1
7 ingv echam4 1 1 1
8 inmcm3 0 3 1 1
9 ipsl cm4 7 1 1

10 miroc3 2 medres 5 3 3
11 mpi echam5 5 4 3
12 mri cgcm2 3 2a 3 5 5
13 ncar ccsm3 0 7 5 5
14 ukmo hadcm3 3 2 1

List of climate models, including numbers of runs available

under three scenarios
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Analysis of Observational Data

Key tool: Generalized Extreme Value Distribution (GEV)

• Three-parameter distribution, derived as the general form of

limiting distribution for extreme values (Fisher-Tippett 1928,

Gnedenko 1943)

• µ, σ, ξ known as location, scale and shape parameters

• ξ > 0 represents long-tailed distribution, ξ < 0 short-tailed

Formula:

Pr{Y ≤ y} = exp

[
−
{

1 + ξ

(
y − µ
σ

)}−1/ξ

+

]
.
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• Peaks over threshold approach implies that the GEV can be

used generally to study the tail of a distribution: assume GEV

holds exactly above a threshold u and that values below u

are treated as left-censored

• Time trends by allowing µ, σ, ξ to depend on time

• Example: Allow µt = β0+
∑K
k=1 βkxkt where {xkt, k = 1, ...,K, t =

1, ..., T} are spline basis functions for the approximation of a

smooth trend from time 1 to T with K degrees of freedom

• Critical questions:

– Determination of threshold and K

– Estimating the probability of exceeding a high value such

as 1.92K
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Application to Temperature Series

• GEV with trend fitted to three observational time series

• Threshold was chosen as fixed quantile — 75th, 80th or 85th
percentile

• AIC was used to help select the number of spline basis terms
K

• Estimate probability of extreme event by maximum likelihood
(MLE) or Bayesian method

• Repeat the same calculation with no spline terms

• Use full series or part?

• Examine sensitivity to threshold choice through plots of the
posterior densities.
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K Europe Russia Texas
Threshold 75% 80% 85% 0.75 0.8 0.85 0.75 0.8 0.85

2 97.9 87.7 67.5 149.8 131.2 110.4 146.6 131.3 108.8
3 75.7 68.5 60.5 145.8 135.4 112.7 142.6 125.0 105.5
4 76.1 66.2 44.9 148.1 137.8 113.8 144.6 126.8 103.6
5 74.1 64.6 54.6 147.0 134.1 121.2 144.1 126.5 104.9
6 74.2 74.3 61.6 146.8 133.6 113.1 143.8 125.5 106.1
7 77.9 75.2 59.8 146.6 135.1 114.0 133.4 126.4 106.8
8 86.2 77.4 65.9 148.0 137.1 122.1 138.9 128.4 108.1
9 86.8 74.6 67.1 149.4 138.7 113.3 148.6 130.6 110.2

10 88.7 94.8 54.2 150.8 140.4 125.1 128.2 122.9 105.7
11 90.6 73.4 73.5 153.1 142.6 125.7 144.2 127.8 110.5
12 79.1 98.6 59.3 152.8 140.8 126.4 135.1 119.7 105.8
13 95.3 79.6 59.1 156.1 144.2 127.4 136.2 116.9 104.2
14 77.5 78.6 54.6 157.5 142.4 128.7 138.9 121.8 107.9
15 97.6 85.5 77.9 157.2 143.1 129.5 136.8 122.5 109.6

AIC values for different values of K, at three different thresholds, for each
dataset of interest. In each column, the smallest three AIC values are

indicated in red, green and blue respectively.

106



Dataset Endpoint K Threshold MLE Posterior Posterior Quantiles
Mean 0.05 0.5 0.95

Europe 2002 5 80% .021 .076 0 .057 .217
Europe 2012 5 80% .0027 .113 .031 .098 .246
Europe 2002 0 80% 0 .0004 0 0 .002
Europe 2012 0 80% .0044 .011 .001 .0081 .029
Russia 2009 6 80% .0013 .010 0 .004 .040
Russia 2012 5 80% .010 .058 .005 .039 .181
Russia 2009 0 80% 0 .0011 0 0 .0069
Russia 2012 0 80% .0019 .0067 .0003 .0043 .021

CentUSA 2010 13 80% .0007 .072 .003 .045 .234
CentUSA 2012 13 80% .089 .300 .058 .268 .653
CentUSA 2010 0 80% .0023 .0078 .00007 .0052 .024
CentUSA 2012 0 80% .005 .012 .001 .0092 .031

Results of extreme value analysis applied to observational datasets. For three
datasets (Europe, Russia, Central USA), different choices of the endpoint
of the analysis, spline degrees of freedom K, and threshold, we show the
maximum likelihood estimate (MLE) of the probability of the extreme event
of interest, as well as the posterior mean and three quantiles of the posterior
distribution.
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Summary So Far:

• Estimate extreme event probabilities by GEV with trends

• Bayesian posterior densities best way to describe uncertainty

• Two major disadvantages:

– No way to distinguish anthropogenic climate change ef-

fects from other short-term fluctations in the climate (El

Niños and other circulation-based events; the 1930s dust-

bowl in the US)

– No basis for projecting into the future

It might seem that the way to do future projections is simply to

rerun the analysis based on climate model data instead of obser-

vations. However, this runs into the scale mismatch problem.
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Scale mismatch: 4 model runs (range of observations in red).
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Example 1. Herweijer and Seager (2008) argued that the persistence of
drought patterns in various parts of the world may be explained in terms of
SST patterns. One of their examples (Figure 3 of their paper) demonstrated
that precipitation patterns in the south-west USA are highly correlated with
those of a region of South America including parts of Uruguay and Argentina.

I computed annual precipitation means for the same regions, that show the
two variables are clearly correlated (r=0.38; p¡.0001). The correlation coef-
ficient is lower than that stated by Herweijer and Seager (r=0.57) but this
is explained by their use of 6-year moving average filter, which naturally in-
creases the correlation.

Our interest here: look at dependence in lower tail probabilities

Transform to unit Fréchet distribution (small values of precipitation corre-
sponding to large values on Frchet scale)
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Figure 1. Left: Plot of USA annual precipitation means over latitudes 25-
35oN, longitudes 95-120oW, against Argentina annual precipitation means
over latitudes 30-40oS, longitudes 50-65oW, 1901-2002. Right: Same data
with empirical transformation to unit Fréchet distribution. Data from gridded
monthly precipitation means archived by the Climate Research Unit of the
University of East Anglia.
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Example 2. Lau and Kim (2012) have provided evidence that the 2010
Russian heatwave and the 2010 Pakistan floods were derived from a common
set of meteorological conditions, implying a physical dependence between
these very extreme events.

Using the same data source as for Example 1, I have constructed summer
temperature means over Russia and precipitation means over Pakistan corre-
sponding to the spatial areas used by Lau and Kim.

Scatterpolt of raw data and unit Fréchet transformation. 2010 value approx-
imated — an outlier for temperature but not for precipitation.
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Figure 2. Left: Plot of JJA Russian temperature means against Pakistan JJA
precipitation means, 1901-2002. Right: Same data with empirical transfor-
mation to unit Fréchet distribution. Data from CRU, as in Figure 1. The
Russian data were averaged over 45-65oN, 30-60oE, while the Pakistan data
were averaged over 32-35oN, 70-73oE, same as in Lau and Kim (2012).
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Methods

Focus on the proportion by which the probability of a joint ex-

ceedance is greater than what would be true under independence.

Method: Fit a joint bivariate model to the exceedances above a

threshold on the unit Fréchet scale

Two models:

• Classical logistic dependence model (Gumbel and Mustafi

1967; Coles and Tawn 1991)

• The η-asymmetric logistic model (Ramos and Ledford 2009)
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Logistic Model Ramos-Ledford Model
Estimate 90% CI Estimate 90% CI

10-year 2.7 (1.2 , 4.2) 2.9 (1.2 , 5.0)
20-year 4.7 (1.4 , 7.8) 4.9 (1.2 , 9.6)
50-year 10.8 (2.1 , 18.8) 9.9 (1.4 , 23.4)

Table 1. Estimates of the increase in probability of a joint ex-
treme event in both variables, relative to the probability under in-
dependence, for the USA/Uruguay-Argentina precipitation data.
Shown are the point estimate and 90% confidence interval, under
both the logistic model and the Ramos-Ledford model.

Logistic Model Ramos-Ledford Model
Estimate 90% CI Estimate 90% CI

10-year 1.01 (1.00 , 1.01) 0.33 (0.04 , 1.4)
20-year 1.02 (1.00 , 1.03) 0.21 (0.008 , 1.8)
50-year 1.05 (1.01 , 1.07) 0.17 (0.001 , 2.9)

Table 2. Similar to Table 1, but for the Russia-Pakistan dataset.
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Conclusions

• The USA–Argentina precipitation example shows clear de-

pendence in the lower tail, though the evidence for that rests

primarily on three years’ data

• In contrast, the analysis of Russian temperatures and Pak-

istan rainfall patterns shows no historical correlation between

those two variables

• Implications for future analyses: the analyses also show the

merits of the Ramos-Ledford approach to bivariate extreme

value modeling. The existence of a parametric family which

is tractable for likelihood evaluation creates the possibility of

constructing hiterarchical models for these problems.
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At least three methodological extensions, all of
which are topics of active research:

1. Models for multivariate extremes in > 2 dimensions

2. Spatial extremes: max-stable process, different estimation

methods

(a) Composite likelihood method

(b) Open-faced sandwich approach

(c) Approximations to exact likelihood, e.g. ABC method

3. Hierarchical models for bivariate and spatial extremes?
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